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We estimate the two largest Lyapunov exponents in a three-dimensional simulation of hydromag-
netic convection in which there is dynamo action. It turns out that these first two exponents (from a
total of 8 x 63°) are positive and of similar magnitude. Thus we conclude that the dynamo is chaotic.
Furthermore, the consideration of local exponents helps in our understanding of the relevant dynam-
ics. We find that the downdraft flows are more chaotic than the upward motions. Likewise, the
velocity and magnetic fields have more chaotic dynamics than the temperature and density fields.

Although the energy output of the sun, the main basis
of life on earth, is nearly constant, observations show
that the solar surface (photosphere) is far from uniform.
Typical features are the granulation pattern indicating
turbulent motion in the convection zone underneath the
photosphere, a rotation rate that decreases with latitude,
and the most spectacular inhomogeneities, the sunspots,
which are concentrations of strong magnetic fields.

It is generally accepted that the sun’s magnetic field is
generated by a turbulent dynamo process [1]. Such a self-
sustained dynamo amplifies and maintains a magnetic
field by converting kinetic energy of turbulent convective
motions into magnetic energy. It has been demonstrated
by three-dimensional (3D) simulations that a sponta-
neous onset and maintenance of dynamo action can re-
sult from turbulent motions of a conducting fluid [2-4].
The nature of such complex dynamics can be character-
ized by means of Lyapunov exponents. This concept has
been applied to, for example, truncated dynamo models
[5] and incompressible Navier-Stokes flow with external
forcing [6].

Here, we use a direct simulation of dynamo action in
the compressible hydromagnetic convection of Ref. [4]. It
is not our aim to calculate the full spectrum of Lyapunov
exponents and a dimension of the underlying attractor
(cf. Ref. [6]), but rather to establish whether a system
showing dynamo action behaves chaotically. Therefore
we only estimate the two largest Lyapunov exponents.

Measuring Lyapunov erxponents. An important clas-
sification of the dynamical behavior of a system with
N degrees of freedom is by means of Lyapunov expo-
nents A; > Ay > -+ > An. The first exponent expresses
the average exponential convergence or divergence of ini-
tially nearby trajectories of the state vector in phase
space. If A; is positive for certain control parameters
(e.g., Rayleigh, Prandtl, or Taylor numbers) then the
system is defined to be chaotic in this regime. A; can
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asymptotically be determined from the separation €(t) of
two trajectories of the system [6]
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In order to keep the separation small enough we require
€(to) < 1. Since €(t) can grow rapidly in chaotic systems
Benettin et al. [7] used a reorthonormalization at regular
time intervals. A; then follows from averaging the corre-
sponding instantaneous exponents. Grappin and Léorat
[6] applied this technique to their long-term simulations
of stochastically forced Navier-Stokes flows with moder-
ate resolution in 2D (642, 1282) and low resolution in 3D
(163).

In our case the flow is driven by a vertical tempera-
ture gradient large enough to cause irregular convective
motions that in turn give rise to a dynamo effect [3]. A
grid of 632 points is used in the numerical simulation (for
further details of the method see Ref. [8]). Such a resolu-
tion prohibits long integrations due to constraints on the
computer time available. Nevertheless, rough estimates
of the two largest Lyapunov exponents over a few con-
vective turnover times can be obtained, if our system is
assumed to be ergodic. However, we should expect that
successions of rapid and slow phases are typical [6], and
this introduces some uncertainty. Hence, the stability of
our estimates has to be checked.

To estimate the first and second Lyapunov exponents
an initial state q(®), as well as two perturbed states,
q(l) - q(o) + 6q(1)‘ and q(z) = q(o) + 6q(2), are inte-
grated in time, where q = (ug,uy,u;,Inp,e,B;, By, B;)
is the state vector. Here, uz,uy, and u, are the three
velocity components, Inp the logarithm of the den-
sity, e the internal energy (temperature), and Bg, By,
and B, are the three magnetic-field components. We
take 6q() = (6ug,buy,6u,,0,0,0,0,0), and 8q® =
(6uy, —6u,,0,0,0,0,0,0), ie., the initial perturbations
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are orthogonal and made only in the velocity compo-
nents. A solenoidal random velocity field is chosen for
q®, but not q(® (note that the fluid is compressible).

In the course of the integration we estimate the largest
instantaneous Lyapunov exponent
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where ¢;(t) is the norm of the difference of two solutions
(a) and (b) with

e,-(t)=/|q§“)(x,t)-q§”>(x,t)|d3z, 3)

where a,b = 0,1,2. In practice, the integral in Eq. (3)
is evaluated as a sum over all 633 meshpoints. In or-
der to check the convergence we define the cumulative
Lyapunov exponent

1 ¢ ins
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which approaches A1 = lim;_.o A1(?), in accordance with
Eq. (1). [Theintegral in Eq. (4) is evaluated as a sum over
a finite number of time steps.] If three initial states are
integrated we get the sum A; + A5, analogous to Egs. (2)—
(4) from the growth rates of the area spanned by the
three trajectories q(®, q(1), and q(®). We also obtain
three independent estimates for A;, which allows us to
check the robustness of the values of A; under different
initial conditions.

