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Abstract. Calculations of mean field dynamos for galaxies have
largely been for two rather disparate models. The thin disk model
treats the ratio of disk height to radius explicitly as a small pa-
rameter, and applies zero tangential field boundary conditions at
the disk surface. In contrast, the embedded disk model calculates
the magnetic field in a spherical volume, whose radius is the
disk radius and with the magnetic field fitting smoothly on to
a curl-free exterior field at the surface of the sphere. The disk
geometry is imposed by a flat distribution of the a-effect (and
maybe also of the diffusivity #). For computational reasons this
model has not been applied to very thin disks, so the regions
of validity of the two models are almost disjoint. Comparison
between their predictions is therefore difficult. In this paper we
calculate, in linear theory, galactic dynamo modes according to
both thin and embedded (or “thick”) disk models for a simple
underlying distribution of a-effect and differential rotation, using
a common numerical scheme. For the smallest attainable ratio
of disk height to radius, we find the critical dynamo numbers
are similar, but that there are some significant differences in field
topology.
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1. Introduction

Mean field dynamo theory has produced relatively unambigu-
ous results in two simple geometries — the Cartesian slab and
the sphere/spherical shell. The reasons for choosing the latter
are obvious — stars are (approximately) spherical. The slab has
the advantage of geometrical and analytic simplicity. However,
although valuable insight into qualitative behaviour of astrophys-
ical dynamos may be obtained by judicious use of slab geometry,
direct application of such a model to astrophysical systems is
difficult or impossible. Spiral galaxies are highly flattened objects
possessing coherent, large scale fields, eg Ruzmaikin et al. (1988).
Their disks are strongly differentially rotating and highly tur-
bulent, and so they are obvious candidates for dynamo action.
However their geometry is awkward. Much work has been done
assuming a local slab geometry, splitting the field into the product
of a slowly varying function of s and a rapidly varying function
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of z (s, ¢ and z are cylindrical polar coordinates). The basic idea
is that zo/R is a small quantity, where z is the disk semi thickness
and R is the disk radius. This approach has been described in
detail by Baryshnikova et al. (1987) and Ruzmaikin et al. (1988).
Although considerable insight into the dynamo mechanism can
be obtained in this way, there are serious limitations, see for
example, Rédler & Briuer (1987), Krause (1990), who point out
inter alia that this method of solving the dynamo equations may
not find certain modes. (But see Soward, 1978.) In particular, the
boundary conditions applied to the field are that it matches to
a vacuum at the disk surface, z = z,. In the local slab geometry
this implies the tangential field vanishes at this boundary.

In practice, galactic halos themselves contain turbulent con-
ducting media, and these assumptions are thus highly question-
able. Moreover there is now clear observational evidence for large
scale magnetic fields extending away from the galactic disk into
the halo region (Beck, 1991).

An alternative dynamo model has been developed in the last
few years, that avoids some of these difficulties. This can be called
the “embedded disk” or “thick disk” (TD) model in contrast to
what might be referred to as the “zero boundary condition”
(ZBC) model outlined above. In the original TD model, the
dynamo equations are solved in a sphere, but with an a-effect
that is confined to a disk. Boundary conditions are applied on the
spherical surface r = R, and are that the interior field fit smoothly
onto a vacuum (curl-free) field there. (See, eg, Elstner et al., 1990;
Moss & Tuominen, 1990.) Modifications might, for example,
include a z-dependent resistivity, # (eg Donner & Brandenburg,
1990).

The advantages of the TD model are the absence of any
expansion in terms of the small parameter zy/R. Moreover it is a
truly global model. Disadvantages include its analytic intractabil-
ity and that the disk does not fit “neatly” on to a finite difference
grid in spherical polar coordinates r, § and ¢. The latter point
does not, in practice, seem to be a serious problem except that
with a straightforward difference scheme, in order to place a rea-
sonable number of grid points in a thin disk where field gradients
may be expected to be large, a large number of points must also
be placed in the halo region where gradients can be expected
to be relatively small. This computational inefficiency has lim-
ited the TD investigations to comparatively large values of zy/R
(greater than about 0.10 or 0.20 typically). Thus the TD and ZBC
models are really useful in disjoint ranges of zo/R, and it is not
clear how well they would agree at a common value of this pa-
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rameter. For example, one of the predictions of Ruzmaikin et al.
is that, although in spherical dynamos nonaxisymmetric modes
are inhibited by differential rotation (eg Rédler, 1986), this may
not be true for thin galactic disks. Such a result may, of course,
be important for the explanation of nonaxisymmetric (eg BSS)
fields in some spiral galaxies. The argument why differential rota-
tion inhibits nonaxisymmetric modes is as follows. In a spherical
dynamo, differential rotation winds up a nonaxisymmetric field,
forcing field lines of opposing direction close to one another,
so that reconnection is facilitated. Differential rotation does not
have this effect on axisymmetric fields, but simply generates az-
imuthal field from poloidal. Thus axisymmetric fields are easier to
maintain against decay. In a thin ZBC disk the important length
scale for both axisymmetric and nonaxisymmetric fields is zg, not
R. This is directly imposed by the boundary conditions. If zo/R
is small enough, the decay of both types of field is governed by
the length zy, and not by the winding up by differential rotation.
Thus there is no discrimination against nonaxisymmetric fields.

