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Abstract. We compute numerical solutions for axisymmetric
mean field dynamos of a2 and o’w type in spherical geometry. In
particular we study the effects of including a term in the magneto-
hydrodynamic equations which represents the upward advection
of fields by magnetic buoyancy. For the buoyancy limited o?
dynamo we find that, for certain parameter values, this model
may have two stable solutions, of opposite parity properties with
respect to the equator. In our a?w dynamo models for smaller
values of a dynamo number, odd parity solutions are stable, but
for larger values it is the even parity solutions that are stable.
These results concerning the stability of pure parity solutions are
similar to those found in an earlier study in which the nonlin-
earity was a simple a-quenching.

The effects of buoyancy on the periods of our «?w dynamos is
small: increasing the buoyancy parameter slightly decreases cycle
periods. In contrast to the a-quenched a?w models studied
previously, we do not find any finite parameter range in which
stable mixed parity solutions are present in purely buoyancy-
limited models. In particular, ‘torus-type’ solutions of the type
discovered previously in a-quenched dynamos are not found.

We also present some models with both buoyancy and
a-quenching included. The most noticeable effect of adding a
buoyancy term to the a-quenched solutions is that the amplitude
of the finite amplitude parity oscillations (tori and limit cycles)
previously found is reduced.

Key words: dynamos: nonlinear — buoyancy — magnetohydro-
dynamics - solar cycle

1. Introduction

The magnetic fields of the sun, solar type stars and the planets are
widely (but not universally) believed to be the result of dynamo
action in a rotating, electrically conducting fluid. Mean field
dynamo theory seems capable of explaining many of the features
observed on the sun (e.g. Brandenburg and Tuominen, 1988), but
it is clear that very simple kinematic models, of the kind devel-
oped by Steenbeck and Krause (1969), although explaining suc-
cessfully the basic mechanism of the magnetic oscillations, are
inadequate to explain quantitatively many features of the solar
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cycle or analogous cycles in active stars with convective
envelopes.

The magnetic field strength in the sun, other stars or planets is
believed to be limited in magnitude by nonlinear effects. For
example, the field can inhibit convection and so reduce the
“a-effect”. The differential rotation can be reduced by the Lorentz
force of the dynamo field. Magnetic buoyancy may rapidly
remove flux from the convection zone. The latter effect has been
widely studied in recent years (e.g. Parker, 1979). Van Ballegooi-
jen (1982) discussed the magnetic flux storage problem, import-
ant because the rise times of buoyant magnetic flux tubes may be
much shorter than the solar cycle period (e.g. Moreno-Insertis,
1983). Besides the gross effects of buoyancy on field generation
and limitation, the stability properties of buoyancy-limited dy-
namos are of importance, in particular because we expect that it
is the stable solutions that are realized in practice. The stability
problem was recently discussed by Krause and Meinel (1988).

In previous papers of this series (Brandenburg et al., 1989a:
Paper I; Brandenburg et al., 1989b, Paper II) we have described a
program which performs nonlinear calculations for a simple fluid
dynamo model. Whilst the solutions are limited in that the fluid
is assumed to be incompressible and there is a strict requirement
of axisymmetry, they do provide a considerable advance on most
previous nonlinear dynamo calculations in that calculations are
performed on a two-dimensional r, 6 grid (spherical polar co-
ordinates), in contrast to the severe truncation to 0(10) dependent
variables often employed in previous (one-dimensional) studies.
A particular feature of our numerical scheme is that we calculate
explicitly on the range (0, n), thus avoiding prescribing the parity
of our solutions by means of boundary conditions imposed on
0=mn/2. This has already produced several interesting new
results.

Of course there is a price for this advance in that considerably
increased computational resources are needed. However in
Papers I and II we were able to investigate some interesting
phenomena concerning the nonlinear limitation of mean field
dynamos by the action of the Lorentz force on the mean motions
and also by a simple “a-quenching” mechanism. Whilst our
solutions did not show the richness in terms of bifurcations and
transitions to chaos of some of the “toy” systems previously
investigated that are of interest in the study of general nonlinear
dynamical systems (e.g. Lorenz, 1963; Ruzmaikin, 1981; Jones
etal, 1983), they do have a much closer and more readily
apparent relation to “real” geo- and astrophysical dynamos such
as are believed to operate in the earth, sun and lower main
sequence stars.
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As mentioned above, in addition to the back-reaction on the
mean motions and the reduction of the magnitude of the « effect
from the interaction of the dynamo generated field with the small
scale turbulence, at least one other mechanism seems likely to be
important in limiting the growth of mean field astrophysical
dynamos, namely magnetic buoyancy. Indeed, Noyes et al. (1984)
have argued that this must be the dominant mechanism. Whilst
the importance of this effect in the solar convection zone has been
disputed, as a number of mechanisms may act to mitigate its
action, it seems clear that a thorough understanding of nonlinear
dynamos must include a study of its effects. Thus in this paper we
include a simple parameterization of magnetic buoyancy in the
dynamo model described in Papers I and II. The initial investi-
gation is limited to the case where buoyancy is the only nonlin-
ear effect active. Later we include a-quenching also. As in the
previous papers we solve the dynamo equations in a complete
sphere. Even with our grossly simplified model there are several
free parameters, and the regions of parameter space investigated
are necessarily rather subjectively chosen and limited. Thus we
can make no claim to completeness, but rather just attempt to
display some of the phenomena that we encountered.

