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Abstract. Direct comparisons are made between nonlinear
aw-dynamos in different geometries. We investigate the import-
ance of radial structure by comparing results of axisymmetric
1-D models with their 2-D counterparts. These 2-D models can
either be fully spherical or in a shell resembling a stellar con-
vection zone. The importance of treating the curvature associ-
ated with the polar regions is also considered by comparing
results in Cartesian coordinates with those in spherical geometry.
It turns out that omitting curvature in a model has only minor
effects on the magnetic fields and on details of bifurcations for
mixed parity solutions. In contrast dropping the radial extension
leads to quite different bifurcation diagrams. However gross
features like the transition between two opposite parities via a
mixed parity solution occur in the bifurcation diagram for both
cases. A more subtle effect is that finite amplitude solutions stable
to axisymmetric perturbations can lose their stability when sub-
jected to the more general non-axisymmetric perturbations.
From this we conclude that the stability properties of a stellar
dynamo can only be determined with certainty once fully 3-D
perturbations have been considered. For the 2-D non-axisym-
metric extension of the 1-D model we find a finite amplitude
mixed solution with non-axisymmetric contributions. Finally we
show that previously investigated mixed parity torus-type solu-
tions in spherical geometry are stable against 3-D perturbations.

Key words: Sun: magnetic fields — mean-field dynamo - stability
— non-axisymmetric magnetic fields

1. Introduction

Many physical phenomena can be understood in terms of simpli-
fied (truncated) models. For example insight can be gained about
the dynamics of a complicated system using a low order model.
The classic example is the Lorenz system of equations associated
with weather prediction (Lorenz, 1963) which clearly demon-
strated many nonlinear phenomena previously not well under-
stood, including the so-called strange attractor. Other low order
models have successfully reproduced the aperiodic time series
typical of the solar cycle (Weiss et al., 1984). In that model the
differential rotation was coupled dynamically to the field, as is
thought to be the case for the torsional oscillations observed by
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Howard and LaBonte (1980). Clearly there are dangers associ-
ated with truncated systems, and results should be interpreted
cautiously. Recent studies of a truncated 1-D aw-dynamo model
by Jennings and Weiss (1990a, b) have provided some new insight
to the detailed bifurcation phenomena in the far nonlinear
regime. They were able to explore the parameter space up to very
large dynamo numbers, which was possible due to the reduced
computational effort required for low order systems together
with the feasibility of performing detailed analysis on nonlinear
solutions. They employed a numerical procedure which could
find both unstable and stable solutions. By using Floquet theory
to determine the stability of periodic solutions, it was then
possible to construct the full bifurcation diagram.

Such results are qualitatively useful for showing the possible
finite amplitude states of a supercritical stellar dynamo. How-
ever, having neglected curvature and radial structure it is
important to compare the results with more realistic models in
spherical geometry. For example the bifurcation and stability
properties of spherical axisymmetric models found by
Brandenburg et al. (1989a, b) seem to be qualitatively similar to
those by Jennings and Weiss.

The early aw-dynamos by Steenbeck and Krause (1969) are of
pure parity, associated with the perfect symmetries imposed by
the a and w-effect. The magnetic field configuration can either be
symmetric (S) or antisymmetric (A) about the equatorial plane.
However, the more recent studies mentioned above find. the pure
solution can lose stability to a solution of “mixed parity” as the
dynamo number is increased. For even higher dynamo numbers
the results are model dependent, and the mixed parity solution
can either lose stability to another pure solution or to another
mixed solution. Thus there is some qualitative agreement be-
tween the 1-D and 2-D models whilst there are also differences.
These differences will be discussed in more detail in later sections.

