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Abstract. The behaviour of «?-dynamos is discussed for highly
supercritical dynamo numbers. a-quenching is assumed to be
the dominant nonlinearity. Particular attention is paid to a one-
dimensional reduction of the dynamo equations. For sufficiently
high dynamo numbers both steady and time-dependent solutions
(limit cycles) are possible. The basins of attraction of these
solutions depend on the dynamo number as well as on the
degree of the nonlinearity assumed. For extreme nonlinearities
the limit-cycle solutions, at particular time instants (turning
points), closely approach the steady solutions. In this case some
noise of small but finite amplitude may cause transitions between
the limit-cycle and the steady solutions. This leads to an irregular
time-behaviour including nearly steady stages as well as reversals
of the magnetic polarity. Implications of the different types of
solutions for astrophysical dynamos are discussed.

Key words: Sun & stars: magnetic activity — hydromagnetics:
mean-field dynamo — nonlinear dynamics: chaos

1. Introduction

Investigations of nonlinear mean-field dynamos have recently
caused some growing interest. There are basically two directions
of research in this field. One approach is concerned with various
aspects of nonlinear dynamics and chaos. Usually, only simplified
systems can then be studied. In the other approach one attempts
to develop more realistic models for solar, stellar and other
cosmic dynamos. Extensive surveys in parameter space are here
prohibitively expensive in terms of computer time. In the investi-
gations of simple “toy” systems one typically finds rich sequences
of bifurcations including quasiperiodic and chaotic solutions. By
a “toy” system we mean here a highly truncated set of nonlinear
ordinary differential equations which has been derived from the
full set of partial differential equations describing a nonlinar
dynamo. A typical example of this sort is the Lorenz (1963)
system of equations.

Of course, it is clear that one cannot expect such truncated
toy systems to recover exactly the properties of the full dynamo
equations. For example, it is not clear whether the complicated
time behaviour found for simple toy systems is also typical
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for realistic two- or three-dimensional dynamo models. Many
of the results presented so far for these more realistic models,
where the original partial differential equations are solved,
suggest complicated spatial structures with less complicated time
behaviour.

A large variety of bifurcations to steady, periodic, and
quasiperiodic solutions have been found recently also in one-
dimensional aw-dynamos for a wide range of dynamo numbers
(Schmitt & Schiissler, 1989; Jennings, 1989; Jennings & Weiss,
1990). In two-dimensional axisymmetric aw-dynamos the com-
plexity of solutions is less, but qualitatively similar (Brandenburg
et al.,, 1989; Jennings et al., 1990). Irregular behaviour, however,
has been reported so far only for dynamos in which simplified
dynamical equations for the a- or w-effect (or both) are solved
together with the induction equation (e.g. Yoshimura, 1978;
Belvedere & Proctor, 1990).

In the present paper we investigate the behaviour of o?-
dynamos for very large dynamo numbers C. We begin with a
general discussion of various possible types of solutions in the
limit C — oo (Sect. 2). We consider the a-quenching mechanism
to be the only nonlinearity. In Sect. 3 we concentrate on a
certain one-dimensional model that was introduced by Krause
and Meinel (1988). This model is described by a single nonlinear
partial differential equation for a complex function depending
on two real variables (time and space coordinate). Most of our
numerical results are obtained using a finite difference method
for the integration. For testing the reliability of the numerical
methods for very high dynamo numbers we also apply truncated
modal expansions and a related spectral method. Finally, in
Sect. 4 we discuss the relevance of our results to astrophysical
dynamos.

2. General aspects

2.1. The kinematic case
Let us consider the dimensionless «2-dynamo equation

aa—'i— = C curl (&B) — curlcurl B 1))
(e.g. Krause & Ridler, 1980) where & represents a given spatial
profile of the o parameter and C is the dynamo number.

In the case of uniform & = 1 in the entire space the most
rapidly growing B-modes are given by
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B = Boittikr, )
with
A= %Cz, k=%C, ’ )

that means these modes have a length scale of order
t=c L. @
For very large dynamo numbers we obtain

<1l (forC>1), (5)
and the solution (2), (3) can therefore also be used as a starting
point to solve (1) for non-uniform & (& is assumed as slowly
varying in comparison with ¢) by means of a WKB method (cf.
Sokoloff et al., 1983).

