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Abstract. The stability and evolution of three-dimensional mag-
netic field configurations of nonlinear mean-field dynamo models
is investigated. Various models with isotropic and anisotropic
a-effect are examined. The nonlinearity is due to a-quenching; the
a-coefficient varies with the local energy density of the mean mag-
netic field. The dynamo number characterizing the strength of
the a-effect is varied from marginal up to three times supercritical
values. Two models with isotropic a-effect are studied, for which
an axisymmetric solution (AO0) is the marginal one. In these mod-
els a single stable solution showing the same symmetry is found.
Furthermore, a model with anisotropic a-effect is investigated for
which the marginal solution is known to be non-axisymmetric
(S1). Correspondingly, for slightly supercritical dynamo numbers
a non-axisymmetric solution is the only stable one. For dynamo
numbers exceeding a certain (approximately two times supercrit-
ical) value also a stable axisymmetric solution (A0) is found.
For even higher dynamo numbers the non-axisymmetric solution
loses stability to the axisymmetric solution. Finally, a model with
differential rotation is investigated in a parameter regime where
four different modes are approximately equally excitable. Mixed
parity solutions with periodic time dependence occur.

Key words: Hydromagnetics: mean-field dynamo — stability —
non-axisymmetric magnetic fields — Sun and stars: magnetic
fields

1. Introduction

There is a great number of investigations of dynamo models
which provide some insight into the processes responsible for the
existence of magnetic fields of the Earth, the planets, the Sun
and other objects. Most of the models are elaborated only at the
kinematic level, that is, the back-reaction of the magnetic field
on the fluid motions is ignored. In this way one can determine
the conditions under which states without any magnetic field
become unstable and self-excitation of magnetic fields occurs.
In order to study their further evolution, e.g., to determine the
magnitude to which the fields may grow or details concerning
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their geometrical structure or time behaviour, the back-reaction
has to be taken into account.

In view of the cosmical objects mentioned steady states are of
particular interest. The stability of these states determines which
of them may be expected to be realized in nature (cf. Krause and
Meinel, 1988). In general, only stable configurations are relevant
for explaining magnetic fields in cosmical objects. Of course, it
may be possible that the time scale of an instability is rather
long. In this case an unstable magnetic field configuration, that
has been built up due to any circumstances in the past, may be
observed within the subsequent life time of the object.

Investigating a model at the kinematic level means considering
the induction equation governing the magnetic field with given
fluid motion. Then the problem to be solved is linear. If the
back-reaction of the magnetic field on the motion is included we
are faced with the full set of magnetohydrodynamic equations
and thus with a complex nonlinear problem.

In the framework of mean-field dynamo theory some attempts
have been made to approach this problem by investigating only
the induction equation in which this back-reaction is taken into
account in a crude way; see, e.g. Braginski (1970), Stix (1972),
Riidiger (1973), Jepps (1975), Ivanova and Ruzmaikin (1977)
and Ridler (1984). A dependence of the a-coefficient or related
quantities on the magnetic field has been allowed and specified
by simple assumptions.

In this paper we report on numerical experiments with mean-
field dynamo models of that kind. Our numerical code is not
restricted to axisymmetric fields. In this way we are able to clarify
in some cases whether or not the results by Brandenburg et al.
(1989a), which have been obtained by considering axisymmetric
fields only, remain valid within this general frame. As already
shown by Rédler and Wiedemann (1989), some results concerning
the stability of axisymmetric fields have to be modified if non-
axisymmetric perturbations are allowed.

2. The model

We consider a traditional spherical mean-field dynamo model.
Let the rotating spherical body of electrically conducting fluid
be surrounded by free space. The mean magnetic flux density, B,
is assumed to obey the induction equation

© European Southern Observatory ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1990A%26A...239..413R

rTOD0AGA T T390 TA13R!

414

0B

n =n4B +curl (§ + u x B) 1)
inside the body and to continue as an irrotational field outside.
The magnetic diffusivity # is taken as constant. As for the mean
electromotive force due to fluctuations, &, we restrict ourselves
to the a-effect, that is

& = aB. (2

In addition to examples of an isotropic a-effect, in which «
is a scalar, we will deal below also with a special case of an
anisotropic a-effect, in which « is a tensor. As for the mean
motion a differential rotation is allowed. In that sense the mean
velocity u is specified as

u=Qzxr, (3

where Q denotes the angular velocity which may depend on
radius and latitude, % the unit vector parallel to the axis of
rotation and r the radius vector.

