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Nonlinear axisymmetric mean-field an-type dynamos in spherical shells of conducting incompressible fluid 
are computed, with differential rotation being generated by the Reynolds stress of anisotropic turbulence 
(/\-effect). The correlation time of the turbulence is assumed to be short compared with the rotation 
period. In this case the angular velocity tends to be constant on cylindrical surfaces as the Taylor number, 
Tu, is increased (cf. the Taylor-Proudman theorem). The only magnetic feedback mechanism considered 
is the Lorentz force of the mean magnetic field acting on the macroscale motions (Malkus-Proctor 
mechanism). The Elsasser number is in this case close to unity, but grows slowly as Restricting 
ourselves to strictly dipole-type magnetic fields we find for Tu = lo8, magnetic cycles with migrating field 
belts close to the equator. For smaller Taylor numbers and only slightly supercritical a-effect the magnetic 
field is steady and the R-effect becomes unimportant for the generation of toroidal field from a poloidal 
one. However, magnetic cycles are still possible if the a-effect is sufficiently strong. In this case the field 
is concentrated at high latitudes. Poloidal and toroidal fields can be in antiphase with equatorward field 
migration only when the angular velocity increases inwards and towards the poles. The energy of the 
mean magnetic field generated is usually less than the energy of the turbulent convective motions. The 
ratio between cycle period and rotational period can reach values of around fifty. 

KEY WORDS: Hydromagnetics: mean-field dynamo, differential rotation, turbulence, Sun and stars: 
magnetic fields, stellar activity cycles. 

1. INTRODUCTION 

Simple kinematic mean-field an-dynamos appear to be capable of explaining the 
basic features of the solar mean magnetic field, although the prescribed differential 
rotation may be unphysical in that it is not a consistent solution of the full dynamical 
problem. In the present paper we attempt to improve the mean-field an-models by 
determining simultaneously both the magnetic field and the differential rotation. 

In an-type dynamos two induction processes are important in opposing the 
dissipation. The first arises from the turbulent e.m.f. (u’ x B’), leading to the a-effect. 
The other includes the effects of large-scale flows such as differential rotation and 
meridional circulation. Both of these are essential for the an-dynamo which is the 
standard explanation for stellar activity cycles. What is important here is that the 
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180 A. BRANDENBURG, D. MOSS, G .  RUDIGER AND I. TUOMINEN 

non-uniformity of the angular velocity also has its origin in the statistical properties 
of the turbulence. This has been formulated as the “A-effect’’ (Rudiger, 1989, and 
references therein); its ancestry can be traced through the works of Lebedinski (1941), 
Wasiutynski (1946), and Biermann (1951). In essence, the presence of anisotropy in 
the turbulent velocity field drives an angular momentum transport. 

Thus a knowledge of the general turbulence field provides us with the input 
quantities a and A in the dynamo equations, and so it is necessary to solve 
simultaneously both the dynamo and mean-field momentum equations, in order to 
construct a satisfactory model encompassing both the turbulent nature of the rotating 
convection zone and the resulting (large scale) mean-field structures. 

In one way the present work is an extension of the a2-models of Malkus and 
Proctor (1975) and Proctor (1977), by including the generation of differential rotation 
by non-diffusive parts of the Reynolds stress tensor (i.e. the A-effect). In Malkus and 
Proctor’s approach, non-uniform rotation also arises, but there it is only due to the 
feedback from the Lorentz force (J) x (B) of the mean magnetic field. In contrast 
to this, here the differential rotation depends directly on the assumed properties of 
the hydrodynamic turbulence, via the mean-field momentum equation. 

We can contrast our approach with that of Gilman and Miller (1981) and 
Glatzmaier (1985), who solve directly the full equations, thus avoiding an ad hoc 
prescription of either an a-effect or differential rotation. This involves a substantial 
computational effort because the timescale associated with the convective motions 
is short compared to the solar cycle period. At present this approach can only resolve 
giant cells, which may not be adequate (cf. Spruit et al., 1990). In our formulation 
only the equations for the mean magnetic field and mean motions are considered. 

The induced magnetic fields, both the fluctuations and the mean parts, feed back 
via the Lorentz force into the equations for both the mean and fluctuating motions. 
The simplest back-reaction is that of the large-scale Lorentz force, (J) x (B), which 
influences directly both the differential rotation profile and the meridional circulation. 
This effect has also been held responsible for causing the solar torsional oscillations. 

The dominant feedback mechanism eventually determines the amplitude of the 
generated magnetic field. It is not yet clear, however, which of the various feedback 
mechanisms is the dominant one for stellar dynamos. a’-dynamo models with 
a-quenching generate magnetic field strengths limited approximately by uA d u,, where 
uA=I(B)/ (ppcl0)- l I2  is the Alfven velocity of the mean magnetic field and u, the 
characteristic turbulent rms velocity. The resulting maximum possible field strength 
at the bottom of a mixing-length model of the solar convection zone reaches values 
of up to 5000G. It has been argued that observations contradict this result (Durney 
et a/., 1990). If there is no reason for the appearance of a “dilution” factor in the 
a-quenching expression one has to conclude that the observations do question the 
traditional feedback mechanism on a. It is possible, however, that the inducing action 
of differential rotation might lead to super-equipartition values of the magnetic field 
strength. An interesting question is whether or not other nonlinear models can be 
constructed which allow magnetic fields exceeding the “turbulence equipartition 
value”, given by uA = u,. In this paper the mean-field Lorentz force is the only feedback 
mechanism that we consider explicitly. 
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2 .  BASIC EQUATIONS 

181 

We consider here the initial value problem of a turbulent, incompressible, electrically 
conducting fluid with constant and uniform density, p ,  in a rotating shell with inner 
and outer radii ro and R ,  respectively. We solve the hydromagnetic equations for the 
mean velocity and mean magnetic field, starting with a rigid rotation with angular 
velocity, Do, and a weak “seed” magnetic field. 

