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Abstract. We have investigated axisymmetric nonlinear mean-
field dynamos in spherical shells that attempt to model the gross
effects of a dynamo operating in a thin layer at the base of a
convective envelope. A form of magnetic buoyancy restricts the
fields to finite amplitude. As the shell thickness decreases the
excitation conditions and spatial structure of even and odd parity
modes become almost identical. For very thin shells the field
forms a number of almost disjoint cells. We also found mixed
parity solutions which typically evolved very slowly towards pure
odd or even parity solutions. The time scale of these slow
variations is of the order of a hundred global diffusion times. We
were unable to find completely steady (averaged over a cycle)
mixed parity solutions.

Key words: dynamos: nonlinear — buoyancy — magnetohydro-
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1. Introduction

Considerable interest has been expressed in the last decade or so
in the idea that the solar cycle is driven by a dynamo situated near
the bottom of the solar convection zone. Inter alia, this model has
been proposed as a way of avoiding excessive flux loss by
magnetic buoyancy that might, for example, quench the dynamo
at an unacceptably small amplitude. The buoyancy of flux tubes
may be an essential ingredient of the nonlinear limitation of the
solar dynamo (cf. Noyes et al. 1984). The effect of such flux
removal on the solar dynamo has commonly been investigated
with one-dimensional models in which the radial extent of the
convection zone is omitted (e.g. Leighton 1969; Schmitt &
Schiissler 1989; Jennings & Weiss 1990). However the conse-
quences of such a drastic simplification are unclear, and the
approximation is very questionable.

In a previous paper we investigated the influence of a simple
parameterization of magnetic buoyancy on solutions of the
axisymmetric dynamo equations in full two-dimensional geo-
metry (Moss et al. 1990, henceforth Paper I). This paper studied a
mean-field dynamo with sources (x-effect, differential rotation)
distributed uniformly throughout a spherical volume. The axi-
symmetric dynamo equations were solved in full two-dimensional
geometry. In contrast to one-dimensional models of nonlinear
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buoyancy-limited dynamos (e.g. Jennings & Weiss 1990) and also
to two-dimensional a-quenched models (Brandenburg et al.
1989), the buoyancy-limited solutions of Paper I did not exhibit
any long term behaviour that was more complex than a simple
limit cycle. It was speculated that this could possibly be because of
the uniform source distribution, or perhaps because of the
comparatively restricted range of parameters that were accessible
to the code used.

Bearing all these factors in mind, here we develop a two-
dimensional model for a “thin shell”, buoyancy limited o’w
dynamo that might be situated near the base of a stellar convec-
tion zone.

2. The model

We are interested in solving the mean field dynamo equation in a
spherical shell R, <r < R,. We adopt a mean field formulation of
the dynamo problem, with isotropic o effect.

2.1. Buoyancy

The representation in the mean field dynamo equation of the
effect of magnetic buoyancy in removing flux is to some extent
arbitrary, in that different authors adopt different representa-
tions. In the literature a modification of the induction equation of
the form

oB B
—= —_JUB) 1)

has often been discussed (e.g. DeLuca & Gilman 1986). Such a
form was first considered by Leighton (1969) and more recently
by Schmitt & Schiissler (1989) and Jennings & Weiss (1990).
Referring to the early work of Leighton (1969), DeLuca & Gilman
(1986) applied Eq. (1) also to the case where the radial extent is
retained. However, Rédler (1990) has stressed that this is hardly
the correct way to comprehend the action of magnetic buoyancy,
and that the overall effect should be merely to modify the
electromotive force, i.e. to provide an extra term under the curl
operator, cf. Eq. (5) (below).

As in Paper T we represent the effect of magnetic buoyancy by
introducing a macroscopic velocity.

up =f(B)#, 2

into the dynamo equation. ug might be considered to be related to
the radial velocity of buoyant flux tubes (see Paper I; see also
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Krivodubskii 1984). We use
f(B)=T|B| (3)

in the calculations described below, although results outlined in
Paper I suggest that the choice is not crucial to the qualitative
nature of the results and that, e.g., f(B) oc B> would give similar
behaviour. I is assumed to be constant in the outer 80% of the
computational shell, but is made to tend smoothly to zero at the
inner boundary.

The velocity ug defined by Eqgs. (2) and (3) appears to violate
mass continuity. However uy is a mean-field velocity, derived
from a buoyant velocity that supposedly acts predominantly in
regions of high field strength, where it is always in the outward
direction. The return flow is considered to be diffuse, of smaller
magnitude, in regions of substantially lower field strength. Thus
the mean velocity experienced by B can be taken to be of the form
(3) with I" >0, without implying any overall violation of the mass
continuity constraint.