The fluctuating motions which are responsible for the o-
effect as well as the mean motion are in general influenced by
the magnetic field. Without studying this back-reaction of the
magnetic field on the motions in detail we take it partly into
account by a simple assumption on the dependence of « on B.
Further feedback effects which lead to a modification of other
mean-field coefficients (e.g. the turbulent magnetic diffusivity)
and, in particular, of the mean motion are neglected. We hope
that, nevertheless, our study comprises some important aspects
of the nonlinear dynamo regime.

For a we put
()

e=—B", 4

a = oof (e), o

where o is independent of B, and f a function of e, and pu
the permeability of free space; e can be interpreted as the local
energy density of the mean magnetic field. We suppose f(0) = 1,
f(e) = 0, and we will specify f so that it decreases with growing
e.

Following the traditional concept of spherical mean-field
dynamo models we assume simple symmetry properties of og
with respect to equatorial plane and axis of rotation. In the
cases of isotropic a-effect, ag is a scalar which is antisymmetric
about the equatorial plane and symmetric about the axis of
rotation. For the anisotropic a-effect an analogous assumption is
made which will be formulated below. The angular velocity Q is
symmetric about the equatorial plane and the axis of rotation.

We may decompose any B-field into two parts that are
symmetric or antisymmetric about the equatorial plane, and
either part into its Fourier components with respect to the
azimuthal coordinate. In that sense we consider B in the following
as a superposition of contributions B} and Bg which have the
form

BR s = Re[Cx g exp(im)], ©)

where C and C§ are complex vector fields that are antisym-
metric or symmetric about the equatorial plane and symmetric
about the axis of rotation, m is a non-negative integer, and ¢ the
azimuthal coordinate. Adopting the usual notation we will speak
in the following of Am or Sm parts, or Am or Sm fields.

In the limit of vanishing magnitude of B we have f = 1,
and our model turns into a kinematic, that is, linear model. In

this case the general solution of the equations governing B is a
superposition of independent modes, B;, of the form

B; = Re(B;e), (6)

where B; depends only on position and 4; is a complex constant.
Due to our assumptions concerning the symmetries of « and Q
these B-modes show again simple symmetries. Each such B-mode
has just the form of a single B or B, that is, it is simply an
Am or Sm mode.

For finite magnitudes of B, however, we are faced with a more
complex nonlinear problem. The dependence of & on position is
no longer determined by o only but, via f, also by B. Therefore
o will in general no longer show the symmetries of og, and
this leads to couplings between individual Am and Sm fields.
However, because of the dependence of f on B? only there are
solutions which do not contain the whole spectrum of Am and
Sm fields. Among them are solutions which can be regarded as
natural extensions of the Am and Sm solutions of the linear
problem. We denote them by «/m and &m. Their structure is
defined by

0 : A0

F0: SO

A1 Al+A3+AS+ ..
F1: S1+S3+85+..
2 A2+ A6+ A10+ ..
F2: S2+S56+S10+ ...
A3 : A3+A9+AlS+ ..
&3 S34894S15+ ..

™)

In contrast to the situation in the linear problem, superpositions
of such solutions are not solutions of the nonlinear problem.

In general, the geometrical structures of the solutions B of
our problem will be more complex as in the case of the special
solutions considered so far. This holds in particular if we follow
the evolution of a magnetic field containing initially an arbitrary
mixture of Am and Sm parts. We will pay special attention to
the structure of the field in the final state of evolution. If it
corresponds to an o/m or &m solution as defined by (7), we
speak of “pure states” or “pure solutions”, otherwise of “mixed
states” or “mixed solutions”. It should be stressed that a mixed
solution cannot be considered as a linear superposition of pure
solutions.

When analysing the magnetic fields which occur as solutions
of our problem we will in particular deal with the parts B5 and
Bg that are antisymmetric or symmetric about the equatorial
plane,

Bas=) Bl ®)
m

and with the spectrum of the Fourier components B™ with

respect to the azimuthal coordinate,

B" = B} + B{. ©®

We will also consider the parts Bp and Bg which comprehend

the constituents belonging to the dipole and quadrupole family,
respectively, that is,
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Bp =BQ + B} +..+ By + B +..

10
Bo=BY+B%i+..+B\+B}+.. 10
Finally, we will also consider the poloidal and toroidal parts, Bp
and Br.

In the following we characterize the magnitudes of the B-field
or its various parts by energies. The total energy, E, of the B-field
is defined by

1 2
—ﬂdeV,

where the integral is taken over the whole space, ie., over the
fluid body and outer space. Analogously we define energies EY,
Eg, Ea, Es, E™, Ep, Eq, Ep, and Et for the respective parts of
the total field, B}, BY, Ba, Bs, ... The energy to be ascribed to
a sum of such parts, e.g. E}' and Eg', is just equal to the sum of
the energies of these parts.

