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Abstract. Observational evidence for long-lived nonaxisym-
metric features on the surfaces of rapidly rotating late-type giant
stars (e.g. FK Comae and RS CVn stars) is beginning to be found.
By analogy with sunspots, these features may be associated with
large scale nonaxisymmetric magnetic field structures, generated
by a dynamo operating in the convective envelopes. We describe a
nonlinear nonaxisymmetric dynamo model, and show that for a
simple ‘a-quenching’ nonlinearity together with suitable choices
of underlying radial profiles of differential rotation and the
a-effect, stable nonaxisymmetric solutions can be found by
numerical integration.
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1. Introduction

Traditionally the prime objective of astrophysical dynamo theory
has been to understand the solar cycle. This is very reasonable,
given that there is an abundance of observations of the solar
surface field and associated phenomena, extending over hundreds
of years. In addition, information about the internal solar differ-
ential rotation is now becoming available. In contrast, for other
cool stars that are candidates for having fields generated by a
contemporary dynamo we have generally only very coarse
grained, whole disk, information about proxies for field cycles,
extending at best over a couple of decades.

Dynamo theorists have largely studied axisymmetric models,
for very good reasons. The mean solar field appears to be
predominantly axisymmetric (although there are hints, from the
“sectorial structure” that weak nonaxisymmetric components
may be present); and in simple mean field dynamos the most
readily excited modes are often axisymmetric. Although linear
kinematic models that are strictly axisymmetric and in which the
driving mechanisms of dynamo action (usually a-effect and
differential rotation) are prescribed can reproduce quite success-
fully the observed features of the solar cycle, more realistic models
that determine these effects self-consistently, by solving simul-
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taneously the full magnetohydrodynamical, dynamical and ther-
mal equations, are much less satisfactory. Indeed, it is clear that
there is still much to be learned about the effects of even idealized
nonlinearities in the axisymmetric mean field dynamo equations
(e.g. Brandenburg et al. 1989a (henceforth BKMMT) and 1989b).

Recently the detection of indicators of surface structure has
been reported on a few late type stars that are expected to possess
extensive convective envelopes. For example, Piskunov et al.
(1990) have used surface imaging techniques to produce maps
showing large-scale nonaxisymmetric surface temperature in-
homogeneities on the “active giant” HD32918. These “cool spots”
seem to define an “active longitude”. By analogy with sunspots,
this may be evidence for the presence of a predominantly
nonaxisymmetric magnetic field. Jetsu et al. (1990) have found a
2.8 yr variation in the amplitude of the photometric rotation
modulation, superimposed on a 9 yr cycle in the mean brightness,
for the FK Comae star HD199178. The persistence of the phase
coherence over 13 years suggests the possibility of a long-lived
nonaxisymmetric surface component of magnetic field.

BKMMT demonstrates, for the case of strict axisymmetry,
that linear dynamo models are of limited usefulness in predicting
the final field configurations for supercritical dynamo parameters.
The same appears likely to be true also for nonaxisymmetric
configurations. Radler et al. (1990; henceforth RWBMT) have
already made numerical investigations of the time evolution of
nonlinear (x-quenched) mean field dynamo models. Their work
reveals quite complex behaviour, even in the limited parameter
space investigated. For some models nonaxisymmetric modes are
stable, and there is even a model with a “mixed” solution, with
axi- and nonaxisymmetric components both present.

The present paper describes a new, independent computer
code to solve, in three spatial dimensions, the same time depen-
dent, quasi-kinematic, nonlinear mean field dynamo equation as
studied by RWBMT, although the numerical algorithm is quite
different from that of RWBMT. It would be relatively straightfor-
ward to adapt the code to include other types of nonlinearity than
a-quenching, although this has not yet been attempted. The new
code has been written for and implemented on a vector processor,
and so is substantially faster than that of RWBMT. (A single time
step at the standard resolution NI=31, NJ=61, N=3 - see
Sect. 2 — takes ca. 0.033 s on an Amdahl VP1200.) Thus a more
extensive survey of parameter space at higher spatial resolution
has been possible. However the notation and general philosophy
of this paper is generally consistent with that of RWBMT, and
many of their introductory and concluding remarks are relevant
here also.
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2. The model
We solve the standard mean field dynamo equation