Thus, the response of the kinematic dynamo at highly
supercritical dynamo numbers (C — o0) is characterized by an
extremely short length scale of the generated magnetic field
modes. This is independent of the details of & and possible
boundary conditions. According to (3) all three terms in (1)
become of the order of C2 for C — 0.

Of course, these solutions are physically meaningfull only as
long as 7 is still large enough compared with the correlation
length of the small-scale turbulence which is responsible for the
a-effect.

2.2. The nonlinear regime

If the backreaction of the magnetic field on the motion is taken
into account the growth of magnetic field modes will be limited.
In the simplest cases this will lead to stationary solutions. We
model the backreaction by a prescribed dependence of o on B:

%—f = C curl [6f (B)B] — curl curl B, (6)

where f is a given function of B with f =1for B=0and f - 0
as | B|— oo.

Now the response of the dynamo as C — oo may be a
stationary solution with

curl [af (B)B] = O0(C™"). @]

This can simply be achieved if f (B) = O(C™!), but more generally
this means only
af(B)B—Vy as C — o, 8)
inside the considered integration volume. In general (8) will not
be consistent with the boundary conditions. Therefore one has to
expect a “boundary layer” of thickness O(C~!) as C — oo. Thus,
in contrast to the kinematic case, a short-scale spatial variation
of the magnetic field will here only be found near the boundary,
if at all.

An interesting additional response of the nonlinear dynamo
on large dynamo numbers could be a strong time dependence
of the solution leading, for example, to a limit cycle or to an

irregular time behaviour. One has to expect time-scales of order
of C71.

3. A nonlinear one-dimensional dynamo

To become more explicit, we now adopt a one-dimensional model
which was introduced by Krause & Meinel (1988). Physically
this model applies to a conducting layer of thickness unity,
extending to infinity in the other two directions, surrounded by
empty space. All variables are assumed to be uniform parallel
to the layer and the magnetic field vectors are always oriented
along the layer. By defining suitable orthogonal coordinates the
two horizontal field components can be lumped together as a
complex scalar field B.

3.1. The equations

The evolution of a magnetic field in this one-dimensional «2-
dynamo model is described by the nonlinear partial differential
equation

o
ox?

for the complex variable B(x, t) with the boundary conditions

0B .0 .. .
5, =iCo[f(B*B)B)] +

ot ©)

B(0,?) = B(1,t) = 0. (10)
Eq. (9) follows from the one-dimensional reduction of (6) with
%=1 and f depending on B?; for details see Krause & Meinel
(1988).

The steady case of the problem (9),(10) can be reduced
to a single real quadrature. The steady solutions B = B®
bifurcate from the trivial solution B = 0 at the dynamo numbers
C =Cp=2nn (n=1,2,3,..). The trivial solution is stable for
0 < C < 27. Numerical stability tests reavealed that the solutions
B®™ are unstable for n > 2. Only the first solution branch B
which bifurcates from B = 0 at the marginal dynamo number
Cait = C1 = 2m can represent an attracting steady solution.
However, in addition to this stable steady solution an attracting
oscillating solution (limit cycle) was found at large dynamo
numbers (C % 100). This oscillating solution has no kinematic
counterpart for uniform & but it becomes plausible in the light of
the results of Baryshnikova et al. (1987) for non-uniform &. (Note
that in our nonlinear case a varies via f.) In the present paper
we report on further results concerning the nonlinear steady and
oscillatory solutions of Egs. (9),(10). We first consider the case

(11)

cf. Riidiger (1973). We also study the behaviour of the solutions
for

f=1—B"B (modeli),

1

f= T BB (model ii) (12)
in dependence on the additional parameter x (x > 1). For x = 1
this nonlinearity has been employed as a numerically convenient
extension of Eq. (11) to large values of | B| (a-quenching, cf.
Jepps, 1975). An interesting limiting case is given by x — oo

leading to a step function

(model iii). 13)

1 forB'B <1
0 forB'B>1

This latter case has been first investigated also by Stix (1972) for
another, slightly different, one-dimensional model.
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Note that solutions obey the following transformation prop-
erties. Suppose BU)(z,x) is a solution to (9),(10) for C = C;.
Then also B®(t,x) = BD(w%t,nx) is a solution, but now for
C = C, = nC;. Further, if B is a solution then also B exp(i@g)
satisfies (9),(10), where ¢ is a real constant.