Following the notation of Brandenburg et al. (1989a), we
define a measure P of the degree of symmetry or antisymmetry
of a B-field about the equatorial plane by

(11

_ Es—Ea

= . 12
Eg+ Ep (12)

Clearly, —1 < P < +1, and P = 1 means complete symmetry,
P = —1 complete antisymmetry. We also define a measure M
for the deviation of a B-field from symmetry about the axis of
rotation by
M=1—EE. (13)
Then 0 < M < 1, where M = 0 corresponds to complete
axisymmetry of the B-field and M = 1 to the absence of
any axisymmetric parts. We further define a quantity @ which
indicates the proportion of constituents of a B-field that belong
to the dipole or quadrupole family,

Ep—Eq

2= ED+EQ'

(14)
Thus —1 < Q@ < +1, and Q =1 or Q = —1 mean that all con-
stituents belong to the dipole or quadrupole family, respectively.

3. The numerical method

The computations that we report in the following have been
carried out with a program developed by Réadler and Wiedemann
(1989). It allows us to follow the evolution of the magnetic field
in spherical dynamo models as described above. When explaining
the basic idea we rely again on equation (1), but with & +u x B
replaced by F, and, imaging the usual non-dimensional quantities,
suppose 1 to be replaced by 1. The basic idea is valid for quite
general assumptions concerning the dependence of F on B.

The program is based on an expansion of B in an infinite
series,
B(x,t) = ) bi)Bi(x), (15)
and the reduction of the equations governing B to an infinite
set of ordinary differential equations for the coefficients b;. The
vector functions fii correspond to the modes of free decay,
that is, the fields B;(x)e*!, with proper 1;, satisfy the equations
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governing B in the case F = 0. These B; form, for our problem, a
complete set of functions. Each of them satisfies AE — lil}i =0.
Taking into account these properties of the B; we may reduce
the equations for B to

db;
d_tl = Aibi + fi,

(16)
where f;, for each fixed i, is a function of all b;, j = 1,2,3,...
This function is defined by an integral over the fluid body. Its
integrand depends on F(B), where B can be expressed according
to (15). In general, of course, the integration cannot be carried
out analytically, so that an explicit form of the relations between
the f; and the b; is not available. For the numerical computations
the expansion (15) of B is truncated, that is, only a finite number
of terms is considered. Accordingly, only a finite set of equations
of type (16) for the b; is solved. This set is integrated by a
modified second order Runge-Kutta method. In each time step
the integrals defining the f; are computed numerically. Apart
from the choice of the time steps the accuracy of the results
obtained in this way depends on the level of truncation of the
expansion for B and on the accuracy of the determination of
these integrals.

In order to describe the expansion (15) of B in more detail
we first replace the index i by the quadruple («,n,m,¢), that is,
b; and B; by b2 and BYy, and we interprete the b%)' and B7}' in
the usual way as complex quantities. The index « is introduced
to distinguish between poloidal and toroidal fields. Accordingly
it may take the values P or T. We then have

B = —curl (r x VSE™), BIM = —r x vSIm 17

o= wzf(x)P,',m'(cos 0)e™?, for x <1, (18)
where r is again the radius vector, x a dimensionless radial
coordinate, the vy, are functions which can easily be expressed
by Bessel functions with half-integer index, and the P, Legendre
polynomials. The indices n, m, and I are subject to the conditions
n>1 |m|<n and | > 1. Our truncation of (15) is given
by n < ne, |m|< m,, and | < I,, that is, defined by the three
parameters #,, m, and l,.

The determination of f}* can be reduced to the computation
of integrals of the type

1 T 2n
f dx x* f d0 sin 0 f d¢ [r - curl F(B)(SE™)*
0 0 0

and

19)

1 T 2n
f dx x* f d0 sin 0 f dé [r - curlcurl F(B)I(SL™*,  (20)
0 0 0

where the asterisk denotes complex conjugation. The x, 6 and ¢
integrals have been computed by the the Simpson or trapezium
rule for sets of equidistant grid points. In the following, the
number of intervals used for the x, 6 and ¢ integrations is
denoted by iy, ig and iy, respectively.
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4. Results for a2-dynamo models

4.1. Specification of the models

In the following we present results for three different models
of o?-type. Models (i) and (ii) are those already investigated
by Brandenburg et al. (1989a) and by Rédler and Wiedemann
(1989), respectively, and model (iii) is a modification of the latter.