Models presented by Ruzmaikin et al. (1988) support this
argument although even they never find nonaxisymmetric modes
that have faster linear growth rates than axisymmetric. (Note that,
in nonlinear theory, away from the bifurcation from the trivial
solution, the relevant sizes of linear growth rates is irrelevant
in determining the stable modes, eg Krause & Meinel (1988),
Brandenburg et al. (1989).) It is not obvious that the disk height
plays such a central role in the TD model. The disk scale z,
imposed via the a-effect, clearly will still be important, but the
magnetic field is not now constrained a priori to have the scale
zo by the boundary conditions applied at the disk surface.

Thus it is of interest to compare predictions of the two
models. As studied at present the approaches are so different (ex-
pansion in powers of zo/R and WKB approximation versus grid
point method in r and 6) that it is difficult to distinguish between
the consequences of the basic models and those of the various
assumptions and approximations made in implementing them.
Assuming that a-effect and angular velocity Q are respectively
antisymmetric and symmetric about the plane z = 0, we present
computations to determine the first bifurcations from the trivial
solution of modes symmetric (S) and antisymmetric (A) with
respect to the plane z = 0. We use a common numerical scheme
for both the TD and ZBC models and study both axisymmetric
(m = 0) and nonaxisymmetric (m = 1) modes. We are thus able
to compare directly the effects of the differing assumptions about
the boundary conditions on the magnetic field.

2. Computational method

We solve the linear mean field dynamo equation

0B/0t = curl [u x B + aB — curl (ycurl B)], 1)
by step by step integration on a uniform r, 6 grid of size NI
XN 0<r<10<80<7/2). u= Qr¢ is an azimuthal
velocity corresponding to a prescribed angular velocity Q, and r
and z = rcosf are now dimensionless coordinates, scaled with
the radius R. « and Q take the form

a = o cos 0f%(3 — 2f), (2)

where f = (29 —z)/zo for 0 <z < zg and f =0 for z > z;

Q-0 [1+ (%)2] o )

and we take ro = 0.5. We define the usual dynamo parameters

Co=uR/n, Ca=QR*/n. 4

In linear theory the units of B are arbitrary.

The numerical codes are a modification of the nonlinear
axisymmetric code described in Brandenburg et al. (1989) and a
modification of the nonaxisymmetric code described in section 4
of Jennings et al. (1990). When we study nonaxisymmetric (m = 1)
modes we assume B ~ exp(i¢), so that Eq. (1) still reduces to a
partial differential equation in r,  and ¢t. In the TD computations
we fit the field inside the sphere r = R onto a curl-free external
field. In the ZBC case the NI x NIJ grid points are similarly
distributed throughout r < R, but we impose the condition of
zero field in z > zy by making the radial component of B go
continuously to zero on z = z;, and the 6 and ¢ components
go discontinuously to zero there. This implementation slightly
overestimates the gradients of By and B, near z = z, (see Figs. 1
and 2), but experimentation suggests that growth rates, critical C,
values (C,.) and general field topology are little affected. NI and
N1J take values between 51 and 201, depending on the value of z.
We felt that zp = 0.1 is the smallest value for which reasonably
accurate results could be obtained.

a)

b)

)
d)

Fig. 1. Eigenmodes, showing on the left contours of By in arbitrarily
chosen meridional planes, for zp = 0.25. a) SO, TD; b) SO, ZBC; ¢)S1,
TD; d)S1, ZBC. The right hand plots show poloidal field lines for the
m = 0 modes, and those for the m = 1 modes are described in the text
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Fig. 2. As Fig. 1, but for zy = 0.10

3. Results and Discussion

Table 1 presents values of C, at the first bifurcation for A0, SO,
A1l and S1 modes. For the ZBC nonaxisymmetric case we only
give results for Cq = 10°. Calculations with a slightly different
model lead us to expect that the C,, values at Cq = 0 for the
S1 and Al modes do not differ systematically between the TD
and ZBC models, and that at Cq = 10° the C,. values for the
S1 and Al modes are very similar. (For example, for zy = 0.15,
CA) =902 and CS" = 90.3.) Where we give only results for the
S1 mode we expect the C,. value for the Al mode to be very
similar.