3.2. Modal expansions
3.2.1. Expansion in terms of Fourier modes

The boundary conditions (10) require a Fourier-sine expansion:

B(x,1) = Z Au(t) sin(nx). (14)
n=1

Inserting this into Eq. (9), multiplying by sin(mnx) and integrating
over x we obtain

1
A = —(mn)? Ay — 2imnC f f(B*B)B cos(mnx)dx (15)
0

(a dot denotes a time derivation). In the special case (11) this
leads to

A =~ An+ C Y pnAn+C Y Spitn A} ArAn (16)
n kln
with
1
Ymn = —2imm f sin(nmx) cos(mmx)dx
0
4i— "~ form+nodd (17
_ m?—n
0 for m+ neven
1
Omkin = 2imm f sin(kmx) sin(Inx) sin(nmx) cos(mmx)dx
0
im k+1—n k+n—1
k+l—-n2—m?2  (k+n—0D2—m?
I+n—k _ k+1l+n
=9 U+n—k2—m  (k+1+n?—m (13)
fork+1+n+modd
(0 fork+I+n+meven
A considerable simplification occurs if we assume
a, forn=1,3,5,..
Ap = (19)
ia, forn=24,6,..

with real coefficients a,. Then we obtain from (16) the real
equations

am = _(mn)zam +C Z T'ynan + C Z Apkin W41 an (20)
n

kln

with

371
m  4mn
()" ——— form+nodd
mn = me—n (21)
0 form+neven
and A4, =
( k+1—n k+n—1I
1"
( )m[(k+l—n)2—m2 ktn_D2—m?
I+n—k _ k+1l+n
= U+n—k2Z—nm  (k+I+n2—m? (22)
for (k+1 even and n+ m odd)
0 otherwise

Note that the reality of Eq. (20) implies that the restriction (19)
remains valid for all times if it is initially satisfied. As can be seen
from Eq. (14) the restriction (19) is equivalent to the assumption
that the real part of B is an even function and the imaginary part
of B an odd function of x with respect the the midpoint x = 1/2
of the considered intervall [0,1]. (This assumption, of course,
restricts the gauge freedom B — Bexp(ipg) and leaves only the
freedom B — —B.) It should be noted that all special solutions
considered in this paper do indeed satisfy the assumption (19)
after a suitable transformation B — B exp(i¢pg).

3.2.2. Expansion in terms of eigenmodes

The general solution of Egs. (9),(10) for f =1 is given by

B= Z An(t) Ba(x) (23)
n=1

with 4, = A,4,,

In = (C?/4) — (nm)? (24)

B, = exp(—iCx/2) sin(nnx) (25)

Since these eigenmodes B, represent a complete set of orthogonal
functions we may insert the representation (23) into the nonlinear
equation (9) as well and obtain, in a similar way to that described
in Sect. 3.2.1, the following set of ordinary differential equations
for the coefficients A,,(t), again using f =1—B*B:

A = dmAm+ C Y tmkin A At An (26)
k,Ln
with
—CPuiin form+k+ 1+ neven,
Xmkln = (27)
Omkin form+k+ 1+ n odd.
The 8,1, are defined as in (18) and
—1/8 for m+k+I1—nm+k+n-1I)
xm+n+l—kn+1+k—m) =0,
Priin = (28)

hm+k—1—n)+h(m+1—k—n)
+h(m+n—k—1) otherwise,

with the auxiliary function h(p) defined by
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1/8 forp=0,
h(p) = 29
0 forp#0.
Again the assumption (19) leads to a simplification:
i = Imtm + C Y Xiinicin, (30)
k,n
with real X, given by
—CPyy, for (k+1even and m+ n even),
Xnkin = Appin for (k+ 1 even and m + n odd), (31)

0 for k+1odd.
The Ak, are defined as in (22). As can be seen from (23) and (25)
the assumption (19) means again that B (after a transformation

B — Bexp(iC/4)) has a real part which is an even function of x
and an imaginary part that is odd.

3.3. Steady solutions

The steady solutions of (9),(10) are given by

B = ky[CF (w) + i0w/0x] (32)
where
w=B"B, (33)

ko is a complex constant and the function F(w) is defined by

dF

= =fw),

= F(0) =0.

(34)

The real function w = B*B has to be determined from the
equation

(0w/0x)%> = pw — C2F*(w), (35)
with
p = (kokg) ™", (36)
together with the boundary conditions
w(0) = w(l) =0. 37
Eq. (35) leads to the quadrature formula
w

x(w) = f [ow' — C2F2(w))] ™ 2aw'. (38)

0

The remaining boundary condition w(1) = 0 results, for given C,
in a discrete set of possible values for the constant p determining
the modulus of kg. Its phase can be chosen arbitrarily. (For real
ko the constraint (19) is satisfied.)