We choose to work in an inertial frame of reference, because we expect that the 
variations of the angular velocity are of the order of the angular velocity itself and 
so there is no advantage in choosing a rotating frame. The assumption of 
incompressibility simplifies the numerical treatment of the equations considerably. 
Although this condition does not even approximately apply in stars, we feel that 
such models do nevertheless allow some understanding of the interaction between 
the mean motions and the mean magnetic field. 

2.1 The Mean-jield Equations 

If microscopic transport processes are ignored, the evolution of the mean magnetic 
field and the mean velocity are governed by the dissipation-free induction and 
momentum equations: 

= V x ((u) x (B) + a), 
at 

Here, p is the sum of gas and magnetic pressure, p density, g gravity, (J) = V x (B)/po 
the electric current, and po the magnetic permeability. The system of equations has 
to be completed by boundary conditions for (u) and (B) (see Section 3.1). 

2.2 Meanyfield Transport Coeficients 

We assume that the correlations 22 and 8 depend only linearly on the mean parts 
of the velocity and magnetic fields, (u) and (B), respectively, and on their first 
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182 A.  BRANDENBURG, D.  MOSS, G. RUDIGER AND I .  TUOMINEN 

spatial derivatives, i.e. 

where the azimuthal velocity, (u,), and the angular velocity, R, are related via 
(u,) = (Q x r),. The differential rotation in the Sun is much larger than variations 
of R with the solar cycle. This would thus suggest that, in the Sun, 98 is less important 
than 9. We shall therefore neglect %? in the present investigation. For simplicity we 
assume ai j ,  bijk,  and N i j k l  in ( 5 )  and (6) to be isotropic tensors: 

We assume further that CI takes the form a=Ecos 0, where 0 is colatitude, and d is 
taken here to be constant; qr is a turbulent magnetic diffusivity and v ,  a turbulent 
kinematic viscosity, both of which are also assumed to be constant, and pClr is a 
turbulent bulk viscosity which gives no contribution in the incompressible case. A 
non-vanishing tensor Aijk cannot be constructed with isotropic tensors (Krause and 
Rudiger, 1974). However, the stratification in a star gives a preferred direction, g, 
and this causes the turbulence to be anisotropic. The simplest possible tensor which 
can be constructed using the unit vector in the radial direction, d i ,  is 

Equation (10) only holds in the case of slow rotation with 2QOt,c  1, where T ,  is the 
correlation time of the turbulence. When the turbulence has approximately horizontal 
symmetry, the following estimate (Riidiger, 1989) for the coefficient A” may be useful: 

This expression suggests that A, is negative when the motions are mainly vertical. 
In this simplified form the A-effect strongly resembles the old formalism of “anisotropic 
viscosity” by Kippenhahn (1 963). Kippenhahn favored A, > 0, because in this case 
he reproduced the solar surface rotation law. However, A,<O would seem more 
probable, because we expect the turbulent motions to be stronger in the vertical than 
in the horizontal directions. 

We mention here the possibility that, if T ,  becomes comparable to the rotation 
period, the A-tensor may contain further terms, where fi itself gives a preferred 
direction to the turbulence. For simplicity we shall not consider such effects here, 
but refer to Riidiger (1989) and Brandenburg et al. (1990). 
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HYDROMAGNETIC &-TYPE DYNAMOS I83 

2.3 Nun-dimensional Quantities 

The ratio of the kinematic viscosity to the magnetic diffusivity is the magnetic Prandtl 
number, P r ,  = v,/yI,. The Taylor number, Ta, is defined by 

where SZ, is the angular velocity of the initial, rigid, rotation. The strengths of the 
a- and A-effects are characterized by the dimensionless numbers 

C, > 0 and if(’) < 0 is expected for the physically realistic situation of density decreasing 
with radius and a preferred vertical direction for the turbulence. 

We now introduce non-dimensional variables by measuring length in units of the 
stellar radius R, i.e. [r] = R ,  time in magnetic diffusion times, i.e. [t] = R Z / q t ,  and 
density in units of p. The units for the other variables are 

3 .  THE NUMERICAL METHOD 

In the following we omit for simplicity the parentheses and consider only averages 
of velocity and magnetic fields. We restrict ourselves to axisymmetric mean fields and 
write 

where o = V  x u is the vorticity, w = r sin 6 the distance from the axis, and i$ the unit 
vector in the $-direction. Below we refer also to the poloidal (or meridional) fields 
up = V x ($6) and B, = V x (a$). We can write ( 1 )  and ( 2 )  in the form 

1 (a, - D2)a = ab - -up * V(wa), (16) 
W 

1 1 
w2 W 2  

(a,-Pr,V2)SZ= --u *V(w2R)+-Bp.V(mb) 
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184 A. BRANDENBURG, D. MOSS, G. RUDIGER AND I. TUOMINEN 

(19) 
a 0  
aZ (af- Pr,D2)o = 2 0 m -  + $ - V  x f, 

where 

f =  -u,.VU,+JXB-V.L.@". 

