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Abstract. We investigate the influence of an azimuthally depen-
dent a-effect on the properties of «? and «*Q-dynamos in spherical
geometry, restricting ourselves to odd parity solutions in linear
theory. For all our linear models we find an exponentially grow-
ing mode, consisting of locked axisymmetric and nonaxisymmet-
ric parts. A strong nonaxismmetry in o substantially increases the
linear growth rates at given dynamo number and can result in
a marginal dynamo number that is significantly smaller than for
an axisymmetric o with the same value of f ad V. We also report
some exploratory nonlinear calculations and briefly discuss the
relevance of our results to galactic dynamos and to stars.
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1. Introduction

Axisymmetric linear mean field dynamo theory is approaching its
quarter century — a respectable age! It has spawned a plethora of
papers, initially mainly concerned with the solar field, but more
recently applied also to flattened objects (e.g. galaxies). Numerous
mechanisms leading to nonlinearities have also been investigated.
Although nonlinear behaviour is undoubtably crucial for under-
standing stellar dynamos, where growth times are very much less
than the ages of the objects, its importance is perhaps a little less
clear for some galactic dynamos with relatively slower growth
rates (e.g. Ruzmaikin et al., 1988)

One of the outstanding problems of galactic dynamo theory
is to explain the diversity of the observed field structures. Some
galaxies have axisymmetric spiral fields (ASS), some bisymmetric
spirals (BSS), and others have no well-defined morphology. In
terms of dynamo theory, the ASS fields correspond to axisym-
metric (m = 0) modes and the BSS fields to nonaxisymmetric
(m = 1) modes. It has proved difficult to produce “flat” (i.e. disk-
like) dynamo models with axisymmetric a-effect in which non-
axisymmetric modes are preferentially excited (see, e.g., Meinel
et al. 1990). This has led to the introduction of the concept of
a nonaxisymmetric a-effect (e.g. Chiba & Tosa, 1989; Mestel &
Subramanian, 1991). One physical motivation is that zones of
vigorous star formation in spiral arms may create regions of
stronger than average turbulence in the interstellar medium, and
correspondingly an enhanced nonaxisymmetric a-coefficient.

Send offprint requests to: David Moss

In this paper we make a very preliminary and idealized study
of the effects of such a nonaxisymmetric a-effect on the basic
properties of mean field dynamos. In order to get a clear picture
of the effects of such a mechanism we have restricted ourselves
to calculating spherical dynamos. Our formalism in principle can
readily be adapted to perform calculations of the “embedded
disk” type used by Elstner et al. (1990) and Moss & Tuominen
(1990), although providing adequate spatial resolution would
make the computations significantly more expensive. We feel
that our results provide some insight into the general properties
of such mean field dynamos that may, with some modification,
be applicable to the problem of the galactic field.

2. Method

We solve the linear mean field dynamo equation
0B/t = curl (0B +u x B) + nV>B with 1)

a=o0gcosB(l+dcosd), 0<d<l. )

We adopted the simplest differential rotation law,
Q = AQx, 3)

where x = r/R is the fractional radius and oy and AQ are
constants. Note that f adV is independent of 6. r, 6, A are
spherical polar coordinates.
Cx =R/n, Ca=AQR*/n. @
are the usual dynamo parameters, and we also define the overall
parity parameter, P = [E® — EW]/[E® + E®], and symmetry
parameter M = 1 — EQO/E . E®, E® EO and E, are respec-
tively the energies in the parts of the field anti- symmetric and
symmetric with respect to the plane 8 = x/2, the energy of the
axisymmetric field component, and the total field energy.
Although our calculations are linear, we found it convenient
to use a slightly modified version of the nonlinear nonaxisymmet-
ric dynamo code described in Moss et al. (1991), and determined
the linear modes and linear growth rates for given values of C,
and Cq by integrating Eq. (1) until the field strength increased
exponentially with time and the field structure had become in-
variant. The initial fields could be arbitrarily chosen. As we are
for now interested largely in elucidating the general properties of
dynamos with nonaxisymmetric a-effect, rather than performing
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a comprehensive survey of a particular dynamo model, our linear
calculations are restricted to fields of odd parity, P = —1.