It can easily be checked that Egs. (32)-(37) indeed solve the
steady case of (9),(10). As an example we present the steady
solutions more explicitly for f satisfying Eq. (11). (This example
is even simpler than those considered by Krause and Meinel
(1988).) From (11) and (34) we obtain

Fw)=w— 1w (39)

The solution of (35) is then given by

1 —sn(bx + K, k)
=g onOX T RLE 4
Y T sabx + K, k) (40)
Here sn is Jacobi’s function sinus amplitudinis with k as Legendre’s
modulus and

2_ 32449 "/ dy
kf=q'——, K= 3 3
1+2q o (1 —Kk2sin?yp)l/2 @1)
29(1+q) (1+29)/2
= , b=C N O0<g<1.
1+44+ 0 I+dg+q = 1
The boundary conditions (37) will be satisfied if
b=4nK, n=1,2,3,.. 42)

This leads to a relation between g and C, where 0 < q < 1
corresponds to 2nn < C < oo, ie., the n’th solution exists for
C > 2nm.

By using Eq. (32) it is possible to derive the complete solution
B(x). Note that the constant p is given by

_ 4q(+9t
(1+4g+4%%

The basic solution (n = 1) has its maximal value of w = B*B at
x=1/2:

43)

4q
14+4q+q*

In the limit C - oo (¢ — 1) we obtain w(1/2) — 2/3,ie. f — 1/3.
That means, the a-effect cannot be reduced to more than one
third of its original value and the function f (given by (11))
remains everywhere positive.

Fig. 1 shows the n = 1 solution for C = 100. It can be
seen that the condition (7) is satisfied here in the interior
region via the near-constancy of B. Furthermore we indeed find
“boundary layers” as described in Sect. 2.2. Table 1 shows the
convergence of the results obtained by means of the truncated
modal expansion of Sect. 3.2.2. The expansion in terms of
eigenmodes of the linearized equations is of particular advantage
in only slightly supercritical cases. For large dynamo numbers
the Fourier expansion of Sect. 3.2.1 is more convenient.

w(l/2) = (44)

ReB ImB

-1 I -1 I
0 0.5 1 0 0.5 1

Fig.1. The BW-solution (real and imaginary part) for model (i) with
C =100
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Table 1. Energies of the steady solution in dependence on the
number of eigenfunctions retained in the modal expansion of
(23) for model (i)

C\N| 1 2 3 4 5 6 7 | exact
10 |.1009 .1297 .1242 .1238 .1239 .1239 .1239 | .1239
20 |.1502 .2133 .2504 .2488 .2275 .2289 .2286 | .2286

3.4. Oscillatory solutions

In addition to the steady solutions determined analytically in
the previous subsection we now discuss further solutions which
have been computed numerically by timestepping the discretized
equations.

Krause and Meinel (1988) have found an oscillatory solution
of Eq. (9) for the slightly different nonlinearity f = 1/(1+B*B)2.
We find similar oscillatory solutions also for the nonlinearities of
models (i) and (ii). Bifurcation diagrams for the various models
are shown in Fig. 2.

We have paid particular attention to the behaviour of the
oscillatory solution for model (i) with varying values of x. It
turns out that the smallest value of C (= C*) for which this
oscillatory solutions still exists depends on the magnitude of «.
The smallest critical values C* are found for k ~ 4..6. In this
case the oscillatory solution is found already for C around fifty.
The dependence of the period T on x and C is displayed in
Fig. 3. Clearly the period decreases monotonously with x and C.

For large values of k the oscillatory solution has the remark-
able property that it passes very closely to the first two steady
solutions B® and B@ during the course of one period. This is
demonstrated in Fig. 4, where ReB and ImB are plotted at two
such instants (solid curves). The first two steady solutions are
also plotted for comparison (dotted curves). The two instants t;
and t,, for which ReB(1/2,t{) = max(ReB) and ReB(1/2,t;) =0,
are marked as vertical dotted lines on the graph ReB vs. t in
Fig. 5.