2. The model
2.1. A simple representation of the effects of buoyancy

The simplest order of magnitude argument to estimate the modi-
fication of the standard dynamo equation of mean field electro-
dynamics is to say that, since the Lorentz force is quadratic in B,
then the magnitude of the buoyant velocity is proportional to B2.
Thus a term

ug=¢B2H, (03]

{=positive constant, is added to the mean velocity appearing in
the mean field dynamo equation, which then takes the form

0B/0t=V x (uxB+ugx B+aB)—V x (V xB), ?2)

where u is the large scale velocity field, « is the usual (isotropic)
helicity parameter and 7 is the diffusion coefficient.

A superficially similar expression for the advection of field
radially outwards can be derived by the following argument, due
to Rédler (private communication).

Consider a system of rising and falling motions, such as are
present in a convection zone even in the absence of magnetic
fields. Let subscripts u and d denote “up” and “down” motions
respectively. Suppose that the areas occupied by up and down
motions are S, and S;. Then mass conservation gives

puuuSu=pdude’

where u, and u, are positive velocities. Then the mean radial
velocity is

) = (1,8, —ugS,4)/(S,+5,).

Put

pu=pa—Ap, Ap>0.

Then

u ) =S,/(S,+S)u,Ap/p
=k(Ap/p)u,, where k~1/2.
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In a compressible gas without a magnetic field horizontal pres-
sure balance gives a relation between pressure and temperature.
In the presence of magnetic field the condition of horizontal
pressure balance will give B?/2u"to be of the same order of
magnitude as Ap (essentially approximate equipartition of
energies).

If

Ap=—c*Ap,

¢ the speed of sound, we get
Ap/p~vi/c?,

where v, is the Alfvén velocity. Thus
{u, > ~0.5kv2/c?u,,

and

uy={'B%f.

where &' ~ku,/(2up)>0.

This is of the same form as expression (1), but the mechanism
is more akin to a “mean field pumping”. It seems probable that
¢’ < ¢ in many cases of interest. We shall adopt Eq. (1) without
further discussion of the underlying mechanism. In this paper we
are only concerned with the general effects of buoyancy and we
are not attempting to produce a detailed model of any astrophys-
ical system. Thus we shall assume ¢ to be independent of position
and time. The magnitude of & can only be estimated from a much
more complete theory than ours, and so we shall treat & on an
arbitrary (positive) constant. It is probable that ¢ would vary
significantly through a convective envelope. (When buoyancy is
the only nonlinear process acting then explicit occurrence of a
constant £ can be removed by scaling, see below).

Taking the radius of the sphere, R, as the unit of length and
scaling with unit of time R2/y, Eq. (2) can be written in dimen-
sionless form as

dB/0t=V x (ux B+aB+TfxB)—V x (V x B) 3)

where I'=yB2?, y=¢R/#, and 7 is assumed to be uniform. Our
large scale velocity u is taken to be a differential rotation,
Qxsin 8¢, only (x=r/R). We use

a=C, f(B*)cosf. @)
We can define the two usual dimensionless parameters
Ca = %R/ﬂ, Cw = I),0 RZ/’?a

where Qj is the radial derivative of the angular velocity, which is
assumed to be constant in our models. When f(B?)=1 (no
nonlinear feedback onto the a-effect) then C,, C,, and I define the
problem. Note that Eq. (3) then allows the scaling

B> gB* y— g 2y* giving
OB*/0t=V x (ux B*+aB*+y*B*2f x B*)—V x (VxB*), (5

Thus the equation can be scaled to remove y as a free parameter.
Note further, however, that identical results for any given calcu-
lation will be obtained by solving Eq. (3) with different values of y
only if the initial field B(x, 6, 0) of (3) is replaced by B*(x, 6, 0)
=g~ !'B(x, 6, 0) in (5). In some instances the final solution seems
to be independent of the form and magnitude of the initial field.
In other cases this is not so. We adopted the computational
procedure of starting our calculations with a standard set of
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fields of given energy (see Sect. 3), and allowing y to vary. This
is equivalent to varying the initial energy at fixed y. (This scaling
was verified numerically.)

For some of our calculations we introduced a simple
a-quenching, as in Paper I and II. We wrote

a=ay/(1+B2/(2E,)) (6)

in (2). The physical motivation is that the helicity is reduced when
the magnetic field becomes strong enough to affect the small scale
dynamics —a simple model might take E, to be the kinetic energy
of the turbulence. (Note that B?/2 is the local magnetic energy
density.) In dimensionless form (6) then becomes

f(B*)=(1+0B?)"". ™

In Papers I and II, in the cases where this was the only nonlinear
mechanism operating, we were able to scale so that oy =1 (cf. the
above discussion). This is no longer possible when y depends on
B. Then we must retain oy as an additional parameter.