2.2. The model equations

We only consider axisymmetric magnetic fields and so can split B
into poloidal and toroidal parts and write

B=V x (ap) + bg, oA

referred to a spherical polar coordinate system (r, 8, ¢). The mean
field dynamo equation in dimensionless form can be written as

0B/0t=V x (C,ux B+7|B|¢f x B+ C,cos B)—V xV x B,
®)

where we have scaled time in units of R3/n, where 7 is the
resistivity, assumed to be uniform and B is now a dimensionless
field, measured in units of B*, say. u is a prescribed differential
rotation, i.e. u = Qxsin6p, x=r/R, and we take a=&(x)cos 6.

As usual we solve the ¢ component of Eq. (5) and the ¢
component of the equation obtained by “uncurling” Eq. (5), for b
and a respectively. The dynamo parameters are given by

Ca =0 RZ/r” Cw = QIO R%/VI,

2X—X;—X,

y=l“B*& and Q= Q (6)
) 0

n 2(x;—xq)
where x, = 1 by definition and Q is assumed to be constant. As
discussed in Paper I the equations can be scaled to remove y as a
free parameter and so we take the value of y throughout the bulk
of the shell to be unity.

2.3. Boundary conditions and a-profile

The two equations derived from (5) were solved in the shell
R{ <r<R,(ie. x; <x<1),0< 6 <r by the method described
in Paper 1. The computational grid contained NI points uni-
formly distributed in x and NJ points uniformly distributed in 6.
Note that we do not impose any boundary conditions that
preselect solutions of a particular parity with respect to the
equatorial plane and that solutions of mixed parity are thus
permitted.

We considered two distinct boundary conditions at r=R,.
The first is a simple minded approximation to the physical
condition that an oscillating dynamo field will be almost com-
pletely excluded from the underlying, relatively highly conduct-
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ing, radiative region by the skin effect. (Our main concern in a
solar context is, of course with oscillating fields.) In this case we
take B,=B,=0atr=R,, ie.

a=b=0 where x=x,, (7)

recognizing that this means that B, will in general be non-zero
there (and so there must be a surface current J, on r=R,). The
other form of boundary condition explicitly assumes the region
r<R; to be a perfect electrical conductor, in which case the
boundary conditions are

a=0, ad(ar)/0r=nd(br)/0r on r=R,. 8)
(With 5 constant in r> R, this implies B, #0 at r=R, and so
there is now a surface current J, on r=R,. The perfect conductor
condition

oaB,=7n(V x B),

is satisfied identically at r=R; by the dynamo equation for a,
given the first of conditions (8).) We only used the boundary
conditions (7) for the “thick shell” calculation with x; =0.7
(Sect. 3.1). In this case we verified that our results and those
obtained using the perfect conductor condition (8) were very
similar: the poloidal field lines were almost identical and the
toroidal field contours differed only towards the base of the shell.
The oscillation periods were very similar and the only significant
difference was a change in the mean energies, typically by about
20%. Initially we formulated a model that might be considered to
represent the complete convective envelope of a late type star,
with

acosf15(¢% — 1)
=

, X< Xy,
16(x, — x,)

a=0, x>x,.

where

=(x—x1)

Xy — Xy

and x,(>x,) is a radius beyond which the « effect is assumed not
to operate. In this case r=R, (i.e. x=x, = 1) corresponds to the
stellar surface and so we adopted the usual boundary conditions,
that the toroidal field be zero at x =1 and that the poloidal field fit
smoothly on to a curl-free exterior field there.

Taking x, =0.7, x,=0.8, we were able to compute some
oscillatory dynamos with this model, but only for a very limited
range of C,, even with a resolution of NI=41, NJ=81. A quite
small increase in C, or C, necessitated a finer computational
mesh for numerical accuracy and, what was worse, the scheme
displayed signs of numerical instability. We therefore abandoned
our study of this model. We did, however, note that typically the
the poloidal field lines (ax sinf = constant) and contours of toroi-
dal field (b=constant) were approximately radial over a large
extent in 6 in the region where a became small.

