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Abstract. We extend previous investigations of axisymmetric, in-
compressible mean-field dynamos to the compressible case with
strong stratification. We take thermodynamic effects into account
using the anelastic approximation and show that the effects of
stratification, compressibility and thermodynamics on the rota-
tion law are small when we compare our results with those
previously obtained for incompressible models. For solar values
of the Taylor number cylindrical contours of the angular velocity
typically occur — even for strong stratification. The stagnation
line of the meridional circulation is close to the bottom of the
convection zone. In the presence of magnetic fields the merid-
ional flow is amplified, in particular close to the surface where
the density is small and the Lorentz force per unit mass, J x B/p,
is large. The depth dependence of the magnetic energy density,
however, is not much altered by the inclusion of a density stratifi-
cation. For cyclical dynamo magnetic fields thermal and magnetic
energies are approximately in antiphase. The cyclic variation in
luminosity is small and it lags the variation in magnetic energy
by approximately 1/8 of the period. For adQ/dr > 0 we find
poleward migrating dynamo waves, whilst for «dQ/or < 0 our
solutions are steady or oscillatory, depending on the boundary
condition for the magnetic field at the bottom of the convection
zone.

Key words: The Sun: magnetic fields — stars: magnetic fields —
hydromagnetics — turbulence — convection

1. Introduction

A number of nonlinear «Q-dynamo models have been investi-
gated in the past (e.g. Riidiger 1973; Jepps 1975; Ivanova &
Ruzmaikin 1977; Brandenburg et al. 1989; Schmitt & Schiissler
1989; Jennings 1991). One goal of this type of work is to under-
stand the solar 22-year magnetic activity cycle. In these models
the angular velocity Q is not obtained simultaneously as a solu-
tion of the momentum equations, but is considered as given. It
is then possible to construct models whose magnetic field geom-
etry closely resembles the observed one. Although considerable
insight into dynamo mechanisms has been obtained from these
models, the approach is necessarily dynamically inconsistent and
so unsatisfactory.

Send offprint requests to: A. Brandenburg, NORDITA

In a series of papers Gilman and Glatzmaier investigated
dynamo action from convection in spherical shells, seeking self-
consistent models for the solar cycle (e.g. Gilman & Miller 1981;
Gilman 1983; Glatzmaier 1985). Their main result is that the
equatorial angular velocity decreases outwards and that magnetic
cycles occur for sufficiently small magnetic diffusivity, accompa-
nied by a poleward migration of magnetic fields. The unresolved
small scale behaviour is taken into account only by the use of en-
hanced diffusivities, ie there is no parametrization of anisotropies
in the small scale motions.

An intermediate approach is to aim for a more consistent
solution of the aQd-type mean-field dynamo. In previous papers
(Brandenburg et al. 1990a, 1991a, 1992; hereafter referred to as
Papers I, I, II1, respectively) we investigated mean-field dynamos,
in which generation of differential rotation by Reynolds stresses is
parametrized by the A-effect (Riidiger 1980, 1989) and where the
feedbacks between the magnetic field and the flow are included. In
these models we assumed the density to be uniform and constant.
We found oscillatory dynamo solutions with field migration only
when the turbulent magnetic diffusivity #, is small enough. On
the other hand, from investigations of incompressible models it
appears that the turbulent kinematic viscosity v, must not be too
small, because otherwise cylindrical Q-contours occur (Kohler
1970), contradicting helioseismological observations (Brown &
Morrow 1986). On theoretical grounds it is hard to accept large
values for the turbulent magnetic Prandtl number Pry = v,/#;.
Thus, some essential ingredients of the solar dynamo appear still
to be missing from that theory.

Various possibilities have been previously discussed which
may cause deviations from a rotation law that has Q constant
on cylinders. These include, for example, higher order terms in
the expansion for the A-effect (Riidiger 1989), and the effects of
compressibility and stratification. Stix (1989) pointed out that a
sufficiently large latitudinal entropy gradient is likely to relax the
conditions under which the Taylor-Proudman theorem applies.
In particular, models with generation of differential rotation by a
latitudinal dependent heat transport have been presented which
do not display cylindrical Q-contours even for high Taylor num-
bers; see Fig. 4 in Schmidt (1982). However, it is not clear to
what extent the adopted linearization is valid for high Taylor
numbers.

The purpose of the present paper is to investigate the effects
of stratification and thermodynamics in dynamos, adopting the
framework of mean-field theory. We thus consider the large scale
behaviour of velocity, magnetic and temperature fields whilst the
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small scale behaviour of the flow is parametrized by various
turbulent transport coefficients. Systematic azimuthal variations
of the large scale flow in the Sun are probably of secondary
importance and so we restrict ourselves here to axisymmetric
mean fields. We choose constant profiles for various coefficients
throughout the convection zone. The radiative interior is excluded
from the computational domain by assuming suitable boundary
conditions. Preliminary results have been reported in Branden-
burg et al. (1991b). Here we are merely interested in the gross
effects of stratification. It appears too early to attempt a detailed
tuning of the model to solar conditions at this stage. In particular,
the complex physical situation at the bottom of the convection
zone may introduce new complications that have to be studied
separately (cf. Paper III).

This paper is organized as follows. In Sect. 2 we present the
basic equations and boundary conditions. In Sect. 3 we refor-
mulate these equations in a numerically convenient form. Test
calculations for our compressible code are presented in Sect. 4.
In Sect. 5 we give the results for different cases and, finally, in
Sect. 6 we discuss the uncertainties inherent in our approach and
in Sect. 7 we present our conclusions.

2. Basic equations

We consider the initial value problem of a conducting fluid in
a rotating spherical shell with inner and outer radii ro and R.
We solve the hydromagnetic mean-field equations, starting with
a rigid rotation with angular velocity, Qo, and a weak magnetic
seed-field. We are interested in the evolution of velocity and mag-
netic fields on time scales that are much longer than the sound
travel time. We can therefore adopt the anelastic approximation
(e.g. Gough 1969).

2.1. The hydromagnetic mean-field equations

The equations governing the generation of mean magnetic field
by an a-effect and differential rotation by Reynolds stresses, 2,
are

-5? =curl (u x B+ aB — n,uod), 1)
Du .
Pp; = VP Trg+J x B—Div(p2—AB), @
Ds
= _divF
pTDt divF +gq, (3
with
divpu =divB =0. @

Here, D /Dt = 0/0t + u - V denotes the total derivative, g grav-
ity, J = curl B/, the electric current, o the induction constant,
n: the magnetic diffusivity, 2;; = (uju}) the Reynolds stress ten-
sor, and #;; = (B{B)) — ;6;;(B?) the Maxwell stress tensor. We
make the common assumption of neglecting correlations between
velocity and density fluctuations. For 2 we adopt the form

;= .@fj‘) — ve(uij + uj;) — wodiva %)

(Riidiger 1980), where v, and p, are turbulent viscosities, and i, j
refer here to Cartesian coordinates. The last two terms on the
right hand side of Eq. (5) describe a diffusive transport of angular

momentum. The first term is the A-effect with Qf]/‘] = ((?),-Ai +
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aSiA j)Q, where i, j = r, 0, ¢ are spherical polar coordinates, (;5 is the
unit vector in the ¢-direction, 2 = 2u,/w is the rotation vector,
% is the unit vector along the axis of rotation, w = rsin 6 is the
distance from the rotation axis, and 4 = (Ay sin0, Ay cos6,0),
or explicitly in spherical polar coordinates

0 0 Ay sinf
W = 0 0  Apgcosd | Q. (6)
Aysinf Apgcos@ 0

Following Riidiger (1980) we represent A by

Ay = v, (VO + VU sin? g), ™
Ag = v:HD sin’ 6,

where V@, ¥ and H®Y are expected to be of order of unity.
There are also nondiffusive contributions to 2,5 which certainly
do not vanish. We neglect them here because hardly anything
is known about their sign and magnitude. This term does not
appear in the toroidal part of the momentum equation and
therefore is not directly important for the rotation law. However,
92,9 may be important for modifying meridional flows, and may so
indirectly influence the rotation law. We also neglect the tensor %
because of the uncertainties associated with it. Note that Roberts
& Soward (1975) found for this tensor

Bi; = —n./n(B;B; + %51‘;'32), @®)

where 5 is the laminar magnetic diffusivity. For n, > n the
minus sign in Eq. (8) could modify strongly any saturation of
the dynamo by the action of the Lorentz force on the mean flow.
If the efficiency of this mechanism were to be markedly reduced
then, in the context of our models, saturation would have to arise
from a- and A-quenching mechanisms (Riidiger & Kichatinov
1990). Equation (8) was derived using the first order smoothing
approximation which may be questionable for large values of
n:/n (Rildiger et al. 1986). In the Sun, where magnetically induced
flows (e.g. torsional oscillations) can perhaps be considered as a
small perturbations, we might anyway expect that the tensor 4 is
less important than 2. Clearly, effects arising from the tensor %
deserve a separate investigation. In the present work we consider
primarily the magnetic feedback on the mean motions arising
from the large scale magnetic field.