From the observational point of view one is mainly interested
in the magnetic field in the surface layers of a star. In the case of
axisymmetric field configurations one usually compares obser-
vations and the model in terms of butterfly diagrams (6 — t-maps).
The Jennings and Weiss paper which has only 6 and ¢t depend-
ence was formulated with this in mind. For non-axisymmetric
fields one can employ surface maps (via surface imaging, e.g.
Piskunov et al., 1990). It is therefore tempting to directly compute
such “observational maps” rather than deriving them from full
3-D simulations. This idea is central to the approximation of
mean-field electrodynamics, where only the mean field is com-
puted, and nothing is learnt about the small scale fluctuating
magnetic field.
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It has been stressed recently by Krause and Meinel (1988)
that the stability of nonlinear solutions of the dynamo equations
are of basic importance to explanations of cosmical magnetic
fields. They showed for a simple 1-dimensional model that only
the solution with the smallest critical dynamo number can be
stable, with all other solutions bifurcating from the trivial sol-
ution initially unstable. However, this result only applies to a
neighbourhood of the marginal value of the excitation para-
meters and we cannot make general deductions about stability
using linear analysis of the trivial solution and weakly nonlinear
theory alone. Moreover, Radler and Wiedemann (1989) have
demonstrated for an a*-dynamo model that stability analysis
restricted to 2-D disturbances can lead to the wrong conclusions.
For example, at certain parameter values SO and AO type solu-
tions are stable to axisymmetric disturbances, but only the A0
solution is stable when non-axisymmetric disturbances are con-
sidered (Sm and Am denote solutions symmetric and anti-
symmetric about the equator, where m is the spherical harmonic
order).

The possibility of non-axisymmetric solutions, or at least
non-axisymmetric contributions to mixed solutions, should also
be considered for models in which the radial dimension is omit-
ted. On the other hand, the radial extension of the fields may be
very important for the field topology of non-axisymmetric con-
figurations. Models with full radial dependence are particularly
hard to treat numerically in the case of aw-dynamos because very
short time steps are needed to resolve the strong winding-up of
field lines (Rédler, 1986b; Rédler et al., 1990). Such difficulties
cannot arise in a model without radial structure, which has the
advantage of making the analysis easier, but the associated
disadvantage that the important effect of winding up of field lines
is ignored.

From linear theory we know that the marginal dynamo
numbers of non-axisymmetric field modes are considerably
higher than for axisymmetric modes when differential rotation is
important. Therefore the existence of secondary bifurcations to
solutions with non-axisymmetric contributions seems the most
plausible explanation of non-axisymmetric fields in systems with
strong differential rotation. This may be important in under-
standing the active longitudes on the Sun (e.g. Bai, 1988) or non-
axisymmetric fields on stars.

The paper is arranged as follows. In Sect. 2 we present the
basic equations and definitions associated with axisymmetric
aw-dynamos and we compare the results of various axisymmetric
models in different geometries. From these results we can deduce
the consequences of neglecting either or both radial structure and
curvature. A new non-axisymmetric model is derived in Sect. 3
which is still 2-D because the radial structure is omitted. Linear
and nonlinear results for this model are presented. In the fol-
lowing section we then determine the linear 3-D stability proper-
ties of nonlinear axisymmetric solutions for a spherical model.
Finally, in the last section we present some conclusions.

2. The axisymmetric aw-dynamo

The generation of magnetic fields can be described by the
standard induction equation for the mean field,

(6,—V?)B=curl(aB+u x B), )
together with
V-B=0, 2

where a =08 cos 6 parameterizes the effect of cyclonic convection
on the mean magnetic field, B. The macroscopic velocity field
consists only of the rotational velocity u=@§Qr sin 6, where Q is
the angular velocity. We use dimensionless units, measuring
length in units of the stellar radius, R, and time in units of R2/y,
where 7 is a turbulent magnetic diffusivity which is assumed to be
constant. The quantities u, B, and o should be coupled via a
momentum equation. For convenience we by-pass this coupling
by including idealised nonlinear terms in the induction equation.
In this section we assume an a-quenching mechanism with
d=a,/(14|B|?). Restricting our attention to purely axisymme-
tric fields (0, =0) in a spherical coordinate system (r, 6, ¢) allows
B to be represented in the form:

B=bg¢+curl(ad), (3)
which leads to the following equations for the scalars a and b:
(6,—D*a=ab