For the majority of our computations we used 31 radial grid
points, uniformly distributed over 0 < r < R and 31 points
uniformly distributed over 0 < 6 < 7/2, and included explicitly
the m = 0 to m = 3 modes. We checked that decreasing the
mesh size or increasing the number of nonaxisymmetric modes
included did not significantly alter our results. Time steps, in units
of the global diffusion time, were between 10~ and 2.5 x 1075,

3. Results
3.1. «®-dynamos

We have the standard results (with resolution 31 x 31 grid points)
that with 6 = 0 the A0 mode is excited at C, = 7.64 (and the
S0 mode at C, = 7.82). The m = 1 modes are excited at similar
values of C,: Al at 8.0, (S1 at 7.7). We took C, = 10, a clearly
supercritical value, and investigated the nature of the fastest
growing linear mode as § was increased from zero.

We started our computations from a configuration with ei-
ther M = 0 or M = 1, and varied 6 in the range (0,1). For
0 > 0 the field eventually grew exponentially with structure in-
dependent of the initial configuration. If M; is the value of M
for this eigenmode, then M; increases with d, approaching but
not attaining, the value of unity as J increases to 1, see Fig. 1. A
noteworthy feature of these calculations is that the growth rates
increase quite rapidly with 0, see Table 1. In this table M, the
final, steady value of M, v the growth rate of the eigenmode and
ey, e; and e; are the fractions of the energy in the m = 1,2,3
parts of the field respectively. For small values of § (< 0.05),
calculations starting with M = 1 did appear to maintain values
of M near to unity for several diffusion times, whereas for initial
M > 0.10 the decrease in M was immediate.
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Fig. 1. Global symmetry parameter My against ¢ for calculations with
C,=10,C, =0

3.2. a?Q-dynamos

It is well known that for large values of Co nonaxisymmetric
modes are strongly inhibited (e.g. Rddler, 1986). We thus chose a
relatively modest value, Co = —300. The corresponding C, values
for excitation of the A0, SO, Al, S1 modes are then respectively
9.5, 104, 152, 15.2 when 6 = 0. We first investigated the case
C, = 11, chosen so that with § = 0 the axisymmetric modes are
excited but not the nonaxisymmetric. With an AOQ or Al type
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Table 1. Summary of results for C, = 10, Cq = 0. For the first
entry the initial configuration has M = 1, otherwise the final field
configuration is independent of the initial M value

o Mf v ey () e3
000 1.00 18.0 1.00 0.0 0.0
005 006 183 0059 5610~* 1810°°
010 020 203 0.19 731073 911073
020 047 239 039 761072 331073
060 076 544 049 0.23 0.04

1.0 080 100 047 0.27 0.06

Table 2. Summary of results for C, = 11, Co = —300

o M f v

0.025 0.00002 8.0
0.10  0.0003 8.0
0.25 0.0017 8.0

1.0 0.030 9.5

initial field we found the results given in Table 2. In contrast to
the previous results (Sect. 3.1), the final stable mode has only a
small nonaxisymmetric component (small M value) even for &
= 1, and the growth rates only increase slightly with &. There
appears to be no mode with large values of M. The fraction of
the energy in the m > 1 part of the eigenmodes never exceeds
0.001.

We then put C, = 16, so that both m = 0 and m = 1
modes are excited in linear theory with 6 = 0. For 6 = 0 the
axisymmetric modes dominate. As J increases, the behaviour is
similar to that found when C, = 10, Cq = 0: the growth rates
increase markedly and the dominant mode becomes increasingly
nonaxisymmetric, see Table 3. When 6 = 1, approximately 5%
of the field energy is in the m > 1 modes. Thus e, and e; are very
small and e; ~ M.

3.3. Depression of Cyerit

In the light of the above result, that increasing § increases the
linear growth rates at fixed C,, we kept 6 = 1, Cq = 0, and
determined the corresponding marginal C, = 5.5 for the mixed

Table 3. Summary of results for C, = 16, Cq = —300. The asterisk
denotes an approximate value, calculation not run long enough
to determine the value exactly

0 Mf v
0.001 51077* 45
0.02 0.0002* 45
0.10  0.005 522
025 0.03 57.5
1.0 0.37 117
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Fig. 2. Variations of M and P with 1 for calculations with a) C, = 10, Cq = 0, § = 0.05, b) C, = 10, Cq = 0, 6 = 0.20; ¢) variation of E™N) = E;o; —E©

and M when C, = 16, Cq = —300, 6 = 1.0

odd parity mode, which has M = 0.84. This can be compared
with the standard value Cyiy = 7.64 when 6 = 0, M = 0.