OB
= =Vx(uxB+aB)-Vx1VxB, 1)

in the spherical volume 0<r<R. r, 0, A are spherical polar
coordinates with axis the rotation axis. We make the simplifying
assumptions that u= xr, where 2=Q(r)k is a prescribed
differential rotation (k a unit vector) and that # is a constant
(turbulent) resistivity. With the scalings

t=R¥*7 4%, x=R7 ', Q=00, «=dd
Eq. (1) becomes
oB ~
6—=V><(CwQ(k><i'x)><B+Ca&B)—V><V><B 2
T
where
Ra R2Q
=, Co=—,
n n

are the usual dynamo parameters and & and Q are typical values
of a and Q. We choose to write

&=ay(x, B)cos#. 3)

For strictly linear calculations a, =f(x), where f(x) is a prescribed
function. For the nonlinear calculations we adopt

I
° 14+ Br,6,2)

representing a simple “a-quenching” mechanism driven by the
interaction of the magnetic field with the turbulence (e.g. Riidiger
1973). We perform some computations with “uniform” source
profiles, when

@

Q=—-x, f(x)=1.
Otherwise we use
15
1_ 2 2’ 8 1’
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0, [&al> 1,
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where ¢, =(x—x,)/d, and ¢, =(x—x,,)/d,,. These profiles have the
same spatial structure as those used by RWBMT and are
determined by the four parameters x,, x,,, d,, d,,.

We split the magnetic field into poloidal and toroidal parts,
B=B,+ By, and write

B,=V x(a(x,0)2)+V x V x(®(x, 6, H#),
BT =b(x’ 0)Z+V X (‘P(xs 0’ A)i')’
(cf. Chandrasekhar 1961). We then expand

N
o= 3 @,(x, He™,

m=1

N

Y=Y ¥,(x 0™
m=1

The radial component of Eq. (1) and the radial component of its
curl yield a set of quasi-parabolic partial differential equations for
a, b, L®, and LY,, m=1, .., N, (cf. Stix 1971) where

2 0
Lsa?+cot0%—m2 cosec? 6.
Given current values of @,,, ¥,,, the advanced values of L®,,, L'¥,,
can be obtained by integrating these partial differential equations
on a x, 0 grid. We use a Dufort-Frankel type method. ®,,, ¥,, can
then be recovered at the advanced time. After each step the
function aB=g (r, 0, 2) is expanded in the form

M

9(r,0, )= ZO gnl(r, )€™

using fast Fourier transforms, and the functions g,, are used to
calculate the terms arising from V x (¢B) on the right hand side of
Eq. (1).

The equations were solved over 0<x<1, 0<f<m, with
boundary condition at x =1 that B fits smoothly on to a curl-free
external field. The condition on the poloidal field components
was imposed by an extension of the matrix method used in
BKMMT. NI points were uniformly distributed in radius and NJ
in 0 with, typically, NI=31, NJ=61; usually N =3. Some solu-
tions were confirmed at spatial resolutions of 41 x 81 or 51 x 101,
and also with N=5. Typical timesteps were At=2.510"° or
51075,

To interpret the results it is convenient to define the quantities
E® and E™), the energies in the region r <R of the parts of the
field that are respectively symmetric and antisymmetric with
respect to the rotational equator. We then introduce the overall
parity parameter

E® _E®
TESO L EA”
where —1<P<1 (cf. BKMMT). It is useful also to define the

total energies in each Fourier component of field, E,,, and the
corresponding parity parameters for each mode, P,, m=0,

1, ..., N. A measure of the degree of axisymmetry of the field is
given by
M=1-E\/E,

(cf. RWBMT) where E=E® + E® is the total magnetic energy in
the sphere r <R. M =0 for a purely axisymmetric field and M =1
for a field with no m=0 component. We also use the notation,
introduced by RWBMT, whereby A1 denotes a solution that is a
mixture of A1, A3, AS, . . . modes, and S1 a solution that consist
of S1, 83, S5, ... modes. Similarly SO and A0 denote axisym-
metric field configurations with P= 11 respectively.

When describing and interpreting the results we distinguish
between limit cycles where the energies in the various modes
oscillate regularly, and steady solutions where the energies E,, are
constant, although the fields themselves may only appear steady
when viewed in a suitable rotating frame.