The timestepping method is, of course, only capable of
detecting stable solutions. Probably, the oscillatory solution
continues beyond the left end (see the bifurcation diagram
Fig. 2) as an unstable solution and connects somewhere with the
second (unstable) steady solution branch. (Note that both steady
and oscillatory secondary solutions — which prove to be unstable
— can simply be constructed by applying the transformation
properties discussed in Sect. 3.1.)

3.5. Extreme nonlinearities and reversals

In the limit k¥ — oo the nonlinearity (12) degenerates to a
simple step function (13). In this case (model iii) we find an
irregular (chaotic) time behaviour of the solution for C = 40
with magnetic field reversals. Examples of these solutions are
presented in Fig. 6. It turned out that the reversals become more
rarely as the number of gridpoints is increased. Also, properties
of the numerical scheme adopted determine the frequency of
reversals. For N > 200 usually reversals not longer occured.
The solution is then always close to the stationary solution.
However, some kind of noise is superimposed. We have found
that the noise level depends on the number of gridpoints, ie. the
noise is an artefact of the numerical treatment of the extreme

373
0.5 I I T
o4 | E_. osc _
Q
2 03 L —
= st
-I-I- 0.2 [ —
-
01 | -
C
| ] 1
1.5
T T I
= Eon osc
o 1
m — pa—
:
‘S 05 L
. // st C
0 1 1 !
_ T T T
= o8 L Eo osc —
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Fig. 2. Bifurcation diagram for various models. Note that in model (ii)
with k¥ = 4 the energy of the steady solution branch is decreasing with
increasing values of C when C > 50

0.25
02 | —
0.15 |
0.1 [
0.05 |

0 | 1 | | | 1
0.18 40 60 80 100 120 140 160

T I | I

0.14

0.12

0.1

0.08 | | l
2 4 6 8 K 10

Fig. 3. The dependence of the periods T on C (for k¥ = 4, upper panel)
and on x (for C = 100, lower panel)

nonlinearity (13). We suppose that reversals can be triggered by
the presence of noise.
In order to confirm this we now go back to a finite value of k
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Fig. 4. Snapshots of the oscillatory solution of model (ii) for ¥ = 4 and
C = 50. Solid lines show ReB and ImB at instants ¢t = t; = 0.659 (up-
per panels) and t = 1 = 0.687 (lower panels) for which ReB(1/2,t) =
max(ReB(1/2,t)) and ReB(1/2,t;) = 0. Also displayed are with broken
lines the first and second steady solution (upper and lower panels, respec-
tively). Note the close similarity between the two steady solutions and
the oscillatory one at two different instants

1.5

T i n
1 -ReB ! -
0.5 ! _
0 ': _|
-0.5 { -
i | i

~15 | L L
0.5 0.6 0.7 0.8 0.9

Fig. 5. Time behaviour of ReB(1/2,1) for the oscillatory solution of model
(i) with k = 4 and C = 50. The two vertical and dotted lines mark the
instants t =ty and ¢ = tp, cf. Fig. 4

(x = 4) and introduce explicitly some external stochastic driving,
ie. we modify Eq. (9) to a Langevin-type equation

2
9B _ icaix [f (B*B)B)] + 25 + AGRF ().

ot 0x? 43)

where G(x) = sinnx + % sin2nx and F(t) is a stochastic function
defined by

00

F(t) = Zeké(t—kAt), t>0.
k=1

(46)

ReB(1/2,t) vs. t

I I 1 [ ] |

N=31

N=61

N=81

-1.5 L il | | | |
0 2 4 6 8 10 12 14
Fig. 6. Solutions for the step function profile (model iii) with C = 50 and

for different numbers of gridpoints N. For N = 81 (last panel) reversals
occur very rarely

Here €y, for each k, can take the values —1, 0, 1 with probabilities
p, 1 —2p, p, respectively. We choose At = 10~2, p = 1072, and the
amplitude A of the perturbation to be 0.2. The results are shown
in Fig. 7, where we have plotted the time series of ReB(1/2,t) for
the three different cases C = 40, 50, and 60. For C = 40 the time
behaviour is similar to that of model (iii). Obviously, the external
stochastic forcing is able to produce jumps between the steady
and oscillatory solutions. In this way transitions from the steady
solution of one polarity to the steady solution of the opposite
polarity are induced. The reversals themselves can be interpreted
approximately as parts (half periods) of the oscillatory solution.
Fig. 8 shows the magnetic field evolution during one reversal in
more detail.