2.2. The convective flux

In the bulk of the convection zone the radiative flux is small
compared with the convective flux of the (turbulent) small scale
motions, so we assume F = F°™, where F°" =~ pc,(u'T’).
Close to the bottom of the convection zone the radiative flux
becomes important compared with the convective flux, but it
is nevertheless irrelevant directly for the dynamics, because the
radiative time scale is much longer than the solar cycle period.
This assumption is of similar nature as the approximation that the
diffusivity, as well as the o and A coefficients, are taken as constant
and non-vanishing at the boundaries. (But the implied reduction
in turbulent transport coefficients may nevertheless be important.)
The interior or interactions with it are excluded by our choice
of boundary conditions. Effects arising from the complex and
ill-understood interface between the convection zone and the
radiative interior are here ignored and postponed to a further
investigation (preliminary results are reported in Paper III). Thus
our model only describes the region within the formal convection
zone.

In the simplest approximation the convective flux is propor-
tional to the entropy gradient with
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F™ = —3,pTVs, ©

(e.g. Durney & Roxburgh 1971), where y, is the turbulent heat
conductivity. We specify the ratios between the various diffusiv-
ities by the Prandtl number Pr = v,/x,;, the magnetic Prandtl
number Pry = v,/#,, and P, = p; /.

The temperature T and the density p are functions of pressure
p and specific entropy s. We assume a perfect gas with

pT = 2

-_r 10
s (10)

1 1
Inp=-Inp— —s, InT =Vylnp+s/c,
Y Cp

where V,g = 1 — 1/y and y is the ratio of the specific heats
¢, and c,, which we assume to be constant. In the following
we take y = 5/3, ie Vg = 0.4. We neglect heat sources (such
as viscous and Joule heating) and so put ¢ = 0 in Eq. (3).
Furthermore, we assume that the mass M, = fv pdV contained
in the convection zone with volume V is negligible compared
to the mass of the star, M, and so neglect self-gravitational
effects. The (invariant) gravitational acceleration is then given by
g = —i'g, where g = GM /r?.

2.3. Boundary and initial conditions

We assume the bottom of the convection zone (r = rg) to be an
impenetrable, stress free, electrically perfect conductor with a con-
stant energy flux corresponding to the luminosity L = 4nr2F (ro)
of the star. The upper surface is assumed to be a stress free black-
body radiator (F = ¢T*), from which magnetic fields continue
into the outer space as potential fields. As an alternative to the
blackbody assumption, we can fit to the radiative zero solution.
Using Kramers’ opacity law, the relation between pressure and
temperature is given then by p> = KT*° with K = g %< & %0}
(see Schwarzschild 1958, §11). Here we can replace L by 4nR*F
and interpret F as the latitudinal dependent flux. Thus we can
then take as outer boundary condition
F oc p°T?® (11
with a = —2 and b = 8.5. The blackbody radiator condition
(F oc T* is recovered by taking a = 0 and b = 4. As a further
possibility we may adopt a fit to a convective upper layer, which
implies a = —0.4 and b = 1.

The initial and reference state is assumed to be a solution of
Egs. (2) and (3) for # = B = 0, which give

¥ pytdpo/dr = —GM = const, (12)

po dso/dr = —c,VagL/(4my,) = const. (13)

2.4. Nondimensional control parameters

As nondimensional measures for gravity and luminosity we use

I = GMR/v?, (14)

& = VuLR/(4npv}), (15)
where p = M. /V is the mean density in the convection zone. Note
that M, is constant for impenetrable upper and lower boundaries.

The strength of the stratification is controlled by the surface
value of the ratio £ = H,/R, where H, = po/(pog) = Vaac,To/g
is the pressure scale height, ie

¢ = Va, TsR/(GM), (16)

where Ts = To(R) is the outer temperature of the reference
solution of Eq. (12) and (13). The strength of stratification can
also be measured in terms of the number of pressure scale heights
N, = In(pvot/pop) Or, equivalently, the number of density scale
heights included; N, = In(pyot/pop)- For the special case of an
adiabatic reference solution we have

N, =V In[l 4+ E7'V4(R/ro — 1)]. (17)

Below, we adopt ¢ = 0.01 which corresponds to N, = 7.2, and
N, =43.
A “turbulent” Rayleigh number may be defined as

4 4 —
Ra= (—ﬁ id_sﬂ) =Py <i> GMp
xve e dr ) "'m )/ Rpm
where r,, = %(ro + R) is the mean radius of the shell, and p,, =
Po(rm). This definition of Ra agrees with that of Glatzmaier &
Gilman (1981).

Equations (12) and (13) can be integrated between ry and R
for given M, and M once &, I, &, are specified. Having obtained
a hydrostatic equilibrium configuration, we introduce a velocity
field corresponding to a uniform rotation with angular velocity

Q. The corresponding nondimensional parameter is the Taylor
number,

(18)

Ta = 4Q2R*/v2. (19)
We choose to work in an inertial frame of reference, because
the variations in the angular velocity, produced by the A-effect,
are found to be of the order of the angular velocity itself. In
the presence of rotation the hydrostatic reference solution of
Egs. (12) and (13) no longer satisfies Eq. (2), and so the system
will approach a state where p and p also depend on latitude. In the
adiabatic case (& = 0) without A-effect, an initially nonuniform
rotation leads after some time to uniform rotation with Q = Q.
The strength of the a-effect is measured by

Co = %oR/ns, (20)

where oy is a characteristic value for «. Here, we assume
o = ogcosf. In two cases we also include the effect of a-
quenching using & = g cos 0/(1+apB?). Simple estimates suggest
that C, ~ $PryTa'? ¢ and ap = $E24, where Eoor = £oor/R is

the normalized correlation length (see Paper I).

2.5. Solar values

In order to get some feeling for the parameters introduced above
we can insert solar values: R, = 710 cm, Lo = 3.9 10 gcm?/s%,
GMgy = 1.3410% cm? /s, M, = 610%g, Qy = 3107557, v, =y, =
5102 cm?/s and y, = 1.510% cm?/s. This leads to I" = 310"
and Ta = 3107. The stratification of the entire solar convection
zone is so large that it cannot be covered with a reasonable grid
resolution. In the cases considered below we restrict ourselves
to N, ~ 7 and effectively cut off the outer 3% of the solar
radius. The volume of the convection zone between ry = 0.7 R
and R = 097 Ry is ¥V = 810%?cm? and so the average density
is 0.07 g/cm® and ¥ = 10°. We adopt a “surface” temperature
at R =0.97 R, of Ts = 1.410° K, taken from a standard mixing
length model, which gives & = 0.01. If we take &, = £ then we
have C, ~ 27 and ap ~ 107>. In practice, however, we treat C,
and op as free parameters.
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2.6. Nondimensional quantities

We introduce nondimensional variables by measuring the radial
coordinate r in units of the outer radius R, time ¢ in magnetic
diffusion times R?/%;, and the density p in units of the mean
density p. The entropy s is measured in units of ¢,. The units for
the basic nondimensional variables are:

(1=R [=R/n, [pl=p [sl=c, @1
The units for the other nondimensional variables are

[u] =n./R, [B] = [ul(uop)', 22)
[p] = plul’, [L]=pn}/R. (23)

In summary, 14 parameters are necessary to specify our mod-
els: &, T, &, Pr, Pry, P, Ta, ro, 9, VO, VU, HY C,, ap. Specifying
the first three of these is equivalent to specifying the physical pa-
rameters Ts, GM, L. Finally, of course, R, #;, p, ¢, in (21) have
to be specified to give the basic units, and yy = 47 in Gaussian
units. If we regard the basic physical model as being fixed, then
6 quantities &, I', £, Pr, Pry and Ta are necessary to specify
the hydrodynamic model, and additionally C, for the dynamo
models. Using solar values from Sect. 2.5 we have

[l =710%cm, [f]=31yr, [p] =0.07g/cm’, (24)
[u] = 70cm/s, [B] = 70 gauss, (25)
[p] =350gem™s2, [L] = 1.310%gcm?s~>. (26)