Finally, note that we retain the “a terms” in both the poloidal
and toroidal induction equations even when C,,#0 and so refer
to «?w dynamos.

2.2. Other formulations

Plausible arguments can be given for other simple representa-
tions of the effects of buoyancy. For example, a crude estimate of
the rise rate of a buoyant flux tube might give |ug|ocv,
(e.g. Parker, 1979, Eq. (8.60)). Then Eq. (1) becomes

uz=¢, |B|F @

Now, of course, the scaling is y — g~ y*, cf. Eq. (5). We briefly
investigate the effects of such a choice in Sect. 4.4.

Further, Eq. (1) gives a radial component of velocity which
does not vanish at r=R since only the toroidal field is con-
strained to be zero there. It would be relatively straightforward to
modify Eq. (1) so that uz—0 smoothly as r— R by introducing a
suitable function of radius multiplying £. An even more straight-
forward procedure is to replace B by the toroidal part of the field,
B, in (1) or (8) since B; =0 on r=R. However such changes will
make significant changes in, at most, the «?> models investigated
(i.e. when C,,=0), since in the a2w models the ratio of poloidal to
toroidal field strength is small, except very near r=R. In Sect. 4.5
we test the sensitivity of our models to such a change.

3. Numerical procedures

The numerical scheme to solve Eq. (3) was described in Paper 1.
We implemented it on a NIx NJ grid, covering the range
0<x<1, 0<f<n For many of the computations described we
took NI=21, NJ=41. Typically the time step, Az, was in the
range 2 x 10™* to 5 x 10~ °. We tested the accuracy of our results
in a number of instances by rerunning the calculations with
NI=41, NJ=81and At=2—5x 10~ >, In general the agreement
was very good and, except where an explicit comment to the
contrary is made, we feel that the results obtained on the stan-
dard grid would not be significantly altered by using higher
resolution.

We constructed a standard set of initial fields by taking linear
combinations of odd (4) and even (S) eigenfunctions of the
spherical «?> dynamo, with a oc cos f. These combinations can be

described by the “parity parameter” P (Paper I),
P=(E(S) —E@W )/(E(S) + E‘A)), 9)

where E®® and E are, respectively, the energies in the parts of
the field symmetric and antisymmetric with respect to the plane
0=m/2. Thus —1<P<1. P(7) is also useful in describing and
classifying the evolution of the models. '

4. Results
4.1. «* dynamos with buoyancy

The critical dynamo numbers for the “standard” « distribution
(Sect. 2) when C,=0 are C\"'=7.64, C$)=7.81, the superscripts
(A) and (S) denoting fields of strictly odd (“dipolar”) and even
(“quadrupolar™) parity respectively (cf. Roberts, 1972). With our
standard 21 x 41 grid we obtained values of 7.62 and 7.79 respect-
ively. The poloidal field lines and toroidal field contours are
shown in Fig. 1. Both bifurcations are supercritical.

We then took a clearly supercritical value, C,=10.0, and
investigated how varying the initial field configuration affected
the final state. Initial fields were constructed as described in
Sect. 3. In Fig. 2 the run of the parity parameter, P(t), is shown
for a number of such calculations with —0.9 < P(0)<0.9. (In the
absence of numerical noise, cf. the similar discussion in Paper I,
solutions with P(0)= + 1 will retain their original parity.) In each
case the dynamo saturates and a steady state with constant
energy is reached, but the final configuration depends on the
initial parity value, with the “watershed” value of P(0) being
between 0.1 and 0.0. The final field configurations with P— +1
are shown in Fig. 3. The concentration of the field towards the
surface compared with Fig. 1 is apparent.

Very similar behaviour was found when C,=15.0—in particu-
lar the watershed was still between P(0)=0.0 and 0.1, but the
approach to the final state was much more rapid, even when
P(0)=0.0. For all the «*> dynamos investigated the final steady
solution was independent of the value of y, except for the normal-
ization of the field discussed in Sect. 2.1.