In Sect. 4.1 we describe some numerical comparisons between
our code and that of RWBMT for «? dynamos (C,=0). We did
not attempt to reproduce the periodic mixed parity nonaxisym-
metric solution found by RWBMT as the « and Q-profiles for that
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model are so spatially localized that they cannot adequately be
represented by our relatively coarse spatial grid.

3. Linear results

As the result of some experimentation we studied the three
profiles, U, D, and E, defined by the parameters given in Table 1.
Marginal values of C, for excitation of selected modes for these
profiles are presented in Table 2. These results were determined
by an eigenvalue calculation using finite differences in the radial
direction together with a truncated expansion in spherical har-
monics. Relatively small values of C,, were considered, in order
that the nonaxisymmetric modes were not too severely inhibited
by a strong differential rotation. Interpolations on test com-
putations with our nonlinear code, suppressing the nonlinearity
in o, show reasonable agreement with the results of the linear
code. Our feeling was that nonlinear axisymmetric modes are

Table 1. Parameter values for the source profiles investigated

Profile X, d, X d,
U Uniform profiles

D 0.75 0.25 0.75 0.25
E 0.75 0.25 0.50 0.25

Table 2. Approximate critical values of C, for excitation of
various linear modes. A zero in the frequency column indicates a
steady mode. The lowest value of C,, for each angular velocity
distribution is shown in bold type

Profile C, Mode C, Frequency
U 0 A0 7.6 0
SO 7.8 0
Al 8.0 0.9
S1 7.7 2.2
—300 A0 9.5 29
SO 104 26
Al 15.2 212
S1 15.2 212
D —100 A0 4.0 28
SO 4.1 27
Al 4.7 78
S1 4.6 79
E —100 A0 3.79 0
SO 3.74 0
Al 3.74 2.1
S1 3.70 2.1
—-150 A0 3.97 0
SO 3.88 5.6
Al 3.79 1.2
S1 3.75 1.3
—300 A0 4.14 25.5
SO 420 18.5
Al 3.85 -19
S1 3.81 —-15
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more likely to persist if the marginal dynamo numbers of the
nonaxisymmetric modes are not significantly smaller than those
of axisymmetric modes, although it is certainly not true that the
nonlinear behaviour at supercritical C, can be predicted from a
knowledge of the positions of the linear theory bifurcations (see,
e.g. BKMMT). From Table 2 it appears that this condition is
marginally satisfied for the uniform profile U at C,=0. We are
primarily interested in oscillatory solutions, which for an iso-
tropic a-effect (« a scalar) means we need C,,#0. Thus profiles D
and E seemed more promising. In particular, for profile E at
modest values of C, there is a comparatively large range of C,, in
which the marginal dynamo numbers of the nonaxisymmetric
modes are smaller than those of the axisymmetric modes.

4. Nonlinear results
4.1. Uniform a-profile, C,=0.0

A preliminary set of computations were performed with the
uniform profile f=1, and Q=0.0. a-quenching, as prescribed
by Eq. (4), provided the only nonlinearity. We studied the case
C,=10.0, a clearly supercritical value. Our results are consistent
with those of RWBMT. The only solution stable to both axisym-
metric and nonaxisymmetric perturbations is the A0 solution
(P=—1.0, M=0.0). The SO solution, when slightly perturbed,
evolves towards this solution via a circuitous path in the P/M
diagram, that passes close to P=1.0, M = 1.0 before moving along
the diagonal joining (1.0, 1.0) and (— 1.0, 0.0). Evolution near (1.0,
1.0) is very slow. Computations started from arbitrary points in
the P/M plane also eventually evolve to (— 1.0, 0.0) along this
diagonal, in much the same manner as described by RWBMT. A
more detailed comparison of the two codes showed that the
structures of the fields at a given point of the diagonal locus of
slowly evolving solutions are very similar and the energies agree
to within about 10%. It is difficult to compare the effective
resolutions of our grid point method (for  and 6) with the spectral
code of RWBMT, but this agreement would seem to be fairly
satisfactory. We did find it more difficult to reproduce the detailed
initial evolution from an arbitrary field configuration towards
this diagonal in the P/M plane. The explanation would appear to
be that this initial evolution is relatively rapid and depends
sensitively on both the detailed configuration of the initial fields
and perhaps on the “start up” procedure employed for the first
time step.