In models (i) and (ii) an isotropic a-effect, that is, a scalar ag
is assumed. In both cases

oy =a(2-?) =acosb, (21)
where a depends on radius only, 2 is again the unit vector in
the axial direction, # that in the radial direction, and 6 is the
colatitude. Model (i) is defined by

a = const > 0, (22)
and model (ii) by
151 2\2 X—X
251 - , for <1, = Z2a,
L [REa-a Eal< 1, & =27 2
0 elsewhere

where a, is a non-negative constant, x = r/R with r being the
radial coordinate and R the radius of the conducting sphere, and
Xxq = dg = 0.5. We note that model (i) implies an ambiguity of og
at r = 0, which, however, does not influence the results.

In model (iii) an anisotropic a-effect, i.e. a tensorial «p, is
assumed. A special anisotropy is considered which is given by

(Oco),'j =a[(z- ?)6,7 + E(Qif‘j + 2]?,)] (24)

In this case ayB takes the form
a{(¢-?)B+¢[(z- B)? + (- B)2]}.

Again, a is specified by Eq. (23) with x, = d, = 0.5. Clearly,
model (iii) would coincide with model (i) for ¢ = 0. We fix,
however, model (iii) by choosing € = —0.25.

For all three models we define a dimensionless measure C,
for the magnitude of the a-effect by

1 R
Cy = — f a(r)dr.
nJo

Furthermore, we assume the mean motion to be a rigid body
rotation and refer to a corotating frame of reference so that

25)

u=0. (26)
The function f, which comprises the back-reaction of the
magnetic field on the fluid motion responsible for the a-effect, is
specified by

f=W+efe)!

with some constant energy density e.. The dependence of f on
e is somewhat arbitrary; it recognizes only that f should vanish
with growing e. We note that Riidiger (1974) found under special
assumptions that o = O(| B|~?) for | B|— co.

For our numerical investigations of these models it proved to
be sufficient to choose for n, and I, values of 8 to 10, for m, of
3 to 5, for iy and iy values of about 30, and for iy, about 10. In
several examples the accuracy has been checked by using higher
values.

27)

4.2. The linear case

Let us first look at our models in the linear case, for which
f = 1. Table 1 containes the marginal values of C, for the most
easily excitable modes. In models (i) and (ii) the A0 mode, i.e. an
axisymmetric mode, is favoured over all other modes, and it is
followed by the S1 mode. Model (iii), however, has been chosen
as an example in which the S1 mode, ie. a non-axisymmetric
mode, plays the dominating role, followed by the A0 mode.

Table 1. Marginal values C, of the most easily excitable modes
and the rotation rates w of the non-axisymmetric field configu-
rations for the a?-dynamo models (i), (i), and (iii). Positive w
means eastward, negative @ westward rotation

A0 SO Al S1
model Cy C, C, w Cy 0]
(i) 7.64 7.81 7.99 +0.89 | 7.66  +2.23
(i) 533 544 | 555 —-0.07 | 541 +2.01
(iii) 6.72 7.09 | 6.72 +0.03 | 643  +3.83

4.3. Pure solutions

We have looked for steady «/m and &m fields. In this context,
steadiness of fields is understood in a wider sense so that it
also applies to fields which rotate like a rigid body, that is,
they become steady in the strict sense only if a correspondingly
rotating frame of reference is used. Starting from initial fields of
appropriate symmetries we followed up their evolution. We have
found indeed that the evolution approaches states in which not
only the total energy E of the field but also the energies E}
and EJ of its Am or Sm parts no longer vary with time. Then
there are good reasons to assume, and it has been checked in
several examples, that these fields are steady in the above sense.
Fig. 1 shows the dependence of the energy E of these fields on
the parameter C, (and some results concerning the stability of
the fields which we will discuss later). Table 2 gives examples of
energy distributions with respect to the Am and Sm parts.

Table 2. Energy ratios E3/E! for the /1 and &1 solutions in
models (ii) and (iii) at C, = 15

1 #1
model (ii) 0.93 x 10~ 0.92 x 10~
model (iii) 12x 1073 0.87 x 1074

Figs. 2 and 3 present examples of field patterns in marginal
states and in finite amplitude states with C, = 15. In the surface
maps there are no significant differences between the two states.
The meridional cross-sections show that the fields in the finite
amplitude states are, compared to the marginal states, more
concentrated near the centre of the conducting volume.