(0,—D)b=Q'dy(sinfa)+ ..., @)

where Q' =0Q/0r, and Q is the angular velocity which is assumed
to depend only on r. The operator D? is defined by

D%a= — ¢ curl curl ) = a2( +ra Li(smea)]
=—¢-curlcurl(a =02 ra r2 90| sin6 00 '
©)

The relative magnitudes of the « and w-effects are measured by
the numbers C,=«, and C,=0Q/dr. The dots in Eq. (4) indicate
the existence of an additional a-effect for the generation of b from
a, which is neglected in several cases considered below (pure
aw-dynamo). This corresponds to the limit C,/C, <1, which is
often applied in stellar dynamo theory. Some of the models
described in later sections have taken the full a-effect into ac-
count, and we speak then of an a’w-dynamo. The important
control parameter is the dynamo number D=C,C,, (not to be
confused with the operator D?). In comparison with the solar
field we note that for D<0 we obtain the “correct butterfly
diagram”, i.e. dynamo waves migrating towards the equator.

2.1. The importance of radial structure

At first it may seem crucial to have detailed radial structure in a
dynamo model with differential rotation. Nevertheless, if the
angular velocity is prescribed and the velocity field is not calcu-
lated explicitly from the momentum equation, radial derivatives
only appear in the diffusion operator of the pure aw-dynamo
equations (4). Thus in the 1-D approximation we are essentially
simplifying the diffusion term.

For dynamos in thin shells radial diffusion will eventually
dominate over latitudinal diffusion, and 1-D models fail to reflect
this, even though it is tempting to associate such models with the
limit of thin layers. Averaging the equations formally over the
layer introduces “jump” conditions which depend upon the ra-
dial boundary conditions (Greenspan, 1974). For certain radial
boundary conditions however, these “jumps” are all zero, leading
to fields independent of radial structure as used by Jennings and
Weiss.

The new feature in the flat (no curvature) 1-D dynamo of
Jennings and Weiss, that for slightly supercritical negative dy-
namo numbers a steady quadrupolar mode (SO0) is excited first, is
similar to the behaviour found by Stix (1975) for flat galactic
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dynamos, in which a branch of steady SO modes acquired a
positive growth rate at low D. This linear growth rate continued
to grow before reaching a maximum and subsequently became
negative at a larger value of D. Such linear theory can be very
misleading though when it comes to finite amplitude solutions,
since for a-quenching in the Jennings and Weiss model this SO
mode did not destabilise (see Fig. 1a) with increasing D, as it did
in cases with other nonlinearities. This shows all too clearly the
dangers of drawing conclusions based on linear theory alone.

Another property of 1-D models, which is not typical of 2-D
models, is that the marginal dynamo numbers for different modes
are very far apart. Also the energies belonging to solutions with
opposite parity can be quite different (see Fig. 1 and
Table 1). This is similar to the result for another 1-D «?-dynamo
model (no w-effect) in a slab, where o changes sign in the middle
of the layer (see Fig. 6a in Brandenburg et al., 1989a). In contrast,
the energies for 2-D dynamos with the same a-quenching are
closer together (cf. Brandenburg et al., 1989b, 1990).

In the 1-D approximation the nonlinearity due to buoyancy
causes a very rich bifurcation diagram. Typically two branches
belonging to solutions with opposite parity are connected by a
mixed-mode branch. This was found also in the 2-D dynamo in a
sphere, but only for a-quenching and not when buoyancy effects
become dominant (Moss et al., 1990).

We may summarize that neglecting the radial extension of the
dynamo region leads to quite marked changes in the bifurcation
diagrams. However there are also features, such as the transition
between two opposite parities via a mixed parity solution, which
occur in the bifurcation diagram for both cases.

2.2. Comparison with shell dynamos

Another way to investigate the influence of radial structure is to
treat a spherical shell, in which the parameter varied is the shell
thickness. In the following we shall compare the 1-D models with
results obtained for such “shell dynamos”.