3. Reformulation of the equations
3.1. The reference state

The equations governing the reference state, Eqs. (12) and (13),
in nondimensional form are

dpo/dr = —gpo, 27
dso/dr = —Pr3,Pr# /(por?), (28)
where

g= Pr%,,l"/r2 (29)

is the (nondimensional) gravity. The nondimensional luminosity
for the reference state is

Lo = 4n#Prs /Vaa. (30)
In order to satisfy 5 = [pdV/ [dV = 1 we solve Egs. (27)
and (28) iteratively. At each iteration step we integrate these
equations inwards, starting at r = 1, with po(1) = Eg(1)po(1),
so(1) = %ln po(1) — In po(0). At each step we update po(r) using
Eq. (10) with po(0) = po(0)©'VV /ML,
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3.2. The momentum equation

In the anelastic approximation, the toroidal part of the momen-
tum equation is

png = —div [pw*(Qu, — Pry VQ) — @wbB, + poQA],

o (31)
and the poloidal part can be written in the form
om, )
yrale —Vpy +pf +PryVom,, (32)

where m = pu is the mass flux vector pu, the suffix p refers to the
poloidal (meridional) part of the field, and

pf = p1g + poQ* —m, - Vu, + J x B — Div (p2¥) (33)
is the force arising from the presence of rotation, meridional flows
and magnetic fields. Here, @ = w(sin 6, cos 6, 0) is the component
of the position vector perpendicular to the rotation axis. In (32)
and (33) we have subtracted the reference solution and consider
deviations denoted by subscript 1.

The diffusive part of p2 can be written in a more compact
form by using

Uij =m; + /lim,-, (34)
where
A=Vinp. 35)

In this way we can split p2 into two parts. Since m, is solenoidal
we can treat the term v,(m;; + m;;) in the same way as in the
incompressible case. The divergence of this term simply yields
V2m, (= —curlcurlm,). The diffusive part of the stress tensor

which is not included in the term PryVZm, is p,@g.l) = Pry (Aim; +
Ajm; + P,6;jA - m), where i,j = r,0,¢. In these spherical polar
coordinates the tensor pe@fj.) is given explicitly by

22, my Armg + Agm, 0
p,@““) = Pry | Armg + Agm, 2Agmyg 0
0 0 0

+Pry Pu(h - m)l, (36)

where I is the unit matrix. Note that with axisymmetry, the
divergence of a tensor in spherical coordinates can be written as

div (p2%) — } 1024 + p24,)]

Div (p2) = | div (0299) + L[02} — p2} cot 0] |, (37)
0

where div is the ordinary divergence operator for vectors in
spherical polar coordinates.

3.3. Solving for the pressure
We eliminate the pressure by taking the curl of Eq. (32), which
yields

(0: — PryV?)w, = curl (pf), (38)
where w, = curlm,. However, we need the pressure to compute
p from Eq. (10). By taking the divergence of Eq. (32) we obtain
a Poisson equation for p;.
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Vp = div (pf). (39)
We consider impenetrable boundaries, with # - m, vanishing on
r = rp, 1. This gives a condition for the pressure:

op1/or =¢- (pf —Prycurlw,) on r=ry,1. (40)
On the axis we have dp; /00 = 0. Thus, the boundary conditions
for p; are of Neumann-type and p; is determined apart from an
integration constant P(t), so we write
p(r,0,t) = po(r) + p1(r,0,t) + P(2). (41)
P(¢) must be determined so as to keep the total mass of the
convection zone, M., constant; see Sect. 3.6.

3.4. The final set of equations

Since m and B are solenoidal we may express them in the form

m= pwQe + curl (pd), B = b + curl (ad). 42)
When writing down the equations for the ¢-components of ve-
locity and vorticity it is convenient to define the Stokes oper-
ator, D?a = ——¢ curlcurl (ad)) The poloidal parts of m and B
are m, = curl (1p¢) and B, = curl (a¢) The divergence of the
poloidal velocity, u, = m,/p, is diva, = —A - u,. We finally write

Egs. (1), (3), (31), and (38) in the form

@ —DYa=ob+¢- (u, x B,), @3)
@ —D)b = aj+¢- (Vax By
— ou,-V(b/w)+bi u, +wB, - VQ, 44)
(8, — PryyD¥)w = ¢ - curl (of), 45)
(0, — PryyVI)Q = PryVQ - (4 + h) — ﬁdiv (pwQA)
— u, - (VQ+ Qh) (e ! ~—; B, V(wb), (46)
(6: — PryyPr'V?)s; = PryPr'Vinp, - Vs
+ (PryPr'py'Vp, —u,) - Vs, @7

where h = Vinw? = 2@ /w?. The stream function v is given by
the solution of

DYy = —w (48)
at every time step, and j is given by
j=-D%a. (49)

To sum up we have altogether to solve five equations Eq. (43)-
(47), that depend explicitly on time, and two Poisson-type equa-
tions (39) and (48), that do not contain the time explicitly.

3.5. Boundary and initial conditions

We assume the outer spherical surface of our computational
volume to be surrounded by a vacuum where the current vanishes
(J =0), and so the field goes to zero at least as fast as »~>. This
leads to

b=j=0 for r>1, (50)
ie in the entire space outside the sphere, and so our boundary
condition at r = 1 is b = 0. The interior and exterior solutions
must be matched such that a and da/dr are continuous on r = 1.
This can be formulated as a nonlocal boundary condition for a
on r = 1. On the inner boundary we assume a perfect conductor.
(For further details see Paper II.) Alternatively, we consider in
Sect. 5.8 some cases with a modified lower boundary condition
for the magnetic field. The inner and outer boundaries of the
shell are taken to be stress free, and thus the fluid boundary
conditions become:

»=0
pri®) =CG+2)%+w=0 3% onr=r,l (51)
r%—‘;‘ =AVQ

The boundary conditions for the entropy can be linearized with
respect to the reference solution, which gives

0 __ D dso _
6rsl = oo dr on r=ry, (52)
and
0 dso _ prdso _
(5 — b7;> 5) = po —(1 —a—>bV,) on r=1. (53)

Assuming as the outer boundary condition a blackbody radiator
we have a = 0, b = 4. Taking instead a fit to the Schwarzschild
solution (Sect. 3.5) we have a = —2, b = 8.5. In the cases consid-
ered below we found that the results are not very sensitive to the
exact choice of a and b.

3.6. Numerical method

We solve the equations on a r,6 mesh using a DuFort-Frankel
scheme for the diffusive terms and second or fourth order (cubic
splines) finite differences for the explicit terms on the rhs of Egs.
(43)—(47). The pressure is solved at the beginning of each time
step using a decomposition into Legendre polynomials P,(cos ).
It turned out that the term div (p;g) on the rhs of (39) can give
rise to a numerical instability for strong stratification. Using the
linearized equation of state, p;/po = p1/ypo — 51, wWe treat the p;
contribution to the p;g term implicitly and write

190 7‘2 . A_ (0!
Vot e (——Pl) = div (of +#p"" /7H,), (54)

where H,(r) = po/pog is the local pressure scale height of the
hydrostatic reference state and p(‘"d) is the value of p; from the
previous time step.

At each time step we update the pressure offset P(f) in
Eq. (41) according to the empirical formula
P()

=P(t — A1) — ey [M.(t) = MO TC/V, (55)
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Table 1. Relations between various physical phenomena and their related dimensionless parameters. The symbol — stands for absent,

x for present, and (x) for optionally present

Physics
a-effect  flows (self-consistent) stratification thermal equation

governing parameters C, Ta, A I, ¢ £
defining equations (43), (44) (45), (46) 27), (54) (28), (47)
Model

unstratified kin. dynamo X — - -
unstratified diff. rot. — X - —
unstratified aA-dynamo X X — -
adiabatic stratification (x) X X -
Boussinesq approximation (%) X - X
full thermodynamics (x) X X X

which converges with M. () — M. (0) after a number of time steps,
provided the coefficient ¢y is not too large (we used cp = 0.1).

In most of the cases we use 21 x 21 mesh points in the r
and 0 directions. In this case we can attain a stratification of
about N, = 7 pressure scale height (¢ = 0.01). For Ta = 3107,
I’ = 310!, Pry = 1, Pr = 0.33 the maximal time step is around
2 x 1075, which is similar to the value used previously in the
incompressible case. One time step takes about 0.06 seconds on
a Convex 220, and a typical run with 3 10* time steps takes then
about 1/2 hour. We repeated some of the most interesting runs
with 41 x 41 mesh points. The maximal time step is then 1075,
and takes about 0.23 seconds.