4.2. Uniform profiles with differential rotation

We performed a few exploratory calculations with uniform « and
Q-profiles. Bearing in mind the inhibition of nonaxisymmetric
modes by strong differential rotation in linear theory we re-
stricted our calculations to C,,= — 300. Table 2 shows that, even
with this relatively modest value of C,, the axisymmetric modes
are now excited at significantly smaller values than the non-
axisymmetric. We found that with, for example, C, =30 the field
evolves on a global diffusion timescale to an AO configuration.
This result is typical.

4.3. Profile D

Bearing in mind the linear results shown in Table 1, for our
investigations we chose C,= — 100 and allowed C, to vary. We
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Fig. 1a and b. Profile D, C,=30, C,=—100. a Ey, Ey=E,+E,+E;,
E,, E; as functions of time. b M and P as functions of time, and evolution
in the M/P plane

studied the evolution of initial fields located at arbitrary points of
the P/M diagram. We found a “critical” value of C,, C¥ say, that
separated two types of behaviour: C¥~15. For C,>C¥, the
situation is quite complex. There appears to be only one absol-
utely stable solution, a limit cycle with P near to —1. For the
accessible range of C,, this solution has small values of M; for
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10 example with C, =30, 0.001 <M £0.029. The range of values of P
and M in the oscillation increases slowly with C,. For example at
C,=50, —0.998 <P <0.937, 0.001 <M <0.045. The field is a
o] combination of m=0, 1, 2, 3, ... modes, with the m=0 domi-
nating and the energy in the m >0 modes decreasing rapidly as m
increases. We reran this calculation with higher r, § spatial
0 resolution (NI=51, NJ =101), smaller time step (Az=2.510"5)
and more azimuthal modes (N = 5); the solution was little chan-
ged. In Fig. 1 we display the energies in the m=0, 1, 2, 3 modes
an the variations of M and P as functions of time, and also the
evolution of a typical solution towards the limit cycle. Figure 2
gives contours of constant surface field strength, and also field
lines and toroidal field contours for the m=0 component at
-10-F arbitrary phase.
00 OT-S 10 However there are other solutions (at C, =30 at least) that are

stable to some, but not all, perturbations. These are situated at the
corners of the P/M diagram. There is a metastable solution
(steady) of A1 type (P=—1.0) and M =1.0. For small enough
perturbations this solution is stable, but when perturbed by
ca. 5% it evolves towards the stable limit cycle near (— 1.0, 0.0).
There is also a limit cycle with P= +1.0,0.001 <M <0.022and a
steady solution with P= + 1.0, M = 1.0. These are both stable to P
= + 1 perturbations but not to those of odd parity. When the (1.0,
1.0) solution is disturbed, its initial evolution is particularly slow.
Computations started from other points in the (P, M) plane all
seem eventually to evolve towards the cycle with P near —1, M
small, although the evolution is often so slow (timescale of tens of
diffusion times) that it is impractical to follow it all the way to this
stable solution. We did not find any stable solutions with large
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b

Fig. 2aand b. Profile D, C,=30, C,,= — 100. a Contours of constant surface field strength at t=2.5. b Field lines and contours of constant toroidal field
strength for m=0 component at t=2.5. Broken contours indicate negative values

Table 3
Profile C, C, P, M) Solution
D —100 <C} (=1,0) AO: limit cycle, stable
<C¥ 1,1 S0: limit cycle, unstable to nonaxi-
symmetric perturbations
>C* (—09... to —0.09..., Limit cycle, close to A0, stable?
0.001 t0 0.03...)
30 (=11 Al: steady, metastable
30 (1, 0 to 0.02) Limit cycle, close to SO, unstable to odd
parity perturbations
30 1 S1: steady, unstable to odd perturbations
E —150 <20 L, S1: steady, stable
—300 <10 (1,1 S1: steady, stable
210 (—1,0) AOQ: limit cycle, stable
—350 5 (—-1,0) AO: limit cycle, stable

2 Except for perturbations large enough to bring the configuration into the basin of attraction of the Al
metastable solution. Amplitude of variations in P and M increases with C,

nonaxisymmetric parts in the range of C, that we investigated
(C, <30 mostly, although we performed one calculation at higher
resolution with C,=50).

When C, < C¥, the A0 solution is a limit cycle that is stable to
all perturbations. At C,= 10, the SO solution appears to be stable
to nonaxisymmetric perturbations, but unstable to odd parity
axisymmetric perturbations. The P=M =1 solution is now un-
stable to small perturbations. We speculate that these results are
typical for C,<C¥. The various solutions are summarized in
Table 3.