We made a similar investigation for the case Cq = —300. Our
code, with our standard resolution, gave a marginal C, value for
the A0 mode with 6 = 0 of approximately 9.57. With § = 1
the marginal value for the mixed odd parity mode (M ca. 0.02)
became approximately 9.2.

3.4. Nonlinear calculations

In a spirit of investigation we performed some nonlinear calcu-
lations with o multiplied by a factor 1/[1 + B?(r,0, 1)]. For these
calculations we did not select any particular parity for our fields,
and our standard computational grid had 61 points distribut-
ed uniformly over the range 0 < 6 < n. These are summarized
in Table 4. Starting with an initial field configuration of mixed
parity, in which M = 0.5, for C, = 10, Cq = 0 and 6 = 02
we found what appeared to be a mixed parity limit cycle with
023 < M < 0.25 and 0.74 < P < 0.76, although we did not
run the computation long enough to be absolutely sure that we
had precisely determined the final state, see Fig. 2. When 6 was
reduced to 0.05, M quickly became very small. In the latter case
we also verified that there was no stable solution in the vicin-
ity of P = —1, M = 1.0: calculations initiated in this region
evolve towards small M both if only strictly odd parity fields are
considered or if initially P has a value close to but not exactly
—1. When C, was increased to 15 with 6 = 0.2, the solution
was evolving slowly to a configuration with small M when the
computation was halted. In general, these o> dynamos evolved
very slowly, and it was computationally too expensive to follow
them for long enough to determine fully the final configurations.
It is plausible, for example, that the models with C, = 10, § =
0.05 and C, = 15 would eventually evolve to P = —1.

With C, = 16, Cq = —300, § = 1.0 we found a limit cycle
with M varying between values of 0.01 and 0.03 approximately.
Some details of these nonlinear solutions are given in Fig. 2.

4. Discussion

The results presented in Sect. 3.2, although very limited in nature,
do not present any evidence for the existence of configurations

Table 4. Summary of nonlinear calculations. (1) Computation
halted at t = 16 when M and P still decreasing very slowly. (2)
Values at © = 9.0. P and M may eventually become steady. (3)
Computation halted at 7 = 7 when M and P still decreasing very
slowly

Cy Ca o Mf Pf Comments
10.0 0 0.05 < 0.07 < =87 (1)
10.0 0 020 023-025 0.74—-0.76 2
15.0 0 0.20 < 0.16 < =75 3)
150 =300 0.20 0.001 —1.0
160 -—300 1.0 0.011..0.029 —1.0

in which the presence of a nonaxisymmetric a-effect can excite a
dominant linear nonaxisymmetric dynamo mode where otherwise
only m = 0 modes would be excited in linear theory. In such
cases the resulting mixed modes are just slight perturbations
to the axisymmetric modes. Although the results presented in
Sections 3.1 and 3.2 are restricted to purely odd parity fields,
there is no reason to expect their general nature to change for
fields restricted to be of strictly even parity. This expectation is
supported by a trial computation with P = +1.

When axisymmetric and nonaxisymmetric modes are both
clearly excited according to linear theory, then a nonaxisymmetric
a-effect can produce a linear eigenmode of fastest growth rate that
has a mixed parity and departs substantially from axisymmetry,
see Table 1. For our models M does not (and indeed cannot)
attain unity — there must inevitably be both m = 0 and m =1
(and m > 1) field components present.

However when the dynamo parameters are chosen to be
only slightly supercritical for the m = 1 modes, but substantial-
ly supercritical for the m = 0, then once again even a strong
nonaxisymmetry in o produces only a weakly nonaxisymmetric
eigenmode — see Table 3. We did perform a couple of rather spec-
ulative calculations with Cq = —300 and C, > 16. These were of
limited accuracy because of the very rapid field growth at these
highly supercritical parameters but they did suggest that as C,
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increases the M value of the first eigenmode increases significant-
ly at given 6, so that the above comments may only be relevant
in a fairly restricted parameter range near to the marginal C, for
the harder-to-excite modes. We can speculate that the behaviour
described in Sect. 3.1 may be normal when both axisymmetric
and nonaxisymmetric modes are excited in linear theory with
axisymmetric o, with growth rates that are not too dissimilar. If
only, e.g., axisymmetric modes are excited, then the behaviour
described in Sect. 3.2 for the case C, = 11, Cq = —300, may be
typical.