Here, 2(") contains only terms from the A-effect with ti!&')= ($jAi + c$~A~)C?, 
where A =  (Av sin @,O,O). The linear operator D2 is defined by D2a = - 6 - V x (V x a$). 
The function $ has to be calculated by solving the equation 

D2$ = - W ,  (21) 

at every time step, and j is given by 

3.1 The Boundary Conditions 

We assume the sphere to be embedded in a vacuum, which implies 

D2a=0,  and b=O for r > l .  (23) 

The interior and exterior solutions must be matched so that a and da/dr are continuous 
on r =  1. This can be formulated as a non-local boundary condition for a on r =  1, 
which we handle using the matrix method described by Jepps (1975). At the inner 
boundary of the shell we assume a perfect conductor. This implies that the radial 
component of the magnetic field and the tangential component of the electric field 
both vanish on r = yo, i.e. 

i B,=O 

a,(rB+) + NrBe = 0 
d,(rBe) - crrB, = 0 

on r = To. 

In terms of a and b we then have 

on r=ro.  
d,(rb) = cd,(ra) 

The third condition of (24) would lead to D2a+ab=0,  which is already satisfied by 
the differential equation (16). Like all model boundary conditions that ignore the 
complicated physical situation (overshoot etc.) at  the base of the convection zone, 
this is merely a mathematically convenient condition, leading to an abrupt transition 
and an azimuthal surface current on r = ro. Other simple choices of boundary condition 
are possible but have their own difficulties (see, e.g., Moss et al., 1990). 
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HYDROMAGNETIC &-TYPE DYNAMOS 185 

Both boundaries are assumed to be stress free, i.e. the r - 8 and the r - 4 components 
of the total stress tensor must be continuous on the boundaries. Since the magnetic 
field itself is continuous on the boundary only the kinetic stress tensor needs to be 
considered. In a vacuum the components of the kinetic stress tensor vanish. In terms 
of I), w, and i2 we have then: 

The last equation makes it evident that the stress-free boundary condition already 
imposes a gradient of the angular velocity. 

In this work we have restricted ourselves to strictly odd parity magnetic fields. We 
have therefore solved the equations only in one quadrant of the meridional plane, 
assuming a and R to be even and b, I) and o to be odd about the equator. Our 
numerical scheme for the equations (16)-( 19) employed a DuFort-Frankel scheme on 
a r,  8 grid, 0 ,< r < 1 ,  0 < 8 < 4 2 .  Many of our calculations were performed with 21 
meshpoints in each coordinate direction. In a number of cases we checked the solution 
using 41 or 63 points and typically found only small deviations from our standard 
resolution (but see Section 4.4). We also checked that decreasing the timestep did 
not significantly alter the solution. Since $ does not vary greatly between time steps, 
it is convenient to solve (21) using a successive over-relaxation method (3-30 iterations 
are usually adequate). 

4. RESULTS 

We describe here the results of integrating (16k(21) for a certain range of parameters 
Ta, Vfo), and C,. We take ro = 0.7 which corresponds to the position of the bottom 
of the solar convection zone. The magnetic Prandtl number has been put equal to 
unity. 

4 .  I Solutions in the Hydrodynamic Regime 

We consider first the case without magnetic field (C,=O) and investigate the motions 
in the rotating shell for different Tayler numbers, Ta, and different values of the 
parameter V0).  Starting from a rigidly rotating fluid as initial condition, i.e. R = n ,  
we find after some time a stationary solution. Note that the initially rigid rotation 
does not satisfy the boundary condition (26). A radial differential rotation is therefore 
quickly established; the faster the rotation rate, the more quickly a steady state is 
reached. In Table 1 we summarize the solutions found for various Taylor numbers 
and different values of the parameter I/('). These solutions are characterized by the 
surface angular velocity at the equator, R,, and at the pole, R,. The differences 
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Table 1 Summary of solutions in the hydrodynamic regime for different values of Ta and 1.“” 

w f i o  Crl AfiJfi, Afi*/fi, A lu,l,,, IUslmar 
Ta VIO) 