4.2. «*w dynamo with buoyancy
4.2.1. Influence of P(0) on final state

For our study of «?w dynamos we only used a linear differential
rotation profile with C,= —10* With our standard resolution
we found the critical values of C{Y and C® to be, respectively,
0.55 and 0.72, which are again satisfactorily close to those of
Roberts (1972). These bifurcations from the trivial solution are
both supercritical and the corresponding critical solutions are
limit cycles, at constant parity P= +1.0. At C,=2.0 we again
investigated the influence of the initial parity, P(0), of the field on
the subsequent evolution. Illustrative results (y=0.01) are dis-
played in Fig. 4a—it can be deduced that the final state is P= +1
except when the initial field is of pure A-type (P(0)= —1.0), but
that the rate of evolution to this state varies quite sharply with
P(0). In Fig. 4c we show the field contours for a mixed parity
configuration. A property of these solutions is that the energy
(predominantly in the toroidal field) oscillates with constant
amplitude as the parity changes (after a short initial relaxation),
and that this period and amplitude are the same for the different
P(0). Figure 4b shows the variation of E for the case P(0)= —0.9,
as P changes from —0.9 to 0.0.
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Fig. 2. P(¢) for various P(0) with C,=10.0, C,=0.0, y=0.001

-

In view of the results to be discussed in Sect. 4.2.3, we re-
peated these calculations with C,=1.0. Now the final state was
P~ = —1.0for all P(0)in the range investigated (—0.99, 1.0). The
solutions seemed to be approaching P= — 1.0 asymptotically but
P(7) continued to oscillate with very small amplitude in all the
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Fig. 1. Field contours for dipole and
quadrupole eigenmodes, C,=0.0.
Toroidal field contours in left hand
half of each sphere, poloidal stream
lines in right hand half

calculations that were continued to 7> 1, and it was felt to be too
expensive in computer time to run these calculations for long
enough to see whether the oscillations eventually disappeared.
Possibly the long-term behaviour is similar to that of the
C,=1.10, y=1.0 case discussed in Sect. 4.2.3. The time to evolve
to P~ —1.0 depended very strongly on P(0). For example, the
solution with P(0)= —0.9 attained P(t)< —0.97 before 1=0.1,
whereas when P(0)=0.0, 7~ 3.0 is necessary before P < —0.9. The
corresponding time at P(0)=0.2 is about 8.0 and at P(0)=0.4 a
time 7> 20 is estimated. When P(0)=0.99, P initially increases to
~0.9998 but then declines slowly so that a time t=13 is neces-
sary for P to become less than 0.99, but by then the trend to
smaller P values is clearly of similar form to those for smaller
P(0). Even in this case the variation of energy with time is
unchanging after an initial relaxation which happens before
t~0.3.

4.2.2. Effects of changing y

Rerunning the C,=2.0 calculations described above with P(0)
=0.0 and y=1.0 (with the same initial field energy, see discussion
in Sect. 2) produced the P(r) and E(t) dependences shown in
Fig. 5. The new feature here is the alternating large and small
maxima and minima in E and the doubly periodic variation of P.
By time 7= 1.5, P~ 1, although the oscillations, much reduced in

Fig. 3. Field contours for P=+1,
C,=100, C,=0.0, y=0.001. Toroidal
field contours in left hand half-sphere,
poloidal field lines on right
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Fig. 4. a P(t) for various P(0), C,=2.0, y=0.01, C,=—10*% b E(t) for

P(0)= —0.9. ¢ Field configuration, P(0)=—0.9, t=1.65

Fig. 5. a P(t) and b E(¢t) for C,=2.0, C,= —10% y=1.0. The inset in
a shows details of the P-cycle for small ¢

amplitude, were still present. The E oscillations persisted un-
altered, even when P was changing quite markedly. A quite
general property of the solutions in the range of values of C,
investigated (for the given C, and initial field/value of y), seems
to be that a large value of y(20.1) gives results qualitatively
similar to those shown in Fig. 5, whereas a smaller value gives
results more like those of Fig. 4. In fact, even when y=0.01, a
small difference between alternate peaks of E is present, but it is
not large enough to be discernable from the figures.

4.2.3. Effects of varying C,

We now turned our attention to the effects of changing C, with
fixed initial conditions. Increasing C, with P(0)=0.0 produced
qualitatively similar results to those just described when P(0)
=0.0 and C,=2, except that the time taken to reach a state with
P~1.0 with y=1.0 decreased sharply with increasing C, in the
range 2< C,< 10, whereas when y=0.01 the convergence of P to
+ 1 became much slower for larger values of C,. C,=10.0 was felt
to be about the limit of the resolution of the code, even on a 41
x 81 grid, with these parameters and the field contours were then
very concentrated towards the surface of the sphere. Approxi-
mate values of the times between the initial state with P(0)=0.0
and ( P»=0.9 in the range 1.2<C,<10.0 are given in Table I.
We then concentrated our atteantion mostly on values of C,
between 2.0 and C{? ~0.54. We first took P(0)=0.0,y=0.01 and
established that, for C,>C,;~1.08, P—+1, and that for
C,<C,;, P- —1.0.(A similar behaviour was noted in Paper I for
pure a-quenching). The alternate maxima of E differ from one
another by less than 1% (similarly the minima) and for C,<2.0, P
was approximately sinusoidal. By fine tuning it appears possible
to locate the value C,; such that { P(t)) remains constant to an
arbitrary degree of accuracy. (Here and subsequently we use
{f(1))> to denote the mean value of f over a cycle.) Choos-
ing y=10 gave quantitatively similar behaviour, with
1.10<C,, <1.12, where again P—+1 for C,>C,, and P—»—1
for smaller values when P(0)=0.0. (This means that there is a
small range of parameter space where the value of y, or equival-
ently the initial energy, determines the final parity, at least when
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P(0)=0.0.) Now the alternate maxima and minima of E differ by
much more and P is far from sinusoidal (cf, e.g., Fig. 5a) al-
though, for C,24.0, P— +1 so rapidly that little structure is
visible in P(7). As is apparent from Table 1, as C, approaches
C,.., the time to evolve to a nearly pure parity state increases
sharply. Figure 12 summarizes some of these results.