Table 1. Values of C,, at the first bifurcation for A0, SO, Al and
S1 modes. For each case the smallest value of C,. is typed in
bold face

TD ZBC

zp Ca S1 Al SO A0 S1 S0 A0
S0 0. 264 265 256 253 — 260 26.3
25 0| 529 534 508 506 - 523 525
A5 0| 884 895 847 — — 873 86.8
S50 10° | 328 316 134 361 | 328 320 150
25 10° | 548 543 286 536 | 538 483 54.6
A5 10° | 89.0 885 770 863 | 903 869 88.0
10 10° | 1339 — 1268 127.6 | 1359 1312 131.6
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Table 2. A as defined by Eq. (5) for the modes with Cq = 10
z0  Arp  Azpc
050 042 037
025 031 005
0.15 0.07 0.02
0.10 0.03 0.02

The quantity A is defined by
A=[C3 - C/ICE + ), )

and is a measure of the relative ease of exciting the SO rather
than the S1 mode. Values of A for the modes with Cq = 10° are
given in Table 2.

When Cq = 10°, we see that for zy = 0.5, then Arp =~ Azgc,
whereas for intermediate zo then Arp > Azpc. When zy = 0.10,
the smallest value studied, then Arp ~ Azpc again. For Cq = 10,
zo = 0.25 it is actually easier to excite m = 1 ZBC than TD
modes, but in all cases the differences in C,. values are quite
small between corresponding m = 1 modes. Thus it appears that
both for thick and relatively thin disks there is little relative
difference between the relative ease of excitation of m = 0 and
m = 1 modes when comparing the TD and ZBC models, whereas
for intermediate values in the ZBC case nonaxisymmetric modes
are relatively favoured. However in no case are nonaxisymmetric
modes easier to excite than axisymmetric.

In the left hand columns of Figs. 1 and 2 we present contours
of equal toroidal field strength in arbitrarily chosen meridional
planes ¢ = constant. For axisymmetric modes, the right hand
columns show poloidal field lines. For m = 1 modes we plot
the trajectories obtained by following the vector (B,,Bs,0) in
these planes, starting from arbitrarily chosen points in the plane;
these are not magnetic field lines. These figures show that the
contours of By (equally spaced) have a generally similar structure
in the ZBC and TD models. The magnetic fields projected on to
meridional planes show the larger differences, with the TD field
extending well into the halo region (cf Donner & Brandenburg,
1990). As found in previous studies, the strong z-dependence in «
itself imposes a length scale in the z-direction of order z, at least
in these linear calculations, and this seems to be responsible for
the convergence of the C,. values. The nonaxisymmetric ZBC
models in particular display a concentration of the magnetic field
to a region s < zp. In Fig. 3 we show the radial dependence
of B,, By and B, along a direction near to the equatorial plane
0 = n/2. However, more realistic models might include a “halo «”
also resulting from turbulent motions in the halo region (Sokoloff
& Shukurov, 1990), and it is not clear a priori how well these
features would then survive.

The following estimate can be made of when the effect of the
vertical disk structure becomes important. Differential rotation
can be expected to inhibit nonaxisymmetric fields when the field
is strongly wound up. The diffusion-limited winding number can
be estimated by n, ~ (AQR?/2nn)!/? (Radler, 1986; Moss et al.,
1990). In the context of a disk model, this means that the length
scale in the radial (s-) direction is then reduced to O(R/n.).
Putting AQ ~ Q ~ 310 %sec™!, R ~ 10kpc, # ~ 10*cm?sec™!
(roughly consistent with our value Cq = 10%) gives n, = O(10).
We expect that the vertical disk structure becomes important
when zg < R/n,, ie if zg/R < 0.1.
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Fig. 3. By, By and By (in arbitrary units) as a function of radius for
arbitrary ¢ and 6 near to n/2 for ZBC model, zg = 0.15, S1 mode
(resolution N1=201, NJ=101)

We note that, for the weakly supercritical values of C, that
we investigated, the dependence of the field growth rate, 4, on C,
is quite steep. If 1 is dimensionless (unit #/R?), then for zy = 0.1
we find d1/d In C, = 0(1000). With the above values for R and
n the unit of 1 is 107" sec™!, and a growth time ~ 10° years
corresponds to A ~ 300. Then A4 ~ 4 for Aln C, ~ 0.3. Thus the
growth times are relatively sensitive to the ill-known parameter
C, and, for example, arguments for or against the importance of
nonlinear effects based on the absolute size of growth rates for
any assumed value of C, should be regarded with caution.
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