44. Profile E

The linear results presented in Table 1 led us to investigate two
values of C,, in some detail, although we did not investigate this

profile as thoroughly as profile D. In particular we did not make
the tests for metastability and for stability to a limited range of
perturbations that are described in the previous section. A
summary of the solutions found is given in Table 3.

44.1. C,=—150

For all supercritical values of C, that we studied (up to C,=20),
the only stable solution found is an entirely nonaxisymmetric
steady solution of even parity (S1). In particular, the A0 and SO
modes are unstable to small nonaxisymmetric perturbations.
Fig. 3 shows the variation of E,, Ey, E,, E3, P and M with time
and the evolution of a typical solution in the P/M plane. Ey=E
—E, is the energy in the nonaxisymmetric field components.
Figure 4 gives surface field strength contours.
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Fig.3aand b. Profile E, C,=5,C,=—150.a E,, E,, E,, E; as functions
of time. b M and P as functions of time and evolution in the M/P plane

442. C,=—300

In this case we discovered a value of C,, say C¥, where
9.5<C¥ <10, such that for supercritical C,<C¥ the only stable
solution found was the analogue of that described for the case
C,= —150, i.e. a purely nonaxisymmetric even parity (S1) steady
solution. For C¥ <C,<20.0 the only stable solution appears to
be the A0 solution (limit cycle). Thus C¥, for this value of C,,

Fig. 4. Profile E, C,=35, C,= —150. Contours of constant surface field
strength at 7=2.5. Regions of maximum field strength are indicated by
‘M

marks a watershed between the existence of stable axisymmetric
and stable nonaxisymmetric solutions.

4.4.3. Larger values of |C,|

In the light of the results described above, and given our
expectation that for large enough |C,| nonaxisymmetric modes
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will be suppressed, we evolved fields from an initial configuration
located near the middle of the P/M diagram with a slightly
supercritical C,=5 and with C,= —325 and —350. When C,=
—325 the solution evolves to an even parity nonaxisymmetric
steady configuration corresponding to that described above.
With C,= — 350 the system eventually settles to an oscillatory AQ
solution that appears to be the only stable configuration.

5. Discussion and conclusions

Our calculations reveal some of the wide variety of nonlinear
behaviour that is possible for supercritical nonlinear mean field
dynamos when the restriction to axisymmetry is dropped. The
behaviour of the systems that we studied depends quite sensitively
both on the assumed profiles of differential rotation and a-effect,
and also on their magnitude via the parameters C,, and C,. In one
example we find a “watershed” value of C, separating regimes of
stable axisymmetric and stable nonaxisymmetric solutions
(profile E). With the same source profiles, but a different value of
C,, only nonaxisymmetric solutions were stable in the accessible
range of C,. In contrast, with a slightly different distribution of
angular velocity (profile D), there is a transition from a stable
axisymmetric to a stable mixed (m=0, 1, 3, ... ) solution as C,
increases. The sensitivity of the detailed nature of the results to the
differential rotation profile is additionally emphasized by pre-
liminary results reported in Moss (1991), when x,, takes values
between 0.40 and 0.70, leaving the other parameters unaltered.

However we have not yet found a model in which the
axisymmetric modes are very much more easily excited in linear
theory but nonaxisymmetric field components persist in the
nonlinear regime, but see profile D, Sect. 4.3.

We can note that the observations of HD32918 might suggest
the presence of a predominantly S1 field, but it is obviously quite
premature to attempt to make any comparisons between our very
idealized solutions and the sparse, inferential observational evi-
dence for large scale nonaxisymmetric stellar fields. We content
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ourselves with observing that it is possible for large scale non-
axisymmetric fields to be preferred, and that axisymmetric and
nonaxisymmetric solutions can interact to give a stable cycle.
Whether or not the necessary o and Q — profiles can exist as a part
of a globally self-consistent solution is a much deeper and more
difficult question.

Our code is adaptable, and allows the investigation of other
forms of parameterized nonlinearity, and could be modified to
include “real” dynamics by solving simultaneously the Navier-
Stokes equation. Restriction of the dynamo to a shell rather than
a complete sphere may also influence the results. These are all
areas for future work.
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