We investigated the case C,=1.1, y=1.0, at some length. The
gross behaviour is displayed in Fig. 6a. However an enlargement
of the interval where { P(t)) is changing rapidly, and also where
it appears approximately constant with value near — 1.0, reveals
more intricate behaviour, see Fig. 6b and 6c. The modulation of
the large and small oscillations (at very small amplitude) is
intriguing. This modulation persisted when part of the calcu-
lation displaying this behaviour was repeated at higher resol-
ution, but the rates of change of the envelopes were then some-
what less. We thus cannot unequivocally claim that the phenom-
enon will persist at still higher resolution.

4.2.4. Variation of period

We investigated the variation of cycle period (P,,.) with y at
C,=1.10, 2.0 and 6.0, but found negligible difference between the
periods of the solutions for y=0.0, and 1.0 (defined by the interval
between alternate peaks in the energy curves). The variation of
P, with C, is given in Table2. For C,2 1.0 the relation
P, C, % is valid.

4.2.5. Trends with changing C,,

We made a limited study of the effects of changing the angular
velocity gradient, C,,. In the purely buoyancy limited case at
constant C,, for strictly odd parity solutions the mean value of E
in the oscillatory steady state was approximately proportional to
|C,|—see Table 3 (here and elsewhere all logarithms are to base
10). These solutions are unstable to even parity perturbations (see
above), but we feel that this is irrelevant to this discussion.
Approximately the same relation was obtained for pure a-
quenching (Table 3 also). This is perhaps not altogether surpri-
sing, as in each case the feedback depends on B2, and the
equilibration condition is of the form B2cc|C,|. We also investi-
gated models with y~|B| (see Sects. 4.4 and 4.5). In these cases
|B|~|C,| and so EecC2. We note also that a dynamo model
limited dynamically by the action of the Lorentz forces shows a
similar dependence of E-see Fig. 1 of Paper II. For both the

Table 1. Time t taken between initial state with P(0)=0.0 and
{P(t)>~0.9 for a’w dynamo, az=0

C, y=0.01 y=10
0.7 0.35
1.0 3.0
12 2.3 45
1.5 0.65
2.0 0.16 1.6
40 0.8
6.0 1.65 0.10
10.0 230 0.065
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Fig. 6a—c. C,=1.1,y=001, C,= —10* a Gross structure of P.b Pulse
structure for small ¢t. ¢ Modulation of pulse at large ¢

Table 2. Variation of cycle period with C, for buoyancy limited
models. C,= —10*, a5=0.0, y=1.0

C, P.,. P
0.55 0.116 —-1.0
0.7 0.098 —-1.0
1.1 0.070 mixed soln
2.0 0.050 1.0
6.0 0.029 1.0
10.0 0.023 1.0

buoyancy limited and a-quenched models the frequency increases
as |C,|57%9) with a slightly steeper dependence in the buoyan-
cy-limited case.

4.3. «*w dynamo with buoyancy and a-quenching

We now allowed two types of nonlinearity to operate sim-
ultaneously — buoyancy and a-quenching, the latter modelled by
Eq. (2.7). Now the equations cannot be scaled to a single value of
y or ag (even given consistent initial conditions) and the relative
sizes of az and y are important, even for identical initial field
configurations.
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Table 3. C,=10. The dependence of the mean magnetic energy on C,, for odd parity solutions. The
amplitude of the oscillation about the mean is also given. w is the frequency and Q is the ratio of
poloidal to toroidal energy. The normalization of the energies for the a-quenched and buoyancy
limited cases is different. (The small difference in the frequency for the buoyancy limited model with
C,= —10* compared with that of Table 2 is attributable to the different spatial resolution)

Buoyancy limited, y oc B a-quenched

C, log E Q o log E 0 w
-103 0.95+0.1 0.07+0.02 79 —0.20+0.15 0.05+0.015 63
—-3x103 1.5240.04 0.04+0.003 157 0.40+0.1 0.01240.003 99
—10* 2.040.03 0.0540.02 250 0.73+0:1 0.003 +0.0003 173
—3x10* 24+0.2 0.05+0.03 600

Buoyancy limited, y oc|B| Buoyancy limited, yoc|By|

C, log E Q (0] log E () w
-10° 1.85+0.11 0.075 80 1.914+0.11 0.075 80
—-3x103 2.86+0.05 0.032 180 2.90+0.05 0.031 180
—10* 3.73+0.02 0.011 280 3.75+0.02 0.011 280