1 o2 

106 
los 

to2 

106 
lon 

1 o2 

106 
1 on 
1 o2 

loh 
1 O8 

I o4 

1 o4 

104 

104 

-2 0.769 
0.765 
0.651 
0.675 

-1 0.884 
0.857 
0.805 
0.811 

1 1.13 
1.18 
1.25 
1.25 

2 1.25 
1.39 
1.51 
1.54 

-4 
- 39 

-319 
- 2700 

-2 
- 18 
- 161 
- 1460 

2 
18 

175 
1690 

3 
36 

372 
3630 

- 1.04 
-1.02 
-0.98 
-0.80 

-0.43 
-0.42 
-0.41 
-0.36 

0.30 
0.30 
0.28 
0.27 

0.51 
0.51 
0.49 
0.47 

- 1.04 
-0.69 
-0.26 
-0.07 

-0.43 
-0.30 
-0.08 
-0.02 

0.30 
0.18 
0.03 
0.01 

0.50 
0.26 
0.05 
0.02 

-0.00 0.02 0.06 
-0.29 1.7 4.8 
- 2.29 15.5 30.6 
-1.20 41.0 99.3 

-0.00 0.01 0 .o 
-0.21 0.79 2.0 
-0.83 2.1 1 8.7 
-0.67 5.33 28.5 

0.00 0.01 0.0 
0.22 0.53 1.3 
0.42 1.43 5.2 
0.44 2.11 16.0 

0.01 0.01 0.03 
0.39 0.80 2.2 
0.69 2.78 7.7 
0.70 3.27 24.5 

between the angular velocity at the top and the bottom of the shell are measured by 
ASZ, and AOP. The strength of the R-effect, important later in the dynamo calculations, 
is measured by 

(ASZeR2/q, in dimensional units). We see from Table 1 that (C,( increases with the 
Taylor number. As a rule of the thumb we may use C a z  (0.15.. .0 .2)V‘0~PrMTa’’2 .  
The relative radial differential rotation, lACle/SZel, decreases only slightly with Ta. The 
relative latitudinal differential rotation at the surface 

is, for Ta= lo8, about 40% when Y(O,= + 1 and about 70% when Y c O ) =  +2. A 
negative value of V(’) leads to a poleward increasing angular velocity. In the following 
we take I/(’)= + 1 or - 1, as representative values. 

The latitudinal differential rotation is generated from the meridional circulation 
by the nonlinear term up.  V(m2SZ). The meridional circulation itself is produced from 
the non-uniform rotation by the nonlinear term mdR2/az. This term vanishes not 
only for rigid rotation but also for a z-independent angular velocity, Q=Q(m).  
However, in both cases there would be still a meridional flow if the medium were 
non-adiabatically stratified and the thermodynamic equations were included (e.g. 
Moss and Vilhu, 1983). This is the analogue in a convective region of the well known 
Eddington-Sweet-Vogt circulation in rotating radiative envelopes (e.g. Sweet, 1950). 
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HYDROMAGNETIC &-TYPE DYNAMOS 187 

T a = l O z  T a = l O "  T a = l O *  

Figure 1 
various Taylor numbers. Vol= + 1. 

Streamlines of the meridional motion (upper row) and contours of constant C2 (lower row) for 

Figure 1 shows streamlines of the meridional motion and contours of constant 
angular velocity. Note that for faster rotation the streamlines become more and more 
elongated in the vertical direction and Q becomes almost constant on cylindrical 
surfaces (Taylor-Proudman theorem). As Tu-r co, Q = R(m) is asymptotically satisfied. 
In this limit the momentum equation is satisfied by i3Q/az=O and + = O .  The 
dependency of R on ZD is then given by 8 In Q/d In zu = V('), from the boundary condition 
(26) ,  applied at the equator. In higher latitudes deviations from strictly cylindrical 
Q-contours occur at the upper and lower boundary (cf. Figure 1). It should be noted 
that the Q-contours caused by the V'O)-term are, in the viscous case, already cylindrical 
in the immediate vicinity of the equator. This is no longer true if higher order terms 
in the A-effect are included. It might be expected that these terms could delay somewhat 
the onset of the Taylor-Proudman effect, but this does not seem to be the case, see 
Brandenburg et ul. (1990). 

When the isolines of R lie on cylinders the centrifugal force can always be expressed 
as the gradient of a potential so that it can essentially be balanced by the pressure 
gradient alone-without any circulation. In fact, Kohler (1970) found a maximum 
of the meridional flow velocity for T u z 3  x 10'. However, from Table 1 we see that 
the values for IuJ,,, and lu,l,,, always increase with Tu. This is an artifact of the 
normalization chosen here. The dimensional meridional velocity scales with qJR,  see 
(14), and it indeed decreases for large values of Tu, because q, decreases faster than 
the increase of lu,lmax assuming R, and R to be held constant. 

Spherical three-dimensional models by Gilman (1 977), in which differential rotation 
is automatically generated by Reynolds stresses from the large-scale thermal 
convection, show cylindrical R contours in lower latitudes. Equatorial acceleration 
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occurs only if the Rayleigh number is not too large, otherwise the profile at  lower 
latitudes is reversed. The Taylor number in Gilman's models corresponds with our 
definition to 6 x 10'. The meridional circulation in this model is always poleward in 
lower latitudes, which seems to be in disagreement with our results, the results for 
the angular velocity are in approximate agreement with ours. 

4.2 Solurions in the Hydromagnetic Regime 

We now consider solutions for supercritical values of C,. Starting from a small initial 
perturbation in B and a rigid rotation, a differential rotation is first established, 
before the growth of the magnetic field into the nonlinear regime. We computed 
models for different values of Tu, V0),  and C,. The results are summarized in Table 2. 
The magnetic field is characterized by the total energy (in dimensionless units) of the 
mean magnetic field inside the convection zone, 

and by the ratio of the energy of mean poloidal and mean toroidal field, E J E , .  The 
other quantities, characterizing the motions, are the same as in the previous section. 
For oscillatory solutions Tfyc = 27c/Qcyc denotes the period of the magnetic cycle. 