In our program we can gradually change the level of physics
involved. For example, at the lowest level we study just kine-
matical a-effect dynamos, and at the next the A-effect with a
self-consistent rotation may be included. The effects of gravita-
tional stratification can be included either with energy transport
neglected (adiabatic stratification) or included (full thermody-
namics). In principle we can also solve the thermal equations
neglecting stratification and pressure perturbations (Boussinesq
approximation). A summary of these various possibilities and
the related dimensionless parameters and equations is given in
Table 1.

4. Testing the compressible code
4.1. Adiabatic uniform rotation

In the adiabatic case with rigid rotation (4 = 0) no meridional
flow should be generated, but the surfaces of constant pressure
and density become flattened to oblate ellipsoids. Thus, Egs. (33)
and (38) reduce to ¢ - curl (p1g + p@Q?) = 0, which can be solved
using the ansatz p =~ po(r) + p1(r)P2(cos 6) + ..., yielding at the
surface

01 Q@ dlnp, Ta
— = P =
o S 3GMR ar 2O = 55T

Py(cos 0). (56)

For our standard case ¢ = 001, I’ = 310", Ta = 3107, the
maximal discrepancy arises in the polar regions and is there less
than 5%. However, we also find a weak non-vanishing meridional
circulation, which is probably due to discretization errors in the
scheme. This flow is much smaller than that generated in the
presence of a differential rotation (where A # 0).

4.2. Boussinesq convection

In the nonadiabatic case we can use the Rayleigh-Bénard insta-
bility as a test. Chandrasekhar (1961) gives numerous results for
Boussinesq convection where pressure fluctuations are neglected.
His model differs from ours, but it can easily be implemented
in our code by using g = —TI'r, po=1,p =0, 50 = —§r2 and,
as boundary conditions, s; = 0 on r = ry, 1. His definition of
the Rayleigh number corresponds then to PrI'. In order to find
critical Rayleigh numbers we compute the kinetic energy Ex of
the poloidal motions
Ex = %fpulz,dV (57)
for weakly supercritical Rayleigh numbers and compute the crit-
ical value by extrapolation. When r, = 0.6 we find for the critical
value Ra, &~ 4.14 10* for 21 x 21 mesh points (4.09 10* for 41 x 41
mesh points). This value is less than 2% (0.4%) larger than
Chandrasekhar’s value (4.076 10%).

4.3. Stratified convection

Glatzmaier & Gilman (1981) computed critical Rayleigh num-
bers Ra, for models with and without rotation and for different
degrees of stratification, using ro = 0.6 with the boundary con-
ditions T, = 0, ie s; = —Vaap1/po, On r = 1o, 1. Apart from the
fact that Glatzmaier & Gilman also consider nonaxisymmetric
modes, our model and definition of Ra should agree with theirs.
For Ta = 0 we find Ra, =~ 630 for the weakly stratified case
(¢ = 40) and Ra. ~ 870 for ¢ = 0.01 (the latter corresponding
to N, = 8.7 and N, = 5). The marginal Rayleigh numbers of
Glatzmaier & Gilman (1981), as determined approximately from
their Fig. 2, are smaller by approximately 5% and 17%, respec-
tively. For Ta = 410° (corresponding to 10* with the definition
of Glatzmaier & Gilman) we find Ra, ~ 5500 for ¢ = 40. This
value is about 10% larger than the value for the weakly stratified
case shown in Glatzmaier & Gilman. For the case with Ta = 0
and ¢ = 40 we checked that the discrepancies decrease further if
we use 41 x 41 (instead of 21 x 21) mesh points.

We checked that the marginal Rayleigh numbers do not
change over a wide range of different values of I. We also
notice that the results are not very sensitive to P, = u/v,; for
example P, = 0 instead of —2/3 typically gives 3-5% smaller
meridional flow velocities. However, the onset of convection is
strongly affected by changing the boundary condition for s;. For
example, using Egs. (52) and (53) gives Ra, = 150 (instead of
630) for Ta = 0 and ¢ = 40. Again, the case with rotation is less
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Fig. 1. Angular velocity (on the left) and streamlines of the meridional
mass flow (on the right) for cases A+ (upper two rows) and case B
(third row). Dotted streamlines refer to counter clockwise circulation.
(& = C, =0, Runs nl-n3, adiabatic, no dynamo action)

sensitive and we find Ra, = 5500, the same value as with the
other boundary condition.

We feel that the accuracy of our code is reasonably good for
21 x 21 mesh points. It might be possible that these test cases
could be solved more accurately by using an expansion in terms
of Legendre polynomials throughout, although it is not obvious
that any such advantage would then carry over to less idealized
problems. Moreover, such a technique would adversely affect the
ease with which changes and extensions of the code could be
made.

5. Results

We now present results using mainly the following parameters:
ro=0.7,Ta=310",T =310', & = 0.01, Pryy = 1, Pr = 0.33, and
P, = —2/3. In some cases we also investigate the cases Pr = 0.1
and 0.2. For the A-effect we assume either

VO =41, VO = HO =0 (cases A+), (58)

Fig. 2. Angular velocity (on the left) and streamlines of the meridional
mass flow (on the right) for case B with Ta = 310 and I" = 3108, The
lower row shows the incompressible unstratifield case for comparison.
(& = C, =0, adiabatic, no dynamo action)

which correspond to Kippenhahn’s concept of anisotropic viscos-
ity (Riidiger & Tuominen 1987), and for which we have previously
studied dynamos with incompressible flows (Paper II), or
VO =_1, v® =HW =5/4 (case B), (59)
which is believed to represent approximately the solar case
(Riidiger & Tuominen 1990). Here we only consider odd parity
(dipole type) magnetic fields and solve the equations in one quad-
rant of the meridional plane. Of course, some of our solutions
may be unstable to magnetic field perturbations of quadrupole
symmetry, but the gross properties of dynamos in thin spherical
shells are rather similar in the two cases. We first study the adi-
abatic case s=const, iec £ = 0 in Sects. 5.1 and 5.2, and then we
include energy transport explicitly in Sects. 5.3 to 5.8.

5.1. The effect of stratification on the rotation law

There are in principle two different ways that a steady meridional
flow can conserve mass in the presence of density stratification. If
the centre of the circulation pattern lies in the middle of the shell
then the velocity in the upper part has to be larger. However, it
is also possible that the velocities are similar in the upper and
lower parts of the shell, but then the centre of the flow pattern
has to be close to the bottom of the convection zone. We find that
the latter is the case in most of our models. In Fig. 1 we show
the results for the angular velocity and streamlines of meridional
flow for different combinations of the A-effect parameters (cases
A+ and B) in the absence of magnetic fields (C, = 0). The
streamline pattern in all cases looks similar: there is a single
circulation cell in the bulk of the convection zone and a more
or less clearly defined shallow circulation pattern at low latitudes
close to the surface. The Q-contours are cylindrical (parallel to
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Fig. 3. Contours of angular velocity, streamlines of meridional mass flow, poloidal magnetic field lines and contours of toroidal field, for cases A+
(for Cy = 10, upper two rows) and case B (for C, = 18, third row). Dotted contours refer to counter clockwise oriented field lines and streamlines or
negative toroidal magnetic field. The magnetic field in Model A— is steady (Run N1). In Models A+ (Run N2) and B (Run N3) the field is oscillatory
and migrating polewards. The last two snapshots are for the time when Ej; is minimal. ¢ = 0.01, & = 0 (adiabatic)

the rotation axis) in the bulk of the convection zone, with minor
deviations especially in case B, where the Q-contours tend to be
perpendicular to the rotation axis in the outer part of the shell.

Only Models A+ and B show an equatorial acceleration,
whereas in Model A— the polar regions rotate more rapidly than
the equator. All three models disagree with the observed solar
internal angular velocity distribution in that the Q-contours are
cylindrical. This is primarily a consequence of the large Taylor
number. This can be seen in Fig. 2 where we show the Q-contours
and streamlines of the meridional flow for Model B using a 1000
times smaller Taylor number, Ta = 3 10*, keeping the ratio Ta/T’
unchanged, ie I' = 3 10%. Note that the Q-contours are now radial
in mid-latitudes, in approximate agreement with Q-contours ob-
tained from recent rotational splitting measurements (Libbrecht
1988). The meridional flow pattern is less strongly concentrated
to the bottom of the convection zone than in the case with
Ta = 3107. In the lower row of Fig. 2 we have also plotted the
result for the compressible case for the same parameters. Note
that the meridional circulation pattern is now shifted somewhat
closer to the surface and to higher latitudes.

5.2. The effect of stratification on the dynamo

We now consider the results in the presence of dynamo action
(Cy # 0). In Fig. 3 we show snapshots of dynamo solutions for
Models A+ and B. We take C, = 10 for the Models A+ . Model
B is harder to excite and so we take here C, = 18.