4.4. Stability

We have tested the stability of the steady fields with respect to
small perturbations. Instead of investigating linearized equations
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Fig. 1. The energy E (in units of ecR3) versus C, for the steady /0, &0,
1, and &1 fields in the a?-dynamo models (i)-(iii). In models (i) and (ii)
the first bifurcation from the zero field corresponds to the <70 field, the
second to the &1 field. For slightly supercritical values of Cy the /0 and
&1 curves cross each other. In model (iii) the first bifurcation from the
zero field corresponds to the &1 field, the second to the 70 field. Solid
lines indicate stable solutions. In models (i) and (ii) only the /0 solution
is stable. In model (iii), for small values of C, only the &1 solution is
stable, for C, X 9 the /0 solution becomes also stable and for C, 2 15
the &1 solution becomes unstable

for the perturbations we computed the evolution of slightly
perturbed steady solutions using the full nonlinear equations. As
a rule, the perturbations did not consist of a simple Am or Sm
part only but of several such parts. For these parts the form of
the slowest free-decay modes with the corresponding symmetry
was chosen.

It is possible to draw conclusions concerning the linear
stability of steady fields from such results, since an arbitrary
initial perturbation will contain, in general, a contribution also
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of that eigenmode of the linearized equation for the perturbations
which has the largest growth rate (or smallest decay rate). This
mode will dominate over all the others after some time and this
leads to an exponential growth (or decay) of the energy of the
perturbation as long as the perturbation remains small enough.
The growth rate can be easily obtained from a logarithmic
representation. Since we are able to consider the energies of
the Am and Sm parts separately it is possible to determine the
symmetry type of this dominating perturbation mode.

It should be noted that it is not justified, in general, to extract
linear growth rates of other modes than the dominating one from
these calculations. The nonlinear mode coupling can lead to an
enslavement of modes already in the regime of a linear growth
of the dominating mode. This can result in an anomalously large
growth of slaved modes which has nothing to do with their own
linear growth rates; see Fig. 4.

With model (i) only a few stability tests of that kind have
been carried out. We recall the result of Brandenburg et al.
(1989a) according to which in this model not only the steady
/0 solution but, apart from a certain neighborhood of the
trivial solution, also the &0 solution is stable with respect
to axisymmetric perturbations. For the very similar model (ii)
Ridler and Wiedemann (1989) found the same result. They
showed, however, in addition, that the %0 solution is no longer
stable if non-axisymmetric perturbations are admitted. Then
S1 perturbations grow. The main purpose of our tests with
model (i) was to reconsider the stability of the &0 solution
in this sense. In order to test the stability of a solution we
have added to the solution a small perturbation of another
symmetry type. The result presented in the lower panel of Fig. 5
demonstrates that indeed in model (i) too the &0 solution is
unstable with respect to non-axisymmetric perturbations. Also
the stability of the &1 solution has been tested by adding an
axisymmetric perturbation. The upper panel of Fig. 5 shows that
such axisymmetric perturbations grow.

With models (ii) and (iii) more systematic and comprehensive
stability tests with small perturbations have been carried out. As
indicated in Fig. 1, in model (ii) again the /0 solution proves
to be stable. In this model again the 1 solution is unstable
with respect to A0 perturbations, and so is the &0 solution with
respect to S1 perturbations. In Fig. 6 some examples are given of
the evolution of the energy ratios E}'/E and Eg'/E in perturbed
0, 0, o/1, and &1 solutions.

With model (iii), in which the S1 mode dominates in the
linear regime, the situation is more complex. In a range of small
Cy (Cy 5 9) only the &1 solution is stable. In some range of
moderate Cy (9 $ Cy S 15), however, both the #1 and /0
solutions prove to be stable. For larger C, (Cy 2 15) the &1
solution becomes unstable and, as in models (i) and (ii), only
the /0 solution remains stable. In the first range of C, we
may expect that any solution, with arbitrary initial conditions,
approaches a steady 1 solution, and in the third range a steady
2/0 solution. In the second range, however, depending on the
initial conditions, a solution can evolve towards a steady <1 or
a steady /0 solution.