For slightly supercritical values of C,  we find steady solutions for Tu,<106 and 
oscillatory solutions for Tu= lo8. This behavior can change for larger values of C,. 
For Tu Q lo6 the magnetic field is concentrated at high latitudes with E,/E, = O( l), 

Table 2 Summary of solutions in the hydrodynamic regime for various values of Ta with V'O'= i 1 

Ta V'O' c, Ig E M  E,/E, cn TC,, 

104 -1 15 1.37 
-1 16 1.65 
+ l  16 1.65 
+ l  20 2.17.. .2.73 

106 - 1  10 2.54 
-1  12 2.77 
-1 14 2.94 
-1 15 3.03 
-1 16 3.1 1 
-1 20 3.38 
+ 1  18 1.85 
+ l  20 1.71 . . .2.35 
+ I  25 2.57. . .3.32 

10s - I  4 3.49.. .3.82 
-1  6 4.18 ... 4.45 
-1  10 4.28. . .4.57 
-1 20 4.60 
+ 1  6 4.08.. .4.19 

1.61 
1.71 
1.38 
1.02.. .1.57 

0.22 
0.42 
0.81 
1.05 
1.29 
2.01 
1.31 
0.94. . .2.08 
0.80.. .2.98 

0.004.. .0.007 
0.009. . .0.015 
0.029.. .0.048 
1.38 
0.021 . . .0.032 

- 18 
- 18 
+ 18 
+ 18 

- 165 
- 165 
- 165 
- 163 
- 161 
- 152 
+ 176 
+ 176 
+ 176 

-1490... - 1 5 0  
-1230... -1330 
-830...-1090 
- 630 

-1580 . . .  -1560 

steady 
steady 
steady 
0.28 

steady 
steady 
steady 
steady 
steady 
steady 
steady 
0.15 
0.055 

0.064 
0.058 
0.066 
steady 
0.041 
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whereas for Ta=108 there is a dominant toroidal field close to the equator. We 
discuss first the solutions for Ta= lo8 (Section 4.3). For Ta< lo6 and sufficiently 
supercritical values of C, there is another class of oscillatory solutions, that are 
discussed in Section 4.4. 

4.3 Magnetic Cycles 

Oscillatory solutions (magnetic cycles) occur for Ta = 10'. The cycle period is 
T,,, = 0.04. . .0.07 (depending on the sign of V')). The ratio of cycle period to rotation 
period is T,y,/T,,,= T,y,PrMTa'i2/(4n)= 30. . .50. If solar values, vt= qt = 5 x 1 O I 2  cm2/s, 
where applied, then this Taylor number would correspond to a rotation period of 
about 15 days and the cycle period to 1 . .  . 2  years. Note that the total energy is 
nearly independent of C,. There is only an increase of E,/E, with C,  indicating that 
energy goes more into the poloidal field than into the toroidal. 

Snapshots showing the evolution of magnetic and velocity fields for a dynamo 
with Ta= lo8, C,= 10, and I/(')= - 1 are given in Figure 2 .  There are always two 

Figure 2 Evolution of the magnetic fields and motions for a dynamo with high Taylor number (Ta= lo8, 
C,= 10 and VO)= - I). In the first row are the magnetic field lines of the poloidal field, in the second 
row contours of constant toroidal field, in the third row streamlines of the meridional motion, and in 
the last row contours of constant angular velocity. Dotted lines denote negative values (second row) or 
counterclockwise circulation (first and third row). 
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magnetic field belts migrating equatorwards. Note also that they are strongly 
concentrated to the bottom of the convection zone. The meridional flow is clearly 
affected by the magnetic field. Thin clockwise rotating rolls are superimposed on the 
“background” circulation pattern. These rolls are located between the magnetic field 
belts and also migrate equatorwards. The time dependent field geometry of the 
oscillatory solutions is conveniently represented by butterfly diagrams showing the 
latitudinal and temporal evolution of the magnetic field (Br- and B,-components) in 
a Bt-map. The butterfly diagrams for B, and B, for the same model as in Figure 2 
are given in Figure 3. B, is taken at r =  1 and B, at r =  1 - A r ,  where Ar is the mesh 
width (here 0.0375). Note that fields are strongly concentrated to the equator. 

The migration direction and the phase relations are as expected (cf. Stix, 1976; 
Yoshimura, 1976). Field belts migrate equatorward for C,V(o)<O and poleward for 
C,V‘o’>O, B,- and B,-fields are in phase when C,<O and in antiphase when C,>O. 
The general solar field geometry is obtained for C, > 0 and VC0) < 0. These signs of 
both quantities were also favored in Section 2.3. However the angular velocity is 
then increasing not only inwards, but also towards the poles. The problem of 
reproducing both the solar field geometry and the differential rotation contours leads 
to the well known “dynamo dilemma” (Parker, 1987). 

Three-dimensional models of convective dynamo action in spherical shells by 

1.2 
time 

1.4 

90 

Cq“ 45 

0 
1.2 

time 
1.4 

Figure 3 Butterfly diagrams for the B,- and B+-components for the model of Figure 2. Note that the 
fields are out of phase and concentrated close to the equator. 
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Gilman (1983) show many properties similar to ours: The magnetic cycle period is 
one order of magnitude shorter than that of the Sun, dynamo action becomes 
non-oscillatory for large values of P r ,  (large conductivity, large C,), and the 
differential rotation is substantially quenched by the Lorentz force of the dynamo- 
generated magnetic fields. 