We reduce the computational domain to 0.7 <r <1, assuming
a perfect conductor boundary condition at a radius r=0.7
(Kohler, 1973). It turns out that the marginal dynamo numbers
for symmetric and antisymmetric fields are very close together.
Also torus-type mixed parity solutions are still possible. How-
ever, the winding numbers (or ratios between the two periods) are
typically much higher than for dynamos operating in the entire
sphere. (More details are given in Brandenburg et al., 1990.)

It seems that the step from the sphere to a shell takes us
further away from the Jennings and Weiss type model. This
confirms the suggestion that for dynamos in a thin shell radial
diffusion is important, that is the 1-D model does not correspond
to the limit of thin shells.

The solar dynamo is probably located at the bottom of the
convection zone (Parker, 1979; see also Schiissler, 1983). In
contrast to a shell dynamo with constant a-distribution and a
vacuum boundary condition at the top of the layer we are now
left with a thick diffusion region on top of the a-layer. This
diffusion layer may smooth out the radial gradients and probably
better resembles the 1-D approximation by Jennings and Weiss.
In order to check this we computed a model with an a-effect
confined to the bottom of the convection zone at r=0.7. The
profile adopted for « corresponds to that given by Réadler (1986a,
Eq. (13)) which has a maximum at r=0.7 and a width of d=0.1.
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Fig. 1a and b. Bifurcation diagram for a 1-D dynamo model without
radial extension a without curvature and b with curvature. Stationary
solutions are denoted by “st” and oscillatory ones by “os”

Table 1. Steady solutions with a-quenching (Jennings and
Weiss, 1989b). The letters s, u, and m refer to stable, unstable and
marginal stability

SO A0 A0+S0
D (B*) b (B* (B*)

-20 171 35 027s —

—50 7745 55 091s —
—100 18465 84  190m 1.90 m
—600  3177s 100  241u 240

—1000 2141 s 200 577u 4.26 s
—2000 4316 s 300 9.14u 508u
—20000 4347 s 1900  63.1u 21.8u

We find that a steady SO solution is now most easily excited,
as in Jennings and Weiss. However, the marginal dynamo num-
bers for A and S type solutions (symmetric and antisymmetric,
respectively) are again quite close together and both oscillatory.
Thus, a dynamo with a concentration of o at the bottom of the
convection zone cannot be simulated by the 1-D model either.

2.3. The role of curvature in the 1-D dynamo

We study now a modified 1-D dynamo with curvature simply by
dropping the r-derivatives in our code for solving 2-D axisym-
metric dynamo equations. The survey is restricted to the case of
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Table 2. The logarithm (base ten) of the energies for the axisymmetric model with curvature but
no radial structure. For the oscillatory solutions the minimum and maximum values are given. The

periods are given in square brackets and C,= — 1000

Ig E [period]

Ig E [period]

C, A0 S0 C, A0 S0
—1  —059s [0]
-5  069s[0] —110...—075u[008] 5 —159...—0.79u[0.08] 1.125s[0]
—50  181s[0] —0.63...1.14u[0.075] 50 0.45...1.28 u [0.10] 2265 [0]
—500  2.83s[0] 275 u [0]

a-quenching. The results found are very similar to those of
Jennings and Weiss: a steady SO solution is excited most easily
(for D<0), and at larger dynamo numbers an oscillatory AO
solution of much smaller amplitude is strongly suppressed by the
SO mode. For D>0 the roles of S and A are interchanged, see
Fig. 1b, and Table 2.

Testing the stability of finite amplitude solutions by perturb-
ing with a solution of opposite parity (Brandenburg et al., 1989a)
we find only the steady solutions to be stable, even at dynamo
numbers as large as 5 x 10*. This is in slight contrast to stability
behaviour of the solutions of Jennings and Weiss, where the
stationary A0 solution becomes unstable to a stationary mixed
solution (SO+ AQ) at large (and positive) dynamo numbers (see
Fig. 1). This difference can only be attributed to the absence of
curvature in the Jennings and Weiss equations.