4.3.1. Influence of initial parity

After some experimentation we decided to investigate the effects
of changing the parity of the initial state for parameter values
y=1.0, ag=0.1, C,=1.2 (and, as always, C,= —10*). P(7) is
displayed in Fig. 7a for several values of P(0). Although for
P(0)# — 1.0 we always found that P— + 1.0, the detailed behav-
iour of the solutions as a function of P(0) is quite complex. The
most obvious feature is the rate of change of P. When P(0)=0.9
then P~ + 1.0 for 1 >0.2 whereas with P(0)= —0.9 a time t>3 is
needed. For P(0)<0.5 P displays a complex oscillatory behav-
iour. Even when, at the resolution of Fig. 7a, P appears to be
constant, a “blow up” shows that P continues to vary. The pulse
shapes for P(0)= +0.9 are given in Fig. 7b: that for P(0)= +0.9 is
constant in form by t=2, whilst that for P(0)=—0.9 is still
slowly changing in amplitude at =5.0, although the basic pulse
shape seems to be constant.

However it is the behaviour of the energy, E, that is more
distinctive. For all P(0)> 0.0 the final oscillatory state is the same.

Table 4. Results for C,=1.2,C,=—10"%,y=0.01, az=0.1, par-
ity of initial field configuration varying. (1) and (2) refer to the
alternate peaks, c.f. Fig. 7c

P(O) 10g Emax( 1) IOg Emax (2) lOg Emin (l) log Emin (2)
09 0971 0.880 0.674 0.620
01 0971 0.880 0.674 0.620
00 0970 0.879 0.676 0.619
-0.1 0967 0.883 0.673 0.623
-0.5 0953 0.890 0.667 0.633
-09 0937 0.916 0.653 0.641
—-10 0907 0.904 0.693 0.700

There is then a marked difference between alternate peaks. For
P(0)<0.0 the final state gradually changes, so that by P(0)=
— 1.0 the difference between peaks is considerably reduced. De-
tails of the variation of E for P(0)=0.9 when { E(t)) is eventually
constant are given in Fig. 7c and the solutions are summarized in
Table 4 (where superscripts (1) and (2) refer to the “large” and
“small” maxima and minima).

4.3.2. The cycle periods

The cycle periods when C,=1.2, C,= — 10* are given in Table 5
for a selection of values of ag and y. Note that at constant ay, the
cycle period decreases with increasing buoyancy parameter y.

4.3.3. Transition between buoyancy
and a-quenching dominated behaviour

For C,=1.2 the transition in behaviour between pure a-quen-
ching and buoyancy dominated behaviour at az=0.01 and P(0)

Table 5. Variation of periods, C,=12, C,= —10*

dp Y P cyc
0.00 0.01 0.067
0.01 0.0 0.088
0.01 0.087
1.0 0.070
4.0 0.068
1.0 0.0 0.086
0.01 0.086
1.0 0.085
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Fig. 7. a P(¢) for P(0)=0.9, 0.0, —0.5, —0.9 (main panel) and P(0)=0.5,

0.1 (small panel) for C,=1.2, az=0.1, y=1.0, C,= —10* b Details of

pulse shapes for large ¢ when P(0)=+0.9 (upper) and —0.9 (lower).
¢ E(t) for P(0)=09
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Table 6. Dependence of the mean magnetic energy on y for a
model with a-quenching also present C,=1.2, az=0.01,
C,=—10*

Y (logE>
0.000 97.2
0.001 97.2
0.01 97.1
1.0 115
40 3.0

=0.0 was investigated. Figures 8a—d display E(z) and P(z) for y
=0.001, 0.01, 1.0 and 4.0 (y=0.0 was very similar to
y=0.001). Table 6 gives the mean values of E in the final states.
The last two entries are clearly in the “p-dominated” regime,
where Eqcy ™1,

A similar investigation was carried out for the same value of
C, and y=0.01 with 0.0< oz < 1.0. With az= 1.0 a limit cycle with
0.985 < P < 1.0 was rapidly established, see Fig. 9a. This was very
similar to the result with y=0.0. Figure 9b also displays the
variation of E and the ratio of poloidal to toroidal energy for this
case. In contrast, for smaller values of ag, the limit cycle behav-
iour vanishes but now the oscillation in E displays larger and
smaller maxima and minima, see Fig. 9c for az=0.1 (where the
limit cycle is present but smaller in amplitude than in Fig. 9a) and
for ay=0.01. For still smaller (and zero) values of ag this “double
wave” behaviour of E is not seen, as the maxima become of equal
size. The asymmetric form of E,/E, (Fig. 9b) (essentially due to
E,) also disappears as ap becomes smaller.