4.4 Magnetic Relaxation Oscillations 

Here we consider VO)= + 1. For C,L 20 oscillations are possible even with small 
Taylor numbers (Ta= lo4). The magnetic field is then concentrated at high latitudes. 
The evolution of magnetic fields and motions for this dynamo are shown as a butterfly 
diagram in Figure 4. The different nature of this type of magnetic cycles compared 
with traditional ctQ-dynamos becomes evident by considering the migration direction 
of magnetic field belts, which is equatorwards although C,V(') > 0 (and thus craQ/dr > 0 
in the northern hemisphere). Furthermore B, and B ,  are nearly in phase although 
C, > 0. Also there is no polar branch. Clearly, this type of dynamo with its nonlinear 
oscillations is of a quite different nature to traditional ctQ-dynamos. 

For large values of C, (e.g. 25) an irregular time behavior occurred when using 
the standard resolution of 21 x 21 mesh points. Using better resolution (e.g. 632 mesh 
points) we found that the oscillations were in fact regular. 

rg' 

90 

45 

0 

90 

Is" 45 

0 

Figure 4 

0.8 1 .o 1.2 
time 

0.8 1 .o 1.2 
time 

Butterfly diagrams for the B,- and B,-components for a model with small Taylor number 
( ~ a = l O ~ ,  C,=20 and V ' O ' = : + l ) .  
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4.5 The Role of Meridional Circulation 

The meridional circulation also plays a significant role for the dynamo: in Roberts 
and Stix (1972) it inhibited the dynamo action. However, the strength of this effect 
was treated there as a free parameter. In contrast, Roberts (1989) presented a model 
in which a more consistent meridional flow supported the dynamo. In our present 
models meridional circulation is self-consistently included. In Table 3 we have 
computed models where we enforced up = 0 in the dynamo equations. By comparison 
with Table 2 we find that for Tu < lo6 meridional circulation enhances dynamo action 
if I"'' < O  (poleward circulation), but inhibits dynamo action if V(')> 0 (equatorward 
circulation). The model presented by Roberts (1989) had negative shear and agrees 
with our case with Vcor < 0. For Tu = lo8 meridional circulation always suppresses 
dynamo action. In the absence of meridional circulation the solutions are also 
oscillatory for Tu= lo6 and marginal values of C,.  

4.6 The Transition from a' to an Dynamos 

A standard approximation in aR-dynamo theory is to neglect the a-effect for the 
generation of toroidal field from a poloidal one. For axisymmetric magnetic fields 
this is justified, if C,>>C,. We have checked this for our models by negiecting the 
a-effect in (17) (see Table 6). It turns out that the an-dynamo approximation is a 
reasonable one for Tu = lo8, but for Tu= lo6 the results are seriously in error. 

Table 3 Summary of solutions with meridional circulation suppressed. By comparison with Table 2, 
meridional circulation is seen to enhance dynamo action if V " < O  (+ sign in the last column), but to 
inhibit dynamo action if V")>O (- sign in the last column). An asterisk denotes solutions that are not 
excited in the presence of meridional circulation 

Ta Y'') C, I g E ,  E,IEt cn T c y c  Result 

10" - 1  1.5 0.94 
- I  16 1.5.5 
+ I  16 1.88 

lo6 -1 15 2.41 . . .  2.50 

+ I  16 2.39.. .2.41 
+ I  18 2.72 ... 2.90 

lo8 - 1  3 3.89.. .4.0.5 
- 1  4 4.31 _ .  .4.47 
- 1  6 4.38.. .4.57 
-1 10 4.34.. .4.56 

-1  16 2.75,. .2.87 

+ I  4 3.92.. .3.95 
+ I  6 4.17 . . .  4.21 

1.59 
1.68 
I .4l 

0.31 . . .0.43 
0.50. . .0.69 
0.68 . . .0.81 
0.87 . . .0.97 

0.004. . .0.006 
0.008...0.011 
0.017.. .0.026 
0.045.. .0.082 
0.026. . .0.028 
0.040. . .0.046 

- 19 
- 19 
+ 17 

- 188. . . - 193 
- 186.. . - 193 
+ 170 
+ 171 

-1860...-1890 
- 1770.. . - I840 
-1580... -1710 
-1380... -1530 
+ 1704 
+I701 

steady 
steady 
steady 

0.096 
0.110 
0.104 
0.100 

0.052 
0.052 
0.052 
,052 
0.050 
0.048 

+ 
t 
- 

+ 
+ 

* - 
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5.  FEEDBACK MECHANISMS 

5.1 The Amplitude of the Dynamo 

The nonlinear feedback via the Lorentz forces determines the amplitude of the 
generated magnetic field. When the term J x B was neglected in (20) we found the 
energy to be approximately unchanged. From this we conclude that it is the term 
B;V(mb) in (18) that limits the magnetic field strength in our models. In order to 
see which terms in (18) balance the toroidal Lorentz force we compare B;V(wnb) 
both with up*V(w2SZ) and with Pr,V.(m2VSZ-mRA) (see Figure 5). It turns out 
that, away from the polar regions,the toroidal Lorentz force is balanced primarily by 
the inertial term up * V(m2SZ), which also includes the Coriolis force in our frame of 
reference. This feedback is sometimes called the Malkus-Proctor mechanism. The 
quantity characterizing this balance is 