Some insight into these results in the linear theory can be
obtained by examining the dynamo equation (1). Suppose that
at given C,, for o independent of 4, Eq. (1) has solutions

By = bo(r)e"', By = by(r)e . 5)
Write
9 = 0/0t + curl (ycurl — curl (a), 6)

and suppose that o« = oy + o, where o is independent of 4 and
oy ~ e Consider |a;|= O(5) ||, where & is small and put
B=Bo+Bl+... . Then

2By ~ curl (0;B;) and 7
9B, ~ curl (a1 By), (®)

Now assume that we start with a m = 0 field so that, initially
at least, | B{|<|By|. Then the term on the rhs of (7) can be
neglected to first order, and B, grows with growth rate vq. In (8)
the term oy By acts as a source for the B, field which then grows.
If vy > vy, then By is slaved to By and |Bi|= O(9) |Bo|. If vo = v1,
again we expect |Bi|= 0(J) |By).

Now start with a m = 1 field, so that initially |By|<|B;|.
The zeroth order solution of (8) is an exponential growth of B,
provided v; > 0. The lowest order terms in (7) are of 1st order
and all must be retained. The term curl («; B;) acts as a source for
the field By, which grows with growth rate max(vo, vi). If vi 2 vy
we can expect |Bi|= O(5) |By|. If, in contrast, vy > v;, then
B, is slaved to By with |By|= O(d) | By|. From this it appears
that we might expect two distinct modes, with M near 0 and
1 respectively, for small values of § if vy and v; are of similar
magnitude (cf. remark at the end of Sect.3.1). Otherwise slaving
will occur and the only mode will be a perturbation to the mode
with fastest growth rate.

This seems to be consistent with the behaviour for small §
noted in Sect. 3.1 and 3.2, except that we always find a unique
value of My, even in Sect 3.1 where v and v; are comparable. We
speculate that this may be because the solutions with M; near
unity are unstable in linear theory as well as when nonlinearities
are included (Sect. 3.4). The behaviour of solutions with initial
M =1 and § < 0.05 described in Sect. 3.1 may then be a
consequence of such an instability.

The other case is when, at given C,, vo > 0, v; < 0. Then
Eq. (7) is approximated for all 6 by 2B, = 0, and B is slaved
to By by the source term curl («;By) in Eq. (8). Thus we expect
|Bi|= O(J) |By| — this is the only possibility. This appears to be
the situation when C, = 11, Cq = —300.

A slightly unexpected result is that for the same f oadV,
a nonaxisymmetric « (Eq. (2)) is more effective at exciting a
dynamo than an axisymmetric o, and mixed parity eigenmodes
grow for values of C, at which purely axisymmetric fields decay.
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The effect is clearly much more dramatic when the marginal
C, values for the m = 0 and m = 1 modes are close together
(Sect. 3.1) than when they are well separated (Sect. 3.2).

The introduction of a simple nonlinearity can sometimes
produce an increased degree of nonaxisymmetry, but not always
(see the solution with C, = 16, Cq = —300). In the C, = 16,
Cq = —300 case, at least, the results are of a generally similar
nature to those of Moss et al. (1991), who investigated nonlinear
nonaxisymmetric dynamos with axisymmetric o-effect, with less
simple « and Q distributions than considered here. The inclusion
of such a nonlinearity also enables us to investigate the stability
of our odd parity solutions for the «> dynamo, and shows that
the solution branch starting from M =1, P = —1 is unstable.

What do these results mean in the context of galactic field
generation? Our models have too many limitations, not least the
absence of any “flattening”, to enable any but the most general
comments to be made. Our differential rotation is distinctly “non-
galactic” in form and our a-effect is nonaxisymmetric but not
of “spiral” form. Also anisotropies in « (i.e. a tensorial form)
should perhaps be considered (e.g. Riidiger, 1990). However they
do suggest that a “spiral «”, presumably related to processes
occuring in galactic spiral arms, might produce some interesting
effects — possibly exciting a dynamo at a lower value of a dynamo
number than might otherwise be expected and also, in some cases,
resulting in a field that is clearly of neither purely m = 0 nor
m =1 type.

It is even possible that nonaxisymmetric o effects may influ-
ence some stellar dynamos. Possibilities include situations where
there are strong tidal effects in close binary systems or if the ef-
fects of giant cells dominate. In this context the nonaxisymmetric
structure inferred on RS CVn stars (e.g. Zeilik, 1991) and FK
Comae stars (e.g. Jetsu et al., 1990; Piskunov et al., 1990) could
be relevant.
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