C,=12 is above the critical values C,; , which mark the
watershed for the purely buoyancy-limited dynamo between
ultimate even and odd parity states (at P(0)=0.0 at least). Thus
we performed similar computations to the above for y=1.0,
C,=1.1 and 1.05 (both values less than C,,). For C,=1.1 we
deduced that az~0.01 resulted in a stable limit cycle solution
which could be thought of as a balance between the conflicting
influences of buoyancy and a-quenching. For C,=1.05,7=1.0 we
similarly found a value og,, 0.01 <ag,; <0.10, such that for
og>ag, P—+1 (as in the purely a-quenched solutions) and for
a<ag, P— —1, as in the purely buoyancy-limited solutions.

4.3.4. Effects of buoyancy on “torus” and “limit cycle”
solutions of Papers I and II

Experiments with pure a-quenching (Papers I and II) discovered
solutions in a limited range of C, (0.8 <C,<0.9) whose phase
space trajectories were tori, in addition to limit cycle solutions
that were sometimes of mixed parity. Whilst we certainly cannot
claim that we have explored all the parameter space available for
purely buoyancy-limited dynamos (C, value, y/initial conditions)
we were not able to discover torus-type solutions in this model.
Moreover our experiments with simultaneous buoyancy and
a-quenching for values of C, larger than this range, described
above, only found unchanging limit cycles of small amplitude in
P, except for very special cases. We therefore decided to investi-
gate how a pure a-quenching torus solution was affected by the
inclusion of buoyancy. We took as our starting point the solution

© European Southern Observatory ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1990A%26A...228..284M&amp;db_key=AST

rTI99DARA. © Z 2787 284NN

292
3000
2000

1000

-1 1 I 1 | ) d
0 1 2 3

Fig. 8a-d. E(t), P(t) for a3 =0.01, C,=12, C, = —10*.a y=00001.b y
=0.01. ¢ y=1.0. (P approaches +1 closely by t=5).d y=4.0

Ep/Et+1E4

0.5 1.5 2.5 3.5

1 | I | I J
1 1.6 2 2.4

Fig. 9a—d. y=001, C,=12, C,=—10* a P(t) for az=1.0. b E(t),
E,/E, for ag=1.0.c E(t) for az=0.1. d E(t) for az=0.01

with C,=0.9, az=1.0, y=0.0. The solution discussed in Paper I
requires a 41 x 81 grid for its accurate representation. To econ-
omize on computer time we ran our computations on a 21 x 41
grid, which satisfactorily reproduced the main features of the
more accurate calculations but gave, for example, a somewhat
different modulation of P(z). This y=0.0 solution is displayed in
Fig. 10a. For values of y<1.0 this solution was little altered.
When y=10.0 the torus is effectively destroyed—see Fig. 10b.,
which shows P(7) and E(7) in this case. The period of E(t),
determined from the major maxima of Fig. 10a and b, decreases
by 3 or 4% when y=10.0 as compared to y=0.0. Similarly we
studied the effects of buoyancy on a large amplitude limit cycle
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solution of the type investigated in Paper . With C,=0.8,
ag=1.0 and y=0.01 the solution was little changed from that
with y=0.0 (Fig. 11a). As y increased from 1.0 to 10.0, P(z)
decreased. The amplitude of its cycle was markedly reduced and
the form altered somewhat, see Fig. 11b. The period of the
oscillation of E decreased by about 10% from y=0.0 to 10.0.

4.4. Buoyant rise velocity proportional to v,

We reinvestigated three illustrative cases taking ug of the form (8).
For an «? dynamo with C,=10.0 we found behaviour very
similar to that described in Sect. 4.1. In particular there was again
a watershed between P(0)=0.0 and 0.1 separating solutions with
P— —1.0and + 1.0, and the ratio of poloidal to toroidal energies
in the final stage were very little altered. Only a small difference in
field contours was apparent. We also recalculated the o?w dy-
namo with C,=1.0 and 2.0 (cf. Sect. 4.2.1). As before we found
that when C,=1.0 the eventual state was P= —1.0 and when
C,=2.0 P— +1.0 always. Ratios of poloidal to toroidal energy
were quite similar to those of the earlier calculations and the
detailed behaviour of the solution was remarkably little changed.

The only distinctive alteration to our results caused by chang-
ing the functional form of y is seen when we examine the
dependence of the energy on C,,. Now {E» C2 — see Table 3.

0.95

Fig. 10. a C,=0.9, az=1.0, C,= —10% y=0.0, torus solution. b Con-
tinuation of solution shown in 10a) with y=10.0
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4.5. Buoyant rise velocity proportional to |By|

Because the toroidal field is dominant in our a’w dynamo
calculations we calculated only «? models with C,=10.0 to check
the effect of taking |ug|oc |[By|. As before (Sects. 4.2.1 and 4.4)
we found that P(0)>0.1 gave P—+1.0 and P(0)<0.0 gave
P— —1.0. The ratios of poloidal to toroidal energy and the field
contours were quite similar to those of the other models with
C,=10.0. Again ( E>c C2, Table 3.