This ratio may be estimated by the Elsasser number CT IBpIIB,1/(2SZp) (Roberts, 19881, 

20 40 60 80 
colatitude 

Figure 5 Contributions to dR/dt along a meridian of radius 0.91. Note that the Lorentz force ( l/m2)B, V(mb) 
(solid line) is balanced predominantly by (l/m2)u; V(mzR) (dotted line), whilst (Pr,/m2)div(m2VR- wRA) 
(dashed line) has a local extremum that in turn coincides with (l/m2)u;V(m2R). 

G.A.F.D.-G 
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where o= l / (poq t )  is the turbulent conductivity and ]BPI and IB,J are typical values 
for the poloidal and toroidal magnetic field. We define here a global Elsasser number as 

El = (EpEt/Ta)1/2Prk1 

where E ,  and E ,  are the magnetic energies of the poloidal and toroidal magnetic 
fields. Roberts argues that the Elsasser number is the relevant parameter governing 
the field strength of a dynamo on the so-called strong-field branch. 

It should be remembered that in a complete physical model effects neglected here, 
such as feedback from small scale magnetic fields, c1- and A-quenching, magnetic 
buoyancy, may also be important or even dominant. 

We are interested in the dependence of the magnetic energy on the Taylor number. 
In general, the a-effect cannot be considered as independent of the angular velocity 
of the star. Using c1~Olcost l  (cf. Steenbeck et al., 1966), where 1 is the correlation 
length of the turbulence (typically the density scale height), we find 

C, = $(Pr, Ta ‘I2, 

where [=l /R  and characterizes properties of stellar turbulence. In Table 4 we have 
summarized dynamo solutions for <=0.002 and (=0.004 as a function of Ta. The 
models with 5 =0.002 are oscillatory whilst those with (=0.004 are normally steady, 
but oscillate for a small range of Tu. Note that E J E ,  increases and C, decreases with 
Ta. In the case 5 = O.O02T,,, increases with Tu for Ta 3 7 10’. 

Table 4 
both steady and oscillatory solutions 

Magnetic energy for different values of Tu and 5 .  Vtol= -1. Note that for 5=4.10-3 there are 

2.10-3 5 10’ 7.1 

8 lo7 8.9 
1 lo8 10.0 

1.5 lo8 12.2 

4.10-3 2 10’ 8.9 

7 10’ 8.4 

3107 11.0 

4.10-3 1 lo7 
2 lo1 
3 10’ 
5 10’ 
7 1 0 7  

1108  
1.5 10’ 

2 108 

6.3 
8.9 

11.0 
14.1 
16.7 
20.0 
24.5 
28.0 

3.75 . . .4.04 
4.1 1 . . .4.33 
4.19 ... 4.46 
4.28 . , .4.57 
4.43.. .4.70 

2.92 . . .3.28 
3.75.. .4.05 

3.49 
3.89 
4.06 
4.24 
4.39 
4.60 
4.81 
4.97 

0.013.. .0.022 
0.017.. .0.028 
0.019.. .0.031 
0.029.. .0.048 
0.052 . . .0.085 

0.021 . . .0.038 
0.034.. .0.060 

0.039 
0.067 
0.115 
0.308 
0.684 
1.38 
1.73 
2.40 

-964.. . - 1001 
-978.. . - 1080 
-918... -1048 
-828 , .  . - 1091 
-731... -1150 

-673,. . -675 
-651.. . -717 

-481 
-610 
-673 

- 662 
- 686 

- 630 
- 620 
- 593 

0.061 
0.050 
0.061 
0.066 
0.084 

0.070 
0.072 

steady 
steady 
steady 
steady 
steady 
steady 
steady 
steady 
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5.2 The Equipartition Problem 

An important question in stellar dynamo theory is whether the magnetic energy can 
exceed the equipartition value given by vA/ur= 1. We assume for the following 

and estimate the magnetic field using the global magnetic energy E,=4nd*)Bl2, where 
d is the fractional depth of the convection zone. We obtain with (14) 

(34) 
EM= 1 8 ~ d ~ ( - ~ .  u:, 

ut 

For d=0.3 we have 

In Figure 6 (upper panel) we have plotted uA/uf as a function of T a  for two models 
in Table 4. Note that vA/u,  is approximately proportional to Ta’’’, i.e. the energy of 
the mean magnetic field grows proportionally to Ta.  Over-equipartition is not reached 

0.10 < 
2 

0.0 1 
[= 0.002 

steady osc.  

lo7  l o 8  
Taylor number 

Figure 6 Equipartition value, uA/ut, (upper panel) and Elsasser number, El ,  (lower panel) versus Ta for 
two values of 5 for two models of Table 4. 
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in our runs. The peak values of uA/u, are typically larger by a factor of about five 
than our estimated values (35) and so can approach unity. In this case the neglect 
of effects such as a-quenching becomes questionable. In the lower panel of Figure 6 
we have also plotted El(Ta). We find El=0(1) for large values of Tu. We have 
compared these results with those obtained for both P r ,  = 0.1 and P r ,  = 10, but the 
same value of TuPrL (see Table 5 ) .  We found that the magnetic energy increases 
with Pr,. In Table 5 we have also given the Elsasser numbers [see (31)]. The table 
shows that ElIPr, varies much less with Pr, than El. This behavior can partly be 
explained by the decreasing magnitude of up with increasing Taylor number (see 
Section 4.1). In (30) up scales roughly with vJR so that (30) can be estimated as 
I B p  I1 41 Rl(Vt2QP 1. 