Comparing the A+ and A— models, the energy is larger
in Model A—, and the Q-contours are expelled from regions
of strong magnetic field, ie Q-gradients are locally reduced. For
the case A+ we find an oscillatory magnetic field with pole-
ward migration (in agreement with the expected behaviour for
®0Q/0r > 0 in the northern hemisphere). A similar case has
been presented in Brandenburg et al. (1991b). During the dy-
namo cycle there are either one or two toroidal flux belts in each
hemisphere. Contours of constant angular velocity are strongly
modulated by the time dependent magnetic field. For Model B
we find a concentration of magnetic fields in high latitudes. The
angular velocity is then strongly reduced close to the poles. Sim-
ilar results have been obtained previously in the incompressible
case, see Paper L.
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Table 2. Summary of the different runs. The letters in the first column refer to different runs: with thermodynamics included and
standard boundary conditions (T), lower boundary condition modified (B), a-quenching included (Q1: ap = 1074, Q2: ap = 1072);
for (N) no thermodynamics included; and for (I) incompressibility assumed with p = 1. Nonmagnetic runs are indicated by lower

case letters. Runs hl and h2 refer to cases with anisotropic heat transfer (h1: HVW = —1.6, h2: HV®") = 41.6; see Sect. 5.7). The
letters in the 2nd column denote Models A+ or B, except in row L1, where V© = —1.5; see Sect. 6
Run “A” C, Pr &z Cq lg Ex ugx Ig Ey E}fj" /Em oU oL Teye
Tl A-— 2 033 1310° —750 213 32 4.26 0.009 0 0 st.
T2 A-— 5 033 1310° —628 2.36 44 4.21 0.042 0 0 st.
T3 A-— 10 033 1310° —471 241 48 4.03 0.27 0 0 st.
T4 A-— 10 020 10° —482...— 450  2.65..2.68 250...350 4.07 0.28 0 0 st.
TS A-— 10 0.10 106 —474 2.40 46 4.03 0.27 0 0 st.
T6 A— 15 0.10 109 —403 2.40 44 4.08 0.55 0 0 st.
T7 A+ 10 0.10 106 +993..+1010 1.65..1.74 22..122 3.77..390 0.05..008 10° 30 0.041
8 A+ —10 0.10 10¢ +942 2.06 48 4.07 0.09 0 0 st.
T9 B 18 0.10 10¢ +238...4+239  1.06..1.07 22..25 2.38..2.50 0.31..0.39 50 1 0.10
Bl A- 10 0.10 108 —550...— 675 221..2.25 45..87 3.68..3.94 0.08..0.10 10* 300 0.10
B2 A-— 10 0.10 10° —464.. — 645 224.2.34 41..102 3.82.4.11 0.06.010 610° 200 0.09
Q1 A- 10 0.10 10° —665 2.34 46 4.20 0.038 0 0 st.
Q2 A- 10 0.10 10° —810 1.67 19 342 0.002 0 0 st.
L1 A- 1 033 1310° —1142 248 46 4.56 0.003 0 0 st.
N1 A-— 10 no thermo —481 2.40 44 4.02 0.26 - - st.
N2 A+ 10 no thermo +992... + 1006 1.65..1.74 22..94 3.77..3.90 0.05..0.07 - - 0.041
N3 B 18 no thermo +238...4+239  1.05..1.06 10...11 2.39..2.50 0.31..0.39 - - 0.10
In A- 10 incompr. —706 2.09 71 4.05 0.07 - - st.
2 A+ 10 incompr. +886... + 893  1.25..1.31 21..23 3.51..3.61 0.06..0.08 - - 0.043
I3 B 18 incompr. +233...+239 0.96..0.97 10..11 2.49..2.65 0.32..042 - - 0.060
4 B -10 incompr. +218 0.88 12 3.06 0.17 - - st.
t1 A— 0 0.10 105 —813 1.65 19 - - - - -
t2 B 0 033 1310° 265 1.07 11 - - - - -
hi B 0 033 1310° 271 1.18 12 - - - - -
h2 B 0 033 1310° 260 0.95 9 - - - - -
nl A-— 0 no thermo —810 1.65 18 - - - - -
n2 A+ 0 no thermo +1110 1.22 27 - - - - -
n3 B 0 no thermo +265 1.07 11 - - - - -

Some relevant parameters for a number of runs are sum-
marized in Table 2. As in Paper II we measure the strength
of the Q-effect by the equatorial angular velocity difference
Cqo = Q(1,7/2) — Q(ro,/2). The magnitude of this quantity is
often found to be more important for the presence of dynamo
waves than, for example, the latitudinal angular velocity differ-
ence. We also determine the (dimensionless) magnetic energy in
the convection zone,

Ey = 1 / BV, (60)

2

and the strength of the poloidal magnetic energy relative to the
total magnetic energy, E}f;l /Eun. The period of the magnetic cycle
is Toye.

The marginal values of C, for dynamo action vary consid-
erably in the three models (below 2 for Model A—, below 10
for Model A+, and somewhat below 18 for Model B). Note
that the total magnetic energy can actually decrease with C, (see
cases T1-T3 in Table 2), and that only the energy of the poloidal
magnetic field increases (approximately linearly) with C,.

The dynamo period for Model A+ is not very different be-
tween the compressible and the incompressible cases (compare

Run T7 and N2 with 12). For Model B, however, the period is in
the compressible case almost twice as long as in the incompress-
ible case (compare Runs T9 and N3 with I3).

We did not find oscillatory solutions either for Model A—
with C, > 0 or Model B with C, < 0. If the Q-effect was
larger, ie Ta or Pry larger, then the dynamo would become
oscillatory. In Paper II we only found oscillatory solutions for
Ta > 5107 (Model A— with Pry; = 1). We note, however, that
during the growth phase of the dynamo the Ep(f) curve shows
a weak oscillatory modulation, which disappears as the dynamo
saturates. Two computations for Model A— with a-quenching
included suggest that the nature of the nonlinearity (a3 = 10~
in Run Q1 and 1072 in Run Q2) is not crucial for the existence
of steady behaviour.

We compare the compressible and incompressible Models
A+ for C, = 10 (Runs N2 and I2) by plotting for different
time steps the radial dependence of magnetic energy density
and kinetic energy densities from the poloidal motions, averaged
over spherical shells, ie. (1B?), and (}pul); see Fig. 4. Here,
angular brackets denote (f) = 1 [ f sin d6. Note that the profiles
of the magnetic energy density are not much altered in the
presence of stratification. In the stratified case the meridional
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Fig. 4. (%Bz) and (%pulz,) for the compressible and incompressible case
(Runs N2 and 12). A number of profiles for different time steps have been
superimposed in order to show the cyclic variation in different layers
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Fig. 5. Butterfly diagrams of the B,-field at r = 1 (upper panel) and the
By-field at r = 0.985 (lower panel) for Model A+ with C, = 10 (Run N2,
adiabatic)

flow and its temporal variation are somewhat larger than without
stratification, especially in the upper layers where p is small and
the Lorentz force per unit mass, J x B/p, large.

Butterfly diagrams for the B,- and By-fields (taken immedi-
ately below the surface) are shown in Fig. 5 for Run N2. The
toroidal field is more concentrated to the equator than B,. Dy-
namo waves migrate polewards — in agreement with the expected
behaviour for «adQ/or > 0.

337

Fig. 6. Contours of angular velocity Q, streamlines of meridional mass
flow (mp), contours of entropy perturbation s;, vectors of normalized
convective flux 4nr> F®™, poloidal magnetic field lines (Bp), and contours
of toroidal field (b), for a slightly supercritical Rayleigh number. Pr=0.2,
Ra=7000, Model A—, C, = 10, ¢ = 0.01, % = 10° (Run T4, nonadiabatic,
dynamo)

5.3. Nonadiabatic effects

We now investigate the nonadiabatic case % # 0. The possibil-
ity of the onset of large scale Rayleigh-Bénard convection (see
Sect. 4.3), as opposed to the small scale convection modelled in
terms of turbulent transport coefficients, restricts our “choice”
of the parameters Pr and %. For Pr = 0.33 and % = 10° the
turbulent Rayleigh number is around 10%, which is already su-
percritical and leads to the onset of large scale Rayleigh-Bénard
convection. (The critical turbulent Rayleigh number is in the
presence of A-effect and magnetic fields around 5000.)