4.5. Evolution for mixed initial conditions in model (i)

In addition to the investigations described so far we have
carried out a number of experiments with initial fields deviating
considerably from steady fields. Fig. 7 shows evolutionary tracks
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Fig. 3. Meridional cross-sections of the steady /0, 0, 2/1, and &1 fields in model (i) in the marginal state (upper panels) and in the finite amplitude

15 (lower panels). Contours of constant Bg-field are plotted together with an array of (B, Bg)-vectors. The cross-sections are taken at

those longitudes where the B,-component, at x = 0.95, achieves a positive maximum (see Fig. 2). The finite amplitude states show typically stronger

field at the centre than the marginal states

state with C,
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Fig. 4. Variation of the energy ratios EJ'/E of the Sm parts after intro-
ducing an S1 perturbation to the steady &0 solution of model (i) with
C, = 10. Note that after a short time energy is fed also into the S2 and
S3 parts. Only the growth rate of the S1 perturbation can be evaluated
from the slope in the diagram since higher modes are enslaved by the
growing S1 perturbation
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Fig. 5. Evolution of M for perturbed &0 and &1 solutions in model
(i) with C, = 10. The lower panel shows that non-axisymmetric per-
turbations grow on the &0 solution and the upper panel shows that
axisymmetric perturbations grow on the #1 solution. Note that the time
scale of the instability for the &0 solution is about 1000 times bigger
than for the %1 solution

(1-M)x1000

of such solutions in a P ~ M diagram. In this diagram pure
&0 and /0 solutions are located in the upper-left and lower-left
corner. Non-axisymmetric solutions of S and A parity, e.g. #1
and /1 solutions, are on the upper-right and lower-right edge.
It becomes evident from Fig. 7 that, in general, the solutions first
approach the diagonal (P = 2M — 1). However, apart from the
&/0 solution there is no other stable solution on the diagonal
and the solution evolves slowly along the diagonal towards the
/0 solution. We see furthermore that for nearly axisymmetric
initial conditions with P =~ +1 (close to &0) the diagonal is not
reached directly. The solution approaches first the line P = 1 and
evolves then along this line towards 1. After approaching %1
an evolution along the diagonal begins towards /0. The whole
time span covered by the uppermost curve in Fig. 7 is about 16
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Fig. 6. The time dependence of lg(EK)S /E) for perturbed /0, &0, /1,
and #1 solutions for model (ii) with C, = 15. Only for the /0 solution
are the energies of all parts (apart from A0) decaying. For the &0 solution
are S1 perturbations growing, whilst for &/1 and &1 it is the A0 mode
which grows

7 { f
p |0 Va
$1
0.5 | /7 |
0 L / _
T
—-0.5 L |
A0
AT
-1 Iz I 1 [ |
0 0.2 0.4 0.6 0.8 p 1

Fig.7. P ~ M diagram showing the tracks of solutions with mixed initial
conditions for model (i) with C, = 10. The solutions at first approach the
diagonal. Then the solutions turn towards /0. The dots superimposed
on the tracks mark time intervals of 0.05 diffusion times. The migration
speed is very slow both near the /0 and %1 corners compared to other
parts of the diagram

diffusion times. One may estimate that the time needed to reach
finally the stable <70 solution is about 50 diffusion times.

It is interesting to note that just the same result concerning
the evolution of perturbed &0 solutions was already obtained
by Krimer (1989).

The evolution of fully mixed dynamo solutions may be dis-
cussed with the help of Fig. 8 showing a “potential” surface
in the P ~ M diagram. It is suggested that the system evolves
always along the negative gradient direction on this surface. The
small hill between .70 and &0 in that diagram corresponds to
the “watershed” found in the purely axisymmetric case (Bran-
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Fig. 8. A sketch of a “potential” suggested by the evolutionary tracks in
the P ~ M diagram of Fig. 7. It illustrates in particular the existence
of a watershed between /0 and 0 when only axisymmetric solutions
are permitted, and the possibility of a transition from %0 to «/0 via
non-axisymmetric states

1
P
0.5 _f// i
oL

-0.5

-1 | | |
0 0.2 0.4 0.6 0.8

Fig.9. P(t)-diagram for solutions of model (iii) with C, = 10. The so-
lutions contain initially only A0 and S1 parts. There seems to be a
watershed at P =~ 0

denburg et al., 1989a). However, if non-axisymmetric solutions
are admitted the /0 solution can be accessed from &0 via
a transient state near 1. Although our “potential” provides
some qualitative picture of the situation it is by no means clear
whether a quantity of this kind can be rigorously defined.

4.6. Evolution for mixed initial conditions in model (iii)

A remarkable feature of model (iii) is that, for certain values
of Cy (9 S C, < 15), there exist two stable solutions. Here we
consider this situation in more detail.