5.3 The Magnitude of c1 

There is another important point concerning the magnitude of C,. Using again (32) 
and (33) we find 

C, z RlR/q, z 3QR/u,. (36) 
In solar-type stars this ratio grows from the order unity in the surface region (u,= 
1 . . . 5  km/s) to order 100 near the bottom of the convection zone (u, = 20. . .I00 m/s). 
Trial computations in which CI is prescribed to vary in such a way suggest that it is 
max(a) that determines the critical dynamo number. Together with the results in 
Table 2 the estimate in (36) leads to values that are less than 20 times supercritical, 
and does not confirm the often quoted dilemma of 01 being supercritical by about 
two orders of magnitude in the Sun. If we attempt, however, to force the magnetic 
cycle period to 22 years by reducing the value of q, to about 0.O3utI then we do 
obtain values for C ,  that certainly are highly supercritical. The effective value of a 
may also be strongly reduced by the intermittency of the magnetic field. 

Table 5 Comparison of the Elsasser numbers for three different values of Pr,.  For P r ,  =0.1 we used a 
resolution of41 x 41 meshpoints and for larger values of PrM the standard resolution of21 x 21 meshpoints. 
For Pr,=0.1 we used C,= 10, because the field decayed for C,=8.9 

Pr.M Ta c, I& EM E d E ,  ci, El ElIPr,  

0. I 2 109 10.0 2.99 0.151 - 5 1 1  0.074 0.74 
1 2 107 8.9 3.89 0.067 -619 0.42 0.42 

10 2 105 8.9 4.10 0.103 - 166 3.2 0.32 

Table 6 Results for the case where the I-effect is neglected in (17) 

lo6 - 1  100 1.89 . . .  1.91 2.23.. .2.75 -158 
+ 1  80 1.50..  . 1.52 2.19.. .3.00 +175 

0.028 
0.080 

lo8 - 1  6 4.09.. .4.33 0.009.. .0.014 -1300... -1370 0.053 
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6. CONCLUSIONS 

The models presented here clearly have an important advantage over purely kinematic 
models. Differential rotation is not prescribed in a completely ad hoc manner as in 
other investigations of nonlinear aR-dynamos (Jepps, 1975; Ivanova and Ruzmaikin, 
1977; Schmitt and Schiissler, 1989), but the variation of R from the magnetic feedback 
is taken into account. 

However, our model is still very simplified. For example the density is constant 
and thermodynamics are omitted. Also the input quantities, o! and A, are assumed 
to be constant. The intermittent nature of magnetic fields under conditions of high 
magnetic Reynolds numbers leading, for example, to buoyancy losses, is neglected. 
However, this work may be regarded as an elementary investigation of a-effect 
dynamos with generation of differential rotation and meridional circulation employing 
the A-effect formalism for slowly rotating stars (2RrC<< 1 ) .  We have not attempted 
here to construct a model which closely reproduces the solar cycle but note that all 
of these models fail in some way to reproduce the gross properties of the solar cycle 
(see also Brandenburg et a/., 1990). The inclusion of compressibility together with 
overshoot layer effects and/or differential rotation generators concentrated near the 
bottom of the convection zone all offer possibilities for future work. 

Our basic result is that magnetic cycles for weakly supercritical a are possible only 
for large Taylor numbers, 0(108), unless the magnetic Prandtl number is substantially 
larger than unity. Certainly, for modelling the Sun the horizontal components of the 
A-tensor should be taken into account in order to seek a negative gradient of the 
radial differential rotation and simultaneously an equatorward increasing differential 
rotation. This can lead to disk-shaped R-contours, which are in better accordance with 
recent results of helioseismology than cylindrical Q-contours. However, this seems 
to be possible only for Taylor numbers which are not too large, because otherwise 
cylindrical R-contours inevitably occur (Taylor-Proudman theorem). These results 
are consistent with those from three-dimensional models of both incompressible 
(Gilman, 1977) and compressible (Gilman and Miller, 1986) convection in rotating 
spherical shells. Furthermore, our calculations are still subject to the “dynamo 
dilemma”, in which correct solar magnetic field properties can only be achieved with 
an angular velocity that increases inwards. 

Observations of slowly rotating stars can, in principle, reveal the dependence of 
the generated mean-field magnetic energy on the basic rotation rate. Thus we need 
predictions for this function from various dynamo models. What we find from our 
current computations is a rather steep dependence of the magnetic energy EM on the 
Taylor number Ta. Since magnetic braking causes Taylor numbers to decrease during 
the evolution of a single star, the slope of the E,(Tu)-relation might become an 
observational constraint on dynamo models. 
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