Clearly, a model with prescribed values for v, and y,, inde-
pendent of the actual entropy gradient, is unrealistic. According
to mixing length theory the turbulent diffusivity adjusts itself and
increases as the entropy gradient becomes steeper. Also the flow
may become nonaxisymmetric (e.g. Glatzmaier & Gilman 1981),
although our model differs from theirs in several respects, and
we have not performed the corresponding stability analysis. If
this were to happen then, of course, conclusions based on an
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axisymmetric model will be meaningless. It is not the aim of this
paper to address this general problem any further. Since there
is also no sufficient observational evidence for such a large scale
convective flow, we consider primarily the case of slightly sub-
critical ., and so we take in the following either & = 1.3 x 107,
or we lower the Prandtl number and use Pr = 0.1 and & = 10°.
However, we also consider one case with a slightly supercritical
Rayleigh number using Pr = 0.2 and % = 10° (Run T4).

The effects of thermodynamics on the dynamo are weak if
the Rayleigh number is subcritical; compare the dynamo runs in
Table 2 without thermodynamics (Runs N1-N3) and those with
thermodynamics included (Pr=0.1 and Ra=1700; Runs T5, T7,
T9). For supercritical Rayleigh numbers (Pr=0.2, Ra=7000; Run
T4) the meridional flow at the surface is very large (uy =~ 300),
even though the kinetic energy of the meridional motions is not
much increased. In this case (Run T4) the flow in the uppermost
layers remains time dependent. (For this run we used a resolution
of 41 x 41 mesh points.) A snapshot of the flow and field pattern
is shown in Fig. 6. The magnetic field is practically steady, but
the flow (Q and m,) varies strongly with time at the surface. Vec-
tors of the normalized convective flux 4nr?F™ show noticeable
deviations from the radial direction. The flow pattern is of small
scale and it is possible that it would be unstable to nonaxisym-
metric perturbations. In this connection it is important to recall
that the magnetic field, generated by a mean-field dynamo in the
presence of sufficiently strong differential rotation, is expected
to be stable to nonaxisymmetric perturbations (Jennings et al.
1990). Our assumption of axisymmetry is therefore reasonable in
the case of subcritical Rayleigh numbers.

For Model A— with C, > 0 we find only steady solutions for
a broad range of C, (Runs T1-T6). In order to study oscillatory
solutions we now consider Model A+. In Fig. 7 we show cross
sections of the poloidal and toroidal magnetic fields, meridional
flow, angular velocity and entropy perturbation for the oscillatory
Model A+ with C, = 10 (Run T7) for half a magnetic cycle. The
magnetic field consists mainly of two poleward migrating toroidal
flux belts of opposite polarity. The shape of the Q-contours is
only weakly affected by the magnetic field. This is also reflected
by the relatively small cyclic variation of Cgq in this case (see
Table 2). The meridional flow is divided mainly into two counter
rotating cells which vary with time. The contours of s;, entropy
perturbation, show a small scale pattern that changes rapidly
with time, especially close to the surface.

For oscillatory models the cyclic variation of the magnetic
pressure is approximately three times smaller than the variation
of the gas pressure. This indicates that the two are not in balance
as it is typically found in compressible hydromagnetic dynamo
simulations (Nordlund et al. 1992), where no mean-field assump-
tion is made nor a-effect assumed. In our mean field model the
gas pressure modulation presumably arises not from the approxi-
mate equilibrium of magnetic and gas pressures, but mainly from
the significant cyclic variation of the angular velocity.

5.4. Meridional flow and magnetic field strength

Using the units for velocity and magnetic field defined in Eq. (25)
we find that in the nonmagnetic cases uj®* ranges from 8 m/s
(Model B) to 20 m/s (Model A+). In the magnetic case u§** may
reach values around 3040 m/s if the dynamo is steady, but may
vary in the range 20-80 m/s in the oscillatory case (Run T7).

In the bulk of the convection zone the dimensionless value of
1(B?) is typically around 4000 (see Fig. 4) which corresponds to

a magnetic field strength of about 6 kgauss. This is comparable
with the equipartition value of about 5 kgauss (Durney et al.
1990). This value is consistent with the estimate

Beq = ut(ﬂOﬁ)l/z ~ (37]1//00[)(/10?)1/2 = 3[B] ;)L

if £eor & 30Mm (o = 0.04) is assumed. This value of &
is larger than the value corresponding to C, = 10 (oo &
2C,/PryTa/? = 31073; see Sect. 2.4), but but these estimates
are anyway rather uncertain.

Schiissler (1979) presented compressible, but isothermal,
mean-field dynamo models with density stratification and feed-
back from the Lorentz force of the mean magnetic field. He found
peak values of 200 gauss for the magnetic field and 2 m/s for
the flow, that are at least one order of magnitude smaller than
in our model. However, the ratio of kinetic to magnetic energies
in Schiissler’s models is around 0.03, which is close to our values
for Ex/Ey; see Table 2.

(61)

5.5. Luminosity variations

In Model A+ with C, = 10, ¥ = 10° and Pr = 0.1 the di-
mensionless luminosity is 3 x 107 (see Eq. (30)) and the cyclic
luminosity variation is about 30 (see Table 2), so 6L/L = 107°.
The luminosity variation §L,, at the mean radius of the shell, 7,
is much larger. We find 6L,, ~ 1.510* and 6L,,/L ~ 510~*. In
Fig. 8 we plot the cyclic variations of magnetic and thermal ener-
gies, 0E) and 60U, respectively, and compare with the variations
in luminosity at r = 1 and r = r,. Note that §U is of similar
order of magnitude as dEy. Maxima of U occur shortly after
minima of 6Ey and JL lags SEy by 0.12 Ty, whilst 6Ey and
JL,, are approximately in phase.

In Model B with C, = 18, the magnetic energy is much
smaller than in Model A+ with C, = 10, but E,; = 70 and 6U =
50 are still of similar order of magnitude, and the luminosity
variations are smaller (L = 1 and 6L, = 160); see Table 2.
The small surface value of §L/L may be a consequence of the
boundary condition for s;, even though §L/L does not change
significantly for different pairs of the exponents a,b in Eq. (53).

Cyclic variations of the solar luminosity have been theoreti-
cally predicted by Spiegel & Weiss (1980). They find that substan-
tial variations arise from changes in the adiabatic temperature
gradient (0T /0r),4, which enters directly into the equation for
the convective energy flux. This can be written, using Egs. (9)
and (10), as

cony oT orT
F = XtPCp E - E .
ad

Spiegel & Weiss show (Egs. (5) and (7) in their paper) that the
change of thermal energy U in the convection zone is

(62)

or

SU ~ ¢,d (—) M.d ~ SEu, (63)
ad

or

where U = [pc,TdV = (y —1)7" [pdV. Our computations
confirm that the variations of 6E)y and 60U are indeed of the
same order of magnitude; see Fig. 8. Spiegel & Weiss argue
further that these variations affect the convective flux and that
such modifications reach the surface in a few months. They
expect variations of the luminosity to be of the order of the rate
of magnetic energy variation, 0 Ey /1, where 7 &~ Ty /4 =~ 6 yr for
the Sun.
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Fig. 7. Snapshots of poloidal magnetic field lines (first row), contours of toroidal field (second row), contours of angular velocity (third row), streamlines
of meridional mass flow (fourth row), and contours of entropy perturbation (last row). Dotted contours refer to counter clockwise oriented field
lines and streamlines or negative toroidal magnetic field. The maximum and minimum of Ejs occur respectively at ¢ = 0.044 and 0.054. Model A+,

£ =001, & = 10° (Run T7, nonadiabatic, dynamo)

In our model both §Ey/t and U/t = O(107) are of the
order 107, which is much larger than SL. In deeper layers the
variation of luminosity is larger (of the order of 10%), but it is
still small compared with the rate of energy variation. This means
that in our model a substantial amount of magnetic and thermal
energy is converted into other forms of energy, most notably the
rotational energy. The situation might be quite different if the
feedback on the o effect was included so that the cyclic variations
of Q were smaller.

5.6. Thermal shadows

Parker (1987) proposed that thermal shadows above flux tubes
might lead to a substantial cooling above them associated with
a downflow. This downflow might counteract the effects of mag-

netic buoyancy. A similar mechanism (“negative buoyancy”) has
recently been investigated by Vainshtein & Levy (1991).

In order to investigate this mechanism in our model we con-
sider the variation of the convective flux and the vertical velocity
by plotting “butterfly diagrams” of F&°™ and u, at r = ry; see
Fig. 9. Note that the times and latitudes of large magnetic energy
density coincide approximately with those of smaller convective
flux accompanied by negative radial velocities (downflows). Thus,
we confirm the general idea of thermal shadows. It is not obvi-
ous, however, to what extent these downflows also contribute to
pushing the flux tubes down.