These experiences led us to try to develop a simpler model of
the region of dynamo excitation only, without calculating ex-
plicitly the field evolution and structure in the overlaying outer
envelope region (considered to be passive, apart perhaps from the
effects of differential rotation). Thus our shell R; <r <R, now is
to be thought of as representing a region near the base of a
convective envelope. The boundary conditions at r=R, are no
longer that the field fits onto a curl-free exterior field but, guided
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to some extent by our previous results, we apply the conditions
0a/dx=0b/0x=0 at x=x,=1, )

and we now take &(x)=constant throughout the shell volume.

The poloidal field would be strictly radial if d(ax)/dx =0, but in
practice the first of conditions (9) gives a poloidal field that is
quite close to being radial. This corresponds physically to a
situation in which poloidal field lines are being ‘lifted’ up into the
overlying region, and in which the toroidal field is continuous
with that of the overlying region into which it rises. Note that we
continue to scale lengths with the outer radius of the shell, R,, and
so our calculations still cover the region x, < x < 1, and it must be
remembered that x =1 is deep inside the envelope region and does

not correspond to the ‘surface’. For example, if the centre of our
shell were thought to be at about 70% of the stellar radius then
the fractional radial extent of the shell would be approximately
0.7(1—x;). We shall present results for a “thick shell” with
x; =0.7 and a “thin shell” with x, =0.9. Typically our com-
putational grid had NI=41, NJ=81 and the timestep was 5 or
2.5 x 1073, Some results were confirmed with NI=81, NJ=161.

3. Numerical results
3.1. Thick shell x, =0.7

Using the boundary conditions (7) corresponding to the field
being completely excluded from x<x,, we first computed a?

Fig. 1a—d. x, = 0.7. Field structures of eigenmodes, a C,, = 0, AO mode, b C,, =0, SO mode, ¢ C,, = — 103, AO mode, d C, = — 103, SO mode. The left half
of each figure shows contours of equal toroidal field strength, right half shows poloidal field lines. Dashed contours represent negative values of b or a
respectively. Note that when C,, = —10? the field is oscillatory, and the fields illustrated in ¢ and d are not at exactly corresponding phases
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modes (i.e. C, = 0) taking a clearly supercritical value, C, = 10.
These solutions are steady. Field lines for the odd and even (A0
and S0) modes are shown in Fig. 1a and b. We then investigated
a?w solutions with C,, held constant at — 103, These solutions are
oscillatory, and the bifurcations from the trivial solution occur at
C,~ 1.25. The values for the odd and even modes were very
similar and we did not separate them. Eigenmodes are shown in
Fig. 1c-and d. Following our previous work (Brandenburg et al.
1989; Paper I), we defined the parity parameter

P= (E(S) . E(A))/(E(S) + E(A)),

where E® and E are the energies in the parts of the field
respectively symmetric (even) and antisymmetric (odd) with re-
spect to the rotational equator. Thus an AO mode has P= —1 and
a SO mode has P=+1. We constructed initial fields of mixed
parity, —1 < P(0)< 1. Taking C, =3, we evolved these until the
solutions exhibited a quite steady cyclic behaviour. In each case
by t~0.5 the total magnetic energy E settled to a steady
oscillation with mean value, amplitude and period independent of
P(0), but at this time (in contrast to the «?> models) the corres-
ponding parity parameters P(t) depended markedly on P(0) (see
Fig. 2). In each case (P), the mean value of P over a cycle,
appeared at first sight to be almost constant, but a closer
examination of the results in each case showed that P was

P
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Fig. 2a and b. x, =0.7. a Evolution of P(t) for C,= —103, C,=3 for
selected P(0). b Evolution of E for P(0)=0.1
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performing a limit cycle of small amplitude. Moreover this
amplitude appeared to be slowly changing, in the direction of P=
— 1, although the rate of change is very small (and at t < 1, at least,
depends somewhat on P(0) with d ( P)/dt ~ —0.03 when P is near
0.9 and —0.01 when P is near —0.9, for example), and so the long
term behaviour of these solutions is uncertain, especially in the
light of some rather similar behaviour studied in detail in Paper I
(see, e.g. Sect. 4.2.3 of that paper). The timescale for these long
term variations is typically 30-100 diffusion times (in units of
R3/n).

We performed a similar exercise at C, = 10 (see Fig. 3), with
broadly similar results, except that now any trend of (P) with
time after the initial relaxation was much less obvious. Although
P appears to be varying quite uniformly, a closer inspection
reveals some structure in the pulse shape (see the inset in Fig. 3).