5. Discussion

A somewhat surprising result is the absence of strong, stable,
‘mixed-mode’ solutions, in contrast both to the results of Paper II
for a-quenched dynamos and to recent results of Jennings and
Weiss (preprint) for 1 dimensional buoyancy-limited dynamos.
The latter work reports a large variety of bifurcation phenomena.
We speculate that we might find a larger range of behaviour in a
spherical shell geometry, especially if we simulated a dynamo
seated in a relatively thin layer at the base of the convective layer.
This belief is partly based on the physical argument that
buoyancy could then more effectively remove field from the
dynamo region, but also on the relationship between a thin shell
dynamo and 1 dimensional dynamos (e.g. Jennings, Brandenburg,
Moss and Tuominen, 1990).

1

0.5

E
0.45
0.3 '
0.15 1 1 1 1 | |
1.5 2.5 3.5 4.5
-0.65 P
-0.8
t
-0.95 1 1 L J
1.5 2.5 3.5 4.5
b

Fig. 11. a C,=0.8, az=1.0, C,= —10% y=0.01, limit cycle. b Solution
with same C,, ag as 11a), but y=10.0, started from limit cycle solution at
t=1.6
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Fig. 12. Summary of a?w calculations with az=0, C,,= —10*. “SLOW”
and “RAPID” refer to the rate of adjustment towards P= +1.0. The
borders are drawn, very approximately where, for P(0)=0.0, the time
£(0.9) for P to attain the value +0.9, is approximately unity. The line
marked “WATERSHED” separates (for P(0)=0.0 at least) the regions
where even and odd parity solutions are stable. There t(0.9) —co.
Numerical experiments described in the text indicate that the position
of the watershed depends little, if at all, on the value of the initial
parity P(0)

Turning to our more detailed results the main inferences and
conclusions are as follows.

1. The analytical form of the term representing the effects of
buoyancy is not critical. The results presented in Sects. 4.4
and 4.5 do not differ significantly from those in the bulk of this
paper.

2. In the purely buoyancy-limited «*> dynamo there may be
two stable solutions, of odd and even parity, when C, > C'S. The
existence of this property depends on the magnitude of C,.
Solutions for the a> dynamo do not seem to depend on the value
of y, equivalently the initial field energy, for a given P(0).

3. In the purely buoyancy limited «?w dynamo, odd parity
solutions are stable when C, < C,.,;; and purely or almost purely
even parity solutions are stable with C,> C,.;; (see Fig. 12). Now
the form of the oscillations in the total energy depends on the
magnitude of y. Larger values of y tend to give asymmetric cycles
with alternate peaks in E of different sizes.

4. In the purely buoyancy limited dynamo, except very near
to C,;,, (see Sect. 4.2.3), the eventual oscillations in P (if present)
are of very small amplitude, although typically quite non-sinus-
oidal in form. No torus type solutions were found, and limit cycle
solutions with large amplitude in P exist only for very carefully
tuned parameter values.

5. When both buoyancy and a nonlinear a-effect (depending
on the local magnetic energy density) operate, increasing the
value of y eventually destroys the tori solutions and much re-
duces the amplitude of the oscillations in P in the large amplitude
limit cycle solutions that were described in Paper II.

6. The effect of buoyancy on the periods of our solutions is
small. Increasing the size of y shortens the periods slightly.

7. The dependence of magnetic activity on stellar rotation is
of fundamental importance. Our models are, as yet, far too

idealized to throw any real light on the matter. For what it is
worth we note that our work predicts an increase in cycle
frequency with radial angular velocity gradient (w|C,[°5).

The second and third of these conclusions are similar to those
of Paper II concerning nonlinear a-limited dynamos. We note
with interest the asymmetry in energy between successive half
cycles. Whilst too regular to be of immediate interest to the solar
cycle this effect could be significant in a more sophisticated
model.

Finally we reiterate some of the more glaring limitations of
our work. It can only be an exploratory, highly parameterized,
investigation of the grosser effects of buoyancy. Of course, the
model can be elaborated, although it is doubtful that much effort
in this direction is justifiable without a better understanding of
the dynamics of magnetic convection zones. We have limited our
calculations to a complete sphere, rather than a spherical shell,
largely to facilitate comparison with our earlier work. True
dynamics are absent —although in principle we could include this,
or a similar, parameterization of buoyancy in a dynamical calcu-
lation, cf. Paper I. Our computations explore only a fragment of
parameter space. Parts are inaccessible because higher resolution
than we can achieve is needed but, in any case, the computational
resources needed for a thorough exploration are enormous.
Quite possibly we have overlooked regions of interest. And, of
course, our computations are limited to strict axisymmetry. We
repeat the caveat given in Paper II-some of our apparently
stable solutions may be unstable to non-axisymmetric perturba-
tions. Riddler and Wiedemann (1989) have produced some limited
evidence that this may be the case, although they have not
determined what the eventual stable solution would then be (see
also Jennings et al., 1990).
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