As expected there is a watershed between /0 and &1 solu-
tions. We have investigated the evolution of solutions containing
initially only A0 and S1 parts. In Fig. 9 results for Cy, = 10
are given with two different initial conditions corresponding to
P =0 and P = —0.6. The solutions develop slowly towards states
with P =1 and P = —1, that is, towards /0 and %1 solutions,
respectively.

For C, = 15 the basin of attraction for the /0 solution
is already very large. In the example considered in Fig. 10, in
which the field again contains initially only AO and S1 parts, the
evolution leads from an initial state with P = 0.88 to a state
with P = —1. In the uppermost panel of Fig. 10 we show the
variation of P. The field configuration is during the whole time
of dipole type, i.e. Q = 1. It is then natural to display also the
inclination angle i of the dipole axis against the rotation axis and
the component M, of the magnetic moment with respect to a
fixed direction in the equatorial plane. Clearly, My dies out in an

60 - o
3OF _
0 | 1 |
1 T T T T
M
x
0 L |
-1 | L ! | | t
0 1 2 3 4 5 6

Fig. 10. Evolution of a solution containing initially only AO and S1 parts
in model (iii) with C, = 15. In the initial state was P ~ 0.88 and
Q = 1. The P(t) diagram demonstrates the evolution towards a state with
P = —1. In this evolution the inclination angle i of the dipole axis against
the rotation axis tends to zero, and the component M, of the magnetic
moment with respect to a fixed direction in the equatorial planes dies out
in an oscillatory way

oscillatory way, indicating the rotation of the field configuration.
In Fig. 11 and 12 we show snapshots of the field configuration
at various instants. The surface maps illustrate the passing by
of two “active longitudes” during the field evolution. Finally,
in the last frame, these active longitudes have disappeared. The
meridional cross-sections show the variation of the field from
Z1 to L0 type.

5. Models with differential rotation

Compared to the situation with pure a?-dynamos the behaviour
of magnetic fields in the presence of differential rotation is quite
different. With the restriction to axisymmetry stable mixed-parity
solutions have been found (Brandenburg et al., 1989b). It is
therefore interesting to study similar cases, but allowing also
non-axisymmetric fields.

We have first computed an axisymmetric solution for an
aw-model in which «g is given by (21) and (22), and Q = Qpx,
where Qg is a constant and x as above the dimensionless
radius. We were particularly interested in the parameter regime
where “mixed-parity” solutions have been previously found
using a gridpoint method. This was the case for C, = 0.9 and
Cq = QyR?/n = —10*. Details of this solution, for example the
frequency ratio between long-term and short-term oscillations,
are sensitive to the computational resolution. For reliable results
50 grid points in the r-direction and 100 in the #-direction proved
to be necessary. We were able to reproduce the same result with
the modal method described above using n, = I, = 12 and
ix = ig = 30. However, the time step had also to be short enough
in order to achieve a sufficiently high accuracy. Good agreement
was obtained when one period was covered by hundred time
steps. In Fig. 14 we have plotted the evolution of the total energy
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Fig. 11. Surface maps showing the magnetic field evolution, at x = 0.95,
for the example considered in Fig. 10. The times are given in the upper
left corner of each diagram. For further explanations see Fig. 2
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E and the parameter P obtained with the gridpoint method and
with the modal method.

For non-axisymmetric solutions a new complication arises.
The presence of rotation introduces short time scales of the
order of Q! that have to be resolved. Furthermore, when
field lines of a non-axisymmetric field are wound up, lines of
opposite orientation occur close together and thus a short length
scale arises (Rédler, 1986b). This prevented us from investigating
models with such large values of Cq in the non-axisymmetric
case. We note, however, that Jennings et al. (1990) found an
axisymmetric mixed parity solution for Cog = —103. Using linear
stability analysis they showed that this solution is stable to non-
axisymmetric perturbations. This is not so surprising, because
the winding up of field lines associated with the large value of
Cgq causes the marginal dynamo numbers for non-axisymmetric
modes to be very high. Thus we expect the mixed parity solution
with Cq = —10* also to be stable.

For further investigations we adopted a model studied by
Rédler (1986a, Fig. 19), in which for moderate values of Cq
comparable excitation conditions occur for axisymmetric and
non-axisymmetric fields. The op-profile is defined by (21) and
(23) with x, = 0.5 and d, = 0.1. The Q-profile is given by

—1, forég<—1,
Q=08 -1 -3¢0+ 183), for |Egl< 1, Eg = 572, (28
0 3 58a + 38p), for [Eol< 1, o do > (28)
0, forég=>1,

with xo = 0.8 and dg = 0.1. For Co = —300 the marginal
dynamo numbers of the AQ, SO, A1, and S1 modes are very close
together. For this case we have studied the stability of a solution
with C, = 3 and a mixed initial condition which corresponds to
a perturbed &1 solution. Some results are depicted in Fig. 14.
The solution evolves at first towards /0 without reaching it
and then returns to the neighborhood of #1. This evolution is
mainly along the diagonal in the P ~ M diagram. Remarkably,
even after returning to the neighborhood of &1 the solution
shows periodic variations in the energies of the Am and Sm
parts. Unfortunately, our computational resources were not large
enough to look for a final state.