5.7. Anisotropic heat transport

Stix (1989) pointed out that a sufficiently large latitudinal entropy
gradient might significantly relax the conditions under which
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Fig. 8. Variation of magnetic and thermal energies (upper panel), and
luminosity at the surface (second panel) and in the middle of the shell
(third panel). In all panels deviations of quantities from their minimum
values are plotted

the Taylor-Proudman theorem applies. In order to quantify this
possibility we now consider a simple form of anisotropic heat
conductivity, following Riidiger (1989),
Xij = %:[6ij — 8190, sin 0 cos OHV V], (64)
where HVW is a dimensionless number characterizing the mag-
nitude of the horizontal flux due to a vertical entropy gradient.
The second term in Eq. (64) leads to an additional term on the
right hand side of the entropy equation:

—HY® [l%% siHBCOSO% + div (ésin@cos@%)] . (65)

This term gives rise to a systematic latitudinal entropy gradient.
Since ds/0r < 0 and rdiv (é sinfcosf) = 3cos? — 1 this term
is positive close to the poles and negative close to the equator,
and we expect s to be enhanced close to the poles for HV® > 1
and enhanced close to the equator for HV® < 1. Note that
an isotropic latitudinal dependent eddy heat conductivity has
previously been invoked to explain the solar differential rotation
(e.g. Weiss 1965; Durney & Roxburgh 1971). Here, however, we
still retain the A-effect.

In Fig. 10 we show the resulting Q-contours and vectors of
4nr?F®™ in a meridional plane for HV® = 41.6 and compare
with the isotropic case HVW = 0. We find significant deviations
from cylindrical Q-contours if |[HV®|> 1. At the bottom of the
convection zone the convective flux in the latitudinal direction is
much larger than in the radial direction when |HV®|> 1. Never-
theless, the observable flux at the surface remains almost uniform
(cf. Spruit 1977), but this may be due to the over simplified upper
boundary condition adopted.

magnetic energy density
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]
=
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vertical velocity

0.130 0.160
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Fig. 9. Butterfly diagrams of BZ, F™ and u, at r = rp = 0.85. In the
middle panel dotted contours indicate that the convective flux is smaller
than the average. In the last panel negative values of u, (downflows) are
shown as dotted contours

We define the relative pole-equator temperature difference as

At = (Tpote — Tequ)/ Tequs (66)

evaluated along an equipotential surface close to r = R. For
the three models we find the following values of Ar: 10~° for
HVY = —1.6,3107 for HV) =0, and 510~° for HV® = +1.6,
ie Ar is positive and smallest for negative values of HV®, If A
was evaluated at r = R (ie not along an equipotential surface)
then the result would be quite different (ca. —510™#), but this is
mainly due to the oblateness caused by the centrifugal force.
Finally, we investigate the vertical dependence of the supera-
diabatic gradient
AV = (0s/0r)/(@1np/or), (67)
which is listed for the case HV® = 0 as a function of radius;
see Table 3. In the models with HV) = +1.6 the superadiabatic
gradient varies significantly with latitude. In Table 3 we give in
the last three columns the relative pole-equator difference of AV,
ie

AAV = (Avpole - AVequ)/AVequ- (68)
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Fig. 10. Q-contours and vectors of 4zr2F®™ in a meridional plane for
HVW = —1.6 (upper row), 1.6 (lower row), and 0, ie the isotropic case
(middle row). Pr=0.10, & = 10°

For HV®) = +1.6 this quantity is negative throughout most of
the convection zone, and positive for HV®) = —1.6. Thus, for
positive (negative) values of HV the superadiabatic gradient is
reduced at the poles (equator). This is also seen in Fig. 10 where
the vectors of convective flux are shorter at the poles (equator).

For HV) = —1.6 the superadiabatic gradient is at the poles
twice as big as at the equator. Modifications to the superadiabatic
gradient of comparable magnitude were proposed by Weiss (1965)
to explain the solar differential rotation.

5.8. Treatment of the lower boundary

The assumption of a perfect conductor boundary condition for
the magnetic field at the bottom of the convection zone is rather
crude and restrictive. (See also the discussion in Moss et al.
1990b.) In particular, the question of whether or not the solutions
are oscillatory crucially depends on the lower boundary condition
for the magnetic field. The perfect conductor boundary condition
may be inadequate, because in reality both poloidal and toroidal
magnetic fields will penetrate to some extent into the interior.
In order to illustrate the robustness of our results to this
uncertainty we now consider briefly another reasonable possibility
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Table 3. Depth dependences of Axy for Model B with HV® = 0
(i), —1.6 (ii), and +1.6 (iii). The fourth column gives the value of
AV in the equatorial plane for HVW = 0. Density and pressure
of the reference solution are also given

-\ ® @ @
1.00 0.042 1.210®° 3410°° -0.000 -0.00 0.00
097 0141 9510% 1.010°% -0.003 0.12 -0.11
094 0281 3010° 501077 -0000 028 -0.22
091 0463 6910° 3.01077 0.008 047 -0.31
0.88 0687 1310 201077 0019 067 -0.38
0.85 0957 2310 151077 0.030 0.85 -043
082 1279 3.810° 1.11077 0.038 098 -045
079 1.659 5810 8310°% 0.043 1.00 -043
076 2103 8610 6.610% 0042 0.87 -0.38
073 2623 12101 531078 0032 054 -0.25
070 3228 1810 4310°® -0.001 -0.00 -0.01

for the lower boundary condition. Since the solar interior has a
finite  .uuctivity the magnetic field will penetrate some distance
before it vanishes. This suggests using as boundary conditions
for a and b

da/or =a/b,, 0b/0r =b/0, (69)

where J, and 0, are parameters characterizing the penetration
depth. A similar condition has been used previously in a slightly
different context by Moss et al. (1990a). For an oscillatory field
8 = 0, = 8 = (Teyen/m)/? is the skin depth, where 7 is the
magnetic diffusivity of the interior. Assuming # = 10~* (in units
of n;) and Ty = 0.1 we have 6 = 0.002. In the following, however,
we consider 8, and J, as free parameters.

Using Eq. (69) we now find oscillatory dynamo solutions for
Model A— with dynamo waves migrating equatorwards. These
two properties are rather insensitive to the exact values chosen
for 6, and J,. We also find similar oscillations using the boundary
condition a = b = 0 at the lower boundary, ie §,,8, — 0. In the
following we present results for §, = 6, = 0.05 (Run B1) and
0.002 (Run B2). A typical snapshot of the magnetic field and flow
structure is shown in Fig. 11. Note that the gross structure of the
field is qualitatively not very different from the oscillatory case for
Model A+ using the perfect conductor boundary condition (Run
T7). In contrast, with a perfect conductor boundary condition
for Model A— we find steady solutions with field geometry that
is quite different. This shows that the question whether or not
the dynamo is oscillatory crucially depends on the treatment of
the lower boundary condition, and that the field structure itself
is less sensitive to such details once the solution is oscillatory.

The direction of magnetic field migration of Models A+ and
A— for C, > 0 is different and it is therefore interesting to see,
whether this has any effect on the phase relation of magnetic
and thermal energies and luminosity; see Fig. 12. It turns out
that U and SEy are now in antiphase, without delay as in
the previous case. Luminosity maxima occur still shortly after
magnetic maxima, indicating that this feature is robust to details
of the model. Furthermore, 8L is about ten times larger than in
Run T7, ie §L/L ~ 107>,
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Fig. 11. Contours of angular velocity, streamlines of meridional mass
flow, poloidal magnetic field lines, and contours of toroidal field, for
Model A— for C, = 10 with the modified boundary condition for the
magnetic field (Run B1)
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Fig. 12. Variation of magnetic and thermal energies (upper panel), and
luminosity at the surface (second panel) and in the middle of the shell
(third panel) for Model A— for C, = 10 with the modified boundary
condition for the magnetic field (Run B1)

6. Remarks on the input quantities

There are a number of input parameters whose values are not
exactly known, so it is important to discuss the sensitivity of our
results to changes in such quantities.

The A-effect parameters are constrained to some extent by
observations, e.g. Q is smaller at the poles than at the equator and
the rotation at the bottom of the convection zone is nearly rigid,
being there close to the surface value at 30° latitude. If the Taylor
number is below ca. 10° the Q-contours are only weakly affected
by the meridional flow and their shape then corresponds to that
obtained in the approximation of neglecting meridional flows
(see Fig. 2 in Kichatinov 1987). Observations suggest A-effect
parameters similar to those used in Model B with lower Taylor
numbers; see Fig. 2. For larger Taylor numbers the Q-contours
become more and more cylindrical. This Taylor-Proudman effect
occurs almost independently of the details of the mechanism
generating differential rotation. This conclusion is valid even in
the presence of strong density stratification and convective energy
transport. Thus, unless the effects of anisotropic heat transfer are
really important, we have to conclude that Ta should be much
less than 3 107.