Finally we made a sequence of calculations, starting with P(0)
=0, but with C, varying in the range 1.5 to 10. We give in Table 1
the magnitude and amplitude of the oscillation in log E and the
behaviour of P after the initial relaxation phase. The period
decreases as C, increases. This is in agreement with previous
results (Paper I). Figure 4 shows typical field configurations for
mixed mode solutions for C, =3 and C, = 10. When C, = 20 the
structure is similar, except that there is then an additional ‘cell’ in
the f-extent.

3.2. Thin shell x, =09

In this case we adopted the perfect conductor conditions (8) at the
lower boundary, in contrast to those used in Sect. 3.1. Ex-
periments suggest that although, for example, the energy at
saturation and the position of the bifurcations do depend some-
what on the choice of boundary conditions, the overall nature of
the results is little affected. We only investigated a? w models with

—
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Fig. 3aand b. x, =0.7.a Evolution of P(¢) for C, = — 103, C, = 10. P(0)
varies. The inset shows pulse structure of P(t) for the case P(0)=0.
b Evolution of E for P(0)=0.0
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C, = —103. A0 and SO modes were both excited at C, ~ 2.8, and
the eigenmodes are shown in Fig. 5.

Following the pattern described in Sect. 3.1 we followed the
field evolution from a standard set of initial fields of intermediate
parity for both C, =10 and C, = 4. By t=0.25 the mean behavi-
our had become steady, with the energy saturating at an ampli-
tude and period independent of the initial conditions to within the
accuracy of the computations. (Although the variation of the total
energy during a cycle is relatively small, this is because of the quite
complex spatial structure of the field, and the field values at any
given points vary very much more markedly.) However the

overall behaviour of the parity parameter P was in each case more
complex (see Fig. 6). We could not really be sure that the limit
cycles exhibited by P were steady, but if they were evolving
steadily with time then |d{P) /dt| is smaller than for the thick shell
(Sect. 3.1). Thus it appears that the long-term variation of the
mean parity parameter occurs more slowly when the shell
thickness is smaller.

Finally we followed the field evolution from an initial state
with P(0)=0 for different values of C,. These results are shown in
Fig. 7 and summarized in Table 2. Typical field configurations
with C,=3 and C, = 10 are shown in Fig. 8.

......

Fig. 5a and b. x, =0.9. a Eigenmode, P= —1, C,= —103. b Eigenmode P= +1, C,= —103
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Fig. 6a and b. x, =09, C,= —10% C,=10. a Evolution of P(t), P(0)
varying, b Evolution of E for P(0)=0.0

Table 1. Summary of calculations with x, = 0.7, C,, = —10° and
P(0)=0. {P) is the mean value of P. Amplitudes of oscillations
are indicated by +, except in cases marked by an asterisk where
the amplitude is very small

C, log E {P>(t~0.6) Period
1.5 045 +0.10 - —1? 0.098
2.0 1.07+0.07 0.165+0.01 0.084
30 1.57+0.05 0.01+0.01 0.064
5.0 2.03+0.03 —0.194£0.01 0.048
7.0 2.32+0.02 —0.365* 0.040
10.0 2.52+0.02 —0.45* 0.033
20.0 296+0.01 —0.43* 0.023
Table 2. Summary of calculations with x; =09, C, = —10% and

P(0)=0 at time ¢t when behaviour is quasi-steady. (P) is the
mean value of P. Amplitudes of oscillations are indicated by +,
except in cases marked by an asterisk where the amplitude is very
small

C, t log E {P)(t) Period
4 0.6 0.970+0.005 0.69* 0.028
7 0325  1.53140.005 —0.25+0.01 0.019

10 0.25 1.869 +0.003 0.987 0.0155

20 0.325  2.37440.003 0.27+0.01 0.011
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Fig. 7a—c. Evolution of P(t) for calculations with P(0)=0.0, x, = 0.9,
C,=—10*fora C,=4,bC,=7,¢C,=10