6. Conclusions

In the examples investigated of a?-dynamos with isotropic a-effect
only one stable solution has been found, which is an /0 solution.
The watershed between the /0 and &0 solutions observed under
restriction on axisymmetric magnetic fields disappears when
non-axisymmetric fields are allowed. Independent of the initial
conditions the final solution is of &0 type. It is remarkable that
the evolution starting from &0 goes via an intermediate state
close to &1 and the final solution is reached only after many
diffusion times.

Interesting situations can occur for dynamos with anisotropic
a-effect. Depending on the dynamo number, either the &1 or /0
solution, or both, are stable. However, no stable mixed-parity
solutions were found. The degree of anisotropy considered here
is not unrealistically large. This model may therefore well be
applicable to stars with deep convection zones and negligible
differential rotation. Suppose the angular velocity of the star
decreases during its evolution, and so the strength of the a-effect.
We may then eventually expect a change of the field configuration
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Fig. 12. Meridional cross-sections showing the field geometry for the example considered in Fig. 10. The times are given on top of each diagram. The
cross-sections are taken again at those longitudes where the B,-component, at x = 0.95, achieves a positive maximum (see Fig. 11)
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Fig. 13. The evolution of E and P for an aw-dynamo, obtained with the Fig. 14. Evolution of a mixed solution in an aw-model with C, =3 and

gridpoint method (upper row; Brandenburg et al,, 1989a) and with the =~ Co = —300, starting from a perturbed &1 solution. There are transient

modal method (lower row; the present paper) states at ¢ ~ 0.2 with strongly reduced values of P and M. As can be
seen from the P ~ M diagram the solution evolves at first towards .70
and then back to the neighborhood of #1. After this a tendency towards
&0 occurs. Note the oscillatory behaviour of the energies of some parts
of the field
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from /0 to &1. This could lead to different field configurations
for similar types of stars, depending on the age of these objects.

Inclusion of differential rotation, which corresponds to the
transition to an aw-dynamo, can lead to oscillatory solutions.
The present results suggest that mixed solutions with axisym-
metic and non-axisymmetric contributions are possible. Similar
long-term mixed mode oscillations were reported also by Tuomi-
nen et al. (1990) and by Jennings et al. (1990). In the latter
paper, however, an approximation is used which neglects radial
variations of the fields and is therefore questionable. There seems
to be some similarity to the earlier results for axisymmetric dy-
namos (Brandenburg et al., 1989a,b) which can exhibit persistent
oscillations between even and odd parity.

The observations of photometric variability and chromo-
spheric activity indicators in active stars show strong rotational
modulation, which suggest a non-axisymmetric distribution of
magnetic active regions. A recent discovery is that an active
giant, the FK Comae type star HD 199178 (Jetsu et al., 1990),
has a (possibly aperiodic) variation with a characteristic time
of about 3 years in the amplitude of the photometric rotational
modulation and, in addition, a 9 year photometric cycle in the
mean brightness. The rotational modulation has retained its
phase coherence over 13 years of observations, suggesting the
presence of a persistent non-axisymmetric magnetic configura-
tion. In another active giant, HD 32918, a snapshot of the surface
structure derived by using a regularization method to invert the
variable spectral line data to a temperature map has revealed
a large group of cool spots in the equatorial belt, concentrated
at an “active longitude” (Piskunov et al., 1990). It is tempting
to describe these structures in terms of a mixed solution of
the nonlinear dynamo, including, for example, A0, SO, and S1
contributions.

The solution presented in Fig. 14 is of course only one single
example. The axisymmetric contribution to this solution is quite
small and the variation of the strength of non-axisymmetric
contributions, indicated by M, is weak but still growing. In
contrast, the strong variation of the light curve modulation
found by Jetsu et al. (1990) suggests a much larger influence
on M. However, a closer comparison with observed stars and
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their interpretation in terms of certain dynamo models is at
present not yet justified. Other parameter values and inclusion
of dynamical effects may reveal a more complex behaviour.
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