In order to obtain dynamo action we have to choose the
value of C, large enough. In addition, in order that oscillatory
dynamo solutions of aQ-type are possible, |Cq| has to be large,
which implies that the product PrZ,Ta has to be large. Thus, if
Ta is chosen to be small (see previous paragraph) then a large
value of |Cq| can only be achieved with a large value of Pry,
(see Papers I, III). Increasing the value of |V©@| also produces
larger values of |Cq|, but then the relative latitudinal variation
of Q becomes unrealistically large (see Paper II). Moreover, in
one particular case we found that with an enhanced value of
|VO| the dynamo is still not yet oscillatory (see Run L1 with
V©® = —1.5), even though |Cq| is quite large. Oscillatory solutions
with poleward migration (ie 0Q/0r > 0) are possible for smaller
values of |Cq| (cf. TS, T8 and I3, 14 in Table 2). The question
of oscillatory solutions strongly depends on the lower boundary
condition for the magnetic field and seems to be independent of
stratification.

The ratio Ta/I" determines the strength of baroclinic flows
and the pole-equator variation of density and pressure. This
ratio is well known for the Sun, but the resulting flows in the
nonadiabatic case are much smaller than the flows generated by
nonuniform rotation and magnetic fields; see Table 2.

The strength of stratification should be as large as possible
in order to cover more of the regions close to the upper surface.
However, increasing the degree of stratification further beyond
the values adopted leads to changes primarily in the uppermost
layers and plausibly has no important effects on the nature of
the dynamo that operates in deeper layers; see Fig. 4.

The parameters % and Pr are crucial for the onset of large
scale convection. The main uncertainty here comes from the
adopted equation itself; see Eq. (9). The concept of describing
turbulent convective energy transport as entropy diffusion, in
particular, is too simple, if the assumption of a constant value
for the eddy heat conductivity is made. A more detailed analysis
might, however, lead to an automatic reduction of the transport
efficiency, so that our artifice of taking # to be subcritical may
not be too artificial.

Apart from the uncertainties in the o and A coefficients, the
various diffusion coefficients are obviously ill-determined. Indeed,
the whole concept of turbulent diffusivity may be inadequate to
describe convective turbulence. For example, anisotropies and
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nonlocal effects may be important. Such issues hopefully can be
addressed in the future by using high resolution direct simulations
of turbulent hydromagnetic convection of the solar convection
zone.

Finally, we should note that the neglect of turbulent viscous
heating in Eq. (3) may not actually be justified. In general, the
turbulent viscous heating source term is given by qyise = —u;;Q;;.
The largest contribution comes from the differential rotation, ie
Quise ~ pv,(@VQ)?. The integral of this term over the convection
zone can be of the order of 10% of the solar luminosity.

7. Conclusions

The main purpose of the present paper is to describe the method
and first results for mean-field models of dynamo action and
differential rotation, including the effects of stratification and
convective energy transport. It turns out that the stratified and
unstratified cases are qualitatively similar in many respects. For
example, the radial profiles of magnetic and kinetic energy den-
sities, have similar shapes in the two cases (Fig. 4). The total
magnetic and kinetic energies are also similar, but in the strati-
fied case more magnetic energy goes into the poloidal field and
the Q-effect is quenched more significantly (Table 2). Including
nonadiabaticity and energy transport has either only secondary
effects (luminosity variations etc) or, if the turbulent Rayleigh
number exceeds a critical value, the solution is strongly governed
by large scale convection which, however, may be an artefact of
the model; see Sect. 5.3. If we adopt solar values for luminosity,
gravity and rotation then we can only obtain subcritical values
for the turbulent Rayleigh number if the Prandtl number is re-
duced to ca. 0.1. For such models the mean meridional flow is ca.
8-20 m/s in the absence of magnetic fields, but varies between 20
and 80 m/s if a cyclic magnetic field is present. At the bottom
of the convection zone this field can reach values of the order
of 6 kgauss which is about the equipartition value. Furthermore,
cycle variations in the luminosity are quite small, even though
the thermal energy varies substantially with the magnetic cycle.

A somewhat surprising result is that cylindrical Q-contours
occur — see Figs. 1, 3, 7, and 12 — even in the presence of
strong stratification, at least near the equator. Thus, the Taylor-
Proudman theorem, which applies in the incompressible case in
the limit of vanishing viscosity, seems to hold approximately also
in the compressible case with stratification and in the presence of
relatively strong magnetic fields. Deviations can occur close to the
surface or be caused by a strongly anisotropic heat conductivity
tensor. The latter possibility implies that the latitudinal convective
flux exceeds significantly the vertical convective flux (see Fig. 10)
which may be hard to justify (Durney 1976).

We have only considered flows and dynamo action in the bulk
of the convection zone, ie the interaction between the convection
zone and the stably stratified interior beneath has been neglected.
This interaction may well be important and clearly needs to
be investigated further. In certain circumstances, this may be
equivalent to saying our results are sensitive to the treatment
of the lower boundary condition. There is further evidence for
this in that whether or not the solutions are oscillatory crucially
depends on the lower boundary condition for the magnetic field.
The perfect conductor boundary condition may be inadequate,
because magnetic fields penetrate to some extent into the interior.
Experiments show that other lower boundary conditions can
readily produce oscillatory solutions; see Sect. 5.8. This illustrates
the importance of including at least part of the interior in the
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model in a consistent manner. A practical difficulty is that the
value of the effective diffusivity decreases very rapidly below the
overshoot layer from its value at the bottom of the convection
zone, which causes numerical difficulties for models extending
into this region. Results with a smaller value of the magnetic
diffusivity in the interior can be found in Roberts & Stix (1972)
for the kinematic case and in Paper III for the nonlinear case
with A effect.

There are a number of further problems in explaining the
solar magnetic activity cycle in terms of “distributed” mean-field
dynamo theory. One of these is related to the effects of mag-
netic buoyancy removing flux from the convection zone on a
time scale shorter than the cycle period. (However, following the
simulations of Nordlund et al. (1992), it may be that these diffi-
culties attributed to distributed dynamos have been overstated.)
For these reasons, the dynamo has thus often been placed in a
rather ad hoc manner at the bottom of the convection zone. A
number of such models have been designed with negative « effect
and positive 0Q/dr at the equator. This ensures equatorward
migration of the activity belts, but produces the wrong phase
relation between poloidal and toroidal fields. These and many
other models rely on assumed distributions of o effect and dif-
ferential rotation. However, it is important to remember that the
migration properties can be strongly affected by turbulent pump-
ing mechanisms (Kichatinov 1991). For example, in the presence
of a strong turbulent downward transport, dynamo waves can
migrate equatorwards even though «dQ/dr > 0 (Paper III).

Another common feature of many aQ-type dynamos is that
the cycle period is one order of magnitude shorter than the
solar 22 year magnetic cycle period. It is interesting to note
that the period in the compressible convective dynamo models
of Glatzmaier (1985) is much longer (about 10 yr) than in the
incompressible models of Gilman (1983), who found periods of
about 1.5 yr. In our models the period is also short (1 - 3 yr),
but only for Model B there is a significant increase of the period
in the compressible as compared to the incompressible case.

Our formalism represents an alternative route forward that is
a compromise between the computationally expensive larger scale
global simulations pioneered by Gilman and Glatzmaier, and
the grossly over-simplified kinematic or quasi-kinematic models.
In the three-dimensional globally consistent models by Gilman
(1983) and Glatzmaier (1985) the hydromagnetic equations are
solved, and magnetic fields and differential rotation occur as a
consequence of large scale convection. In contrast to a-effect
models, there is no dynamo effect from the small scale motions.
These models typically lead to a poleward migration of magnetic
activity belts as do most of our models (Runs T7, T9, N2, N3,
12, 13). We represent the effects of the small scale motions on
both the angular momentum transport and the magnetic field,
whilst retaining the essential physics of the convection zone.
Computational times are then short enough to allow adequate
exploration of parameter space. An obvious problem with our
formalism is that we need to know values and functional forms
of the various turbulence parameters that enter our equations. In
principle, these values are related, and are indeed known given
a suitable turbulence model. In practice, at the moment they are
to an extent arbitrary and independent of one another. In the
reasonably near future it may be possible to derive self-consistent
expressions for these coefficients from numerical simulations of
compressible hydromagnetic convection (e.g. Brandenburg et al.
1990b; Pulkkinen et al. 1991), which will, in principle, reduce the
number of degrees of freedom present.
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