4. Discussion

Examination of the pure parity solutions shows that the field
structure for A0 and SO modes is remarkably similar. This
phenomena has been observed previously for dynamo models in
spherical shells (e.g. Brandenburg et al. 1990), but several other
features of these thin shell dynamos are rather different in nature
from those for more ‘global’ models. For example, when the initial
field has mixed parity, there is no rapid evolution to one of a few
final states — either of pure or mixed parity (the latter being
perhaps a limit cycle or torus; see Brandenburg et al. 1989 and
Paper I). Instead the solutions settle to a common frequency and
energy for given parameters C, and C,, but with very slowly
changing oscillations in P. The mean value of P then depends on
the initial conditions, in what in some cases appears to be a
somewhat non-uniform manner (see, e.g., Figs. 2 and 6). We
speculate that this unsystematic behaviour may be caused by the
initial field configurations [with various P(0)] being quite distant
in structure from the almost steady limit cycles found in the phase
of slow evolution, and that in the initial phase of rapid relaxation,
where perhaps numerical inaccuracies are larger than sub-
sequently, some of the ‘memory’ of the initial state is lost.
Choosing a set of initial states, of varying P(t=0) that are less
distant from the final field configurations would probably remove
this feature.
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Fig. 8a and b. Field structure, mixed mode, x, =0.9, C,= —103%. a C,=4,b C,=10
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Fig. 9a and b. Butterfly diagrams (toroidal field strength just below
x=1), odd parity fields for a thin shell, C,=2.5, b thick shell, C, =4.0.
Time runs from left to right, the ordinates are degrees of latitude

The fact that the mean parity of many of our solutions does
appear to be changing very slowly after an initial rapid relaxation
may indicate an ultimate preference for one of a few stable
solutions. However d{P)/dt is so small that following the field
evolution for a significant length of time is prohibitively expensive

in terms of computer time. The initial rate of change of parity is
less significant, as it is strongly influenced by the choice of initial
field configuration. It should be noted that this phenomenon of
slowly changing (P} is not peculiar to buoyancy quenched
models, but has also been observed for a-quenched shell dynamos
(cf. Brandenburg et al. 1990).

The apparent lack of a clear preference for any definite pure
parity solution may be jointly attributable to the very similar
bifurcations and growth rates of the A0 and the SO modes and to
the small aspect ratio of the shell (especially when x; = 0.9). The
latter seems to favour the break up of the field structure into
more-or-less isolated cells with little direct interaction with one
another. This is probably encouraged, partly at least, by our
simple, local boundary condition on a, in contrast to the global
condition of fitting to a curl-free external field that is usually
employed when modelling dynamos in a complete convective
envelope. We note that our boundary condition may have some
real relevance to a dynamo situated at the bottom of a convective
envelope of a solar type star: the poloidal field is relatively weak
and is likely to suffer massive distortion in the turbulent envelope.
In addition, at the solar surface the large-scale poloidal field is
difficult to observe, but the region immediately external to the
photosphere is not curl-free and there is really no reason, apart
from mathematical convenience, to adopt the global curl-
free condition there. Thus the (perhaps ill-known) connection
between the boundary conditions and the detailed field structure
at the photosphere and a shell dynamo deep in the interior may in
practice be quite tenuous.

Attempts to model thin layer dynamos by removing one or
more of the spatial dimensions, typically replacing the corres-
ponding derivatives by order of magnitude estimates, give sets of
equations that are more tractable either numerically or analyti-
cally. The solution of such systems can, for example, be followed
to much larger dynamo numbers than is the case for our model
(e.g. Jennings & Weiss 1990). However the result usually found is
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that the relevant modes are those with the greatest spatial extent
in the latitudinal (i.e. -) direction. Our result that the preferred
modes often have a cell-like structure clearly throws doubt on the
applicability of such truncated, one-dimensional models.
Butterfly diagrams for typical odd parity thick and thin shell
models are shown in Fig. 9, remembering, of course, that they
refer to the field just below the shell surface and not the stellar
surface. They display the usual equatorward migration to be
expected from aw dynamos with our choice of parameters,
although the cell-like structure of the field means there is con-
siderable 0-structure. For the “thin shell” models the number of
“belts” in each hemisphere is approximately three (Fig. 9a),
compared with a figure of about two for the “thick shell” models
(Fig. 9b). This might be compared with the solar value of two.
These numbers do depend somewhat on the magnitude of C, and,
again, the link with an “observable” field might be remote. As
expected with «>0 in the northern hemisphere, B, and B,, are in
antiphase (Stix 1976; Yoshimura 1976). However it is probable
that o changes sign at the bottom of the convection zone. If also
o > 0in this region (e.g. Brown et al. 1989) the “correct” butterfly
diagram (equatorward migration) could be recovered, but with B,
and B, in phase, in contrast to the observed solar field. It is quite
uncertain whether the diffusive layer above a bottom dynamo
could alter the phase relation. A large scale laminar circulation in
the overlying region could possibly also effect the direction of
field migration at the surface. Calculations incorporating both
the “bottom dynamo” region and the overlying envelope are
necessary to answer this question.
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