Results. We restarted a simulation of Ref. [4] with
magnetic Prandtl number Prjs=4 at time ¢ = 608, where
spontaneous dynamo action with rapid amplification of
magnetic-field energy approaches a saturation phase (see
Fig. 1 in Ref. [4]). The Rayleigh number for this model
is 10%, the Taylor number 10°, and the Prandtl number
0.2. The time unit adopted in the simulation is (d/g)'/?,
where d is the height of the layer and g is gravity. The
time step (limited by the Courant condition) is about
0.003 time units and the convective turnover time d/u,
is around 20 time units, where u; is the (turbulent) rms
velocity.
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FIG. 1. The first and second cumulative Lyapunov expo-

nents (solid and dotted lines) obtained at the time interval
625 < t < 660.
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The cumulative Lyapunov exponent A,(t), given in
Fig. 1, seems to settle after time ¢ ~ 640. This is also
the time when the generated magnetic field saturates (cf.
Fig. 1 in Ref. [4]). We find A; =~ 0.08 & 0.01, i.e., the
e-folding time AT’ =& 13 is somewhat shorter than the
convective turnover time. Moreover, A; and A, are of
similar magnitude. Given that the A, (¢) spectrum is ap-
proximately linear with n (at least for small n; see, e.g.,
Refs. [6,9]), this suggests that a wide range of positive
Lyapunov exponents exists, and that the Lyapunov di-
mension may be rather high. Note that Grappin and
Léorat [6] found Lyapunov dimensions up to 123 for a
system with only 3000 degrees of freedom and that the
first exponents deviate only by a few percent.

The small initial perturbations chosen [e;(to) ~ 107°]
ensure an unbounded growth of ¢;(t) during our limited
integration time, and a reorthonormalization procedure
was not necessary. Our analysis of several simulations
shows that the results obtained with this technique are
similar over a rather broad range of initial perturbations
[we also tried €;(tg) & 107], revealing the numerical sta-
bility of the results.

In order to throw some light on the physical processes
involved we also considered separately exponents for ve-
locity (ug,uy,u,), magnetic field (B, By, B,), and ther-
mal (In p,e) components (cf. Fig. 2). Both kinetic and
magnetic contributions show positive growth rates, and
the sign of the growth rates of the thermal components
oscillates, which suggests a weaker form of chaos from
the thermal part of the system. This may be a conse-
quence of the small Prandtl number of 0.2, which causes
a more rapid relaxation of the temperature field than of
the velocity and magnetic fields.

The fluctuations of the instantaneous Lyapunov expo-
nent (upper panel of Fig. 2) are much smaller in our
model than, for example, in simple shell models of tur-
bulence [9]. However, such shell models do not reflect
the full spatio-temporal pattern. In order to investigate
spatial nonuniformity we define local exponents

0.5
0.0
-0.5
630 640 650 660

tot. field

0.5
AN e —— e ]
0.0

kinetic

-0.5
630 640 650 660
0.5
00F--—--—=EETEE =S o T oo se===s oS o= s =
-0.5
630 640 650 660

0.5[
-0.511

630 640 650 t 660

magnetic

thermal

FIG. 2. Instantaneous Lyapunov exponents (upper panel)
and the contributions from the kinetic, magnetic, and thermal
variables. The dotted lines refer to the second exponent.
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et ward flow to the cumulative Lyapunov exponent.
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compensates for the disadvantage of relatively short inte-
FIG. 3. Histogram (upper panel) and spatial structure  gration times mentioned earlier, if we assume ergodicity.

(lower panel) of local exponents A1 (x). The data are accu-
mulated over the time range 640 < ¢t < 660. Note the spatial
nonuniformity.
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A histogram of the distribution p(A;) of local and in-
stantaneous exponents indicates a marked inhomogene-
ity in the turbulence (upper panel of Fig. 3). Note espe-
cially that there are stable regions of considerable extent
with A;(x) < 0. The higher moments of this distribu-
tion (the skewness is —0.005 and the kurtosis or excess
is 11.7) quantify the deviation from the normal distri-
bution. Such nonuniform dynamics result mainly from
spatial inhomogeneities (lower panel of Fig. 3). It is the
spatial averaging in Eq. (3) that, in our model, smooths
spatial inhomogeneities. This could be the reason for the
surprisingly uniform behavior of A,(¢) in Fig. 1. Note

(®)

It is known in compressible convection that downdraft
flows are much faster and more vigorous than upward
motions [10], and most of the dynamo action comes from
these downdraft regions [4]. It is therefore interesting
to see whether the local exponents reflect such behavior.
In Fig. 4 we have plotted the instantaneous exponents
/\(lup) and /\gdown) of the two subsystems, in which the
vertical velocity component u, is directed upwards and

downwards, respectively. We see that A§d°wn) is slightly

larger than AE“p), but the difference is less than antici-
pated from the results of Ref. [4]. The lack of a strong
difference here may be partly due to an enhanced di-
vergence of phase-space trajectories related to the fluid
expansion of rising fluid elements.
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indebted to Nordita for their kind hospitality.
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