With increasing C the oscillatory solution and with decreas-
ing C the steady solutions dominate. (Note that for C = 40
the oscillatory solution does not exist as a stable one.) The
higher the degree k of the nonlinearity the more closely the
oscillatory solution at its “turning points” approaches the steady
BW_solution of positive and negative polarities (cf. Sect. 3.4).
Therefore the critical amplitude of the perturbations required to
induce reversals decreases with growing .

We would like to stress that adding some (small) noise term
in Eq. (45) is quite natural. Hoyng (1988) argues that such a
term occurs as a correction to the standard mean-field equation
if the Reynolds rules are not exactly satisfied in the usual
two-scale approach. Thus we have here an alternative possibility
of explaining random-like behaviour of mean-field dynamos, in
contrast to the deterministic chaos solutions proposed previously.
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ReB(1/2,t) vs. t
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Fig.7. Model (ii) with stochastic forcing for different values of C, k = 4
(upper panel: C = 40, middle panel: C = 50, lower panel: C = 60)

4. Relevance to astrophysical dynamos

a?-dynamos with isotropic a-effect exhibit usually (but not
always, see Rédler & Brduer, 1987) steady marginal solutions.
In the nonlinear regime oscillatory solutions are possible that
do not have kinematic counterparts. In our case such a solution
exists already at eight times the supercritical dynamo number
if the degree of nonlinearity is sufficiently strong (e.g. x = 4).
Although the oscillatory solution does not exist for smaller
dynamo numbers, the steady solution is already quite sensitive
to external perturbations. Small disturbances can cause field
reversals. Here we want to discuss our results in the context of
astrophysical dynamos.

Late-type stars can be almost fully convective. The a-effect in
these stars can be very strong and the dynamo in these objects
may operate then in a highly supercritical regime. Our present
investigations of highly supercritical dynamos can be therefore
of interest for such objects. The existence of magnetic cycles has
been established for many late-type stars (Baliunas & Vaughan,
1985). It is widely believed that magnetic cycles occur as a result
of aw-dynamo action (e.g. Durney & Robinson, 1982). This
can be justified partly because aw-dynamos typically possess
oscillatory solutions — in contrast to many o?-dynamos. In
addition, in the case of the Sun aw-dynamos can easily produce
the solar magnetic field geometry (cf. butterfly diagram, phase
relation, and polar field reversals). However, the aw-mechanism
is not the only one to explain stellar magnetic cycles. Oscillatory
solutions of highly supercritical dynamos, as discussed in the
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Fig. 8. Snapshots showing the magnetic field evolution during one reversal
for model (ii) with stochastic forcing for k = 4 and C = 50. Also displayed
are with broken lines the first and second steady solution. Note the close
similarity between the steady solutions and the oscillatory one at certain
instants

present paper, can also provide a possible mechanism for stellar
magnetic cycles. This alternative to aw-dynamos is interesting,
because the differential rotation (w-effect) is not necessarily
strong enough in certain active stars.

There is a further argument against the aw-mechanism in
stars with magnetic cycles: many active stars are known which
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show a rotational modulation in their light curves. This suggests
the existence of non-axisymmetic structures (e.g. Jetsu et al.,
1990), which can be mapped in some cases explicitly by means
of Doppler imaging (e.g. Piskunov et al., 1990). Non-axisymmetic
structures are incompatible with strong differential rotation,
because it would lead to strong dissipation due to winding up
of field lines (Rédler, 1986). Thus, highly nonlinear «2-dynamos
may provide a possible mechanism for explaining magnetic cycles
together with non-axisymmetric field configurations. Of course,
the argument that non-axisymmetry is incompatible with large
differential rotation may also loose its validity in the far nonlinear
regime (Jennings et al., 1990).

The irregular solutions found in Sect. 3.5 may be of interest for
explaining non-periodic activity behaviour observed for young
and very active stars. Also the solar activity cycle is not
exactly periodic and deviations from perfect phase stability can
occur. The striking similarity between our irregular solutions
(e.g. upper panel of Fig. 7) and paleomagnetic records of the
Earth’s magnetic field (cf. Cox, 1968) may give rise to some
speculations. The basic ingredients of the reversals found in
our one-dimensional model are noise and a sufficiently steep
nonlinearity for which only weakly stable stationary solutions
exist.

More realistic two and three-dimensional models are needed
to make more precise conclusions concerning the relevance of
highly supercritical dynamos to astrophysical objects such as the
Sun, late-type stars, and the Earth.
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