2.4. The role of curvature in the 2-D dynamo

The effect of curvature can be studied by limiting the computa-
tional domain to 0, <6<0, (with 0<6,, 6, <mn), that is by cut-
ting off the polar regions. We have done this with our 2-D code
by imposing a perfect conductor boundary condition at some
intermediate latitudes. An understanding of the consequences of
this somewhat arbitrary condition is important, because 3-D
codes in spherical geometry based on finite difference methods
cannot cope easily with the singularities at the pole. For example,
Gilman and Miller (1981) found it necessary to introduce a
perfect conductor boundary at 70° latitude. This condition im-
plies that the 6-component of the magnetic field and the r- and
¢-component of the electric field both vanish at some latitudes
0=0,,0,. In terms of a and b we have, in the presence of an
a-effect,

a=0

0=0,,0,. 6
d,(sin Ob) = b, (sin Ga)} ono=tn % ©)

(If o is assumed to vanish at §=4,, 0, we are then effectively
using the conditions of Gilman and Miller.)

Taking the dynamo as being confined in a shell with inner
radius r,=0.7 we find, at slightly supercritical dynamo numbers,
essentially the same bifurcations in both cases, with and without
restricted latitudinal extent. That is, in both cases there is an
AO-type solution with dynamo waves migrating to the equator
with approximately the same frequency. Both field geometries are
displayed in Fig. 2. However, in contrast to the case where the
poles are included, the pure AO-solutions no longer lose stability
as the dynamo number is increased. This indicates that the torus-
type solutions described in Brandenburg et al. (1989b) require the

inclusion of the polar regions. On the other hand the basic
dynamo cycle is still very similar to the original situation in a full
spherical shell. So we may conclude that the sine and cosine
terms (curvature) do modify the oscillatory aw-dynamo qualita-
tively, but the basic dipolar type field configuration found
for sufficiently low dynamo numbers is largely unaffected by
curvature.

To summarize we can say that omitting curvature in a model
has comparatively little influence on the magnetic fields and on
the details of bifurcations to mixed solutions compared to the
more drastic consequences of omitting the radial extension.

3. A non-axisymmetric dynamo (9, #0)

The investigations of nonlinear and non-axisymmetric aw-
dynamos is still restricted to cases of weak differential rotation.
This is mainly because non-axisymmetric fields are wound up
very tightly, due to the differential rotation, in such a way that
oppositely directed field lines lie very close together (cf. Ridler,
1986a). This introduces very short length-scales which have to be
resolved by the model, and the necessity of using very short time
steps becomes inevitable. Furthermore, the short length scales in
the field structure give rise to an enhanced dissipation, which,
according Rédler (1986b), makes non-axisymmetric dynamos
very hard to excite in the presence of strong differential rotation.
However, this winding-up of field lines is not present in a model
without radial extent, and it is therefore not clear, whether such a
model could be of relevance for understanding non-axisymmetric
aw-dynamos.

In the following we shall consider dynamo action in a thin
layer. By making certain simplifications we proceed to derive
equations for two scalar potentials (toroidal and poloidal), start-
ing from the induction equation for B. Here we choose a different
nonlinearity (buoyancy) to the a-quenching discussed earlier.
This is because the nonlinear results for a-quenching in the 1-D
model are not very interesting, and the extra azimuthal structure
seems unlikely to affect the results. Further, the treatment of the
coupling between the axisymmetric and non-axisymmetric per-
turbations is more difficult in the case of a-quenching.

3.1. Model equations

We extend the 1-D models of Jennings and Weiss to include
azimuthal or y-dependence. We make certain assumptions which
effectively remove all radial dependence from the equations.
Rather than model the instability of individual flux tubes due to
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buoyancy (Hughes, 1985), we simplify in the spirit of the mean-
field approximation and assume that such flux losses occur
smoothly when averaged over small scales. The induction equ-
ation now has an additional nonlinear radial velocity uz which
models toroidal flux loss due to buoyancy:

(6:—V?)B=curl(aB+u x B+ug x B,9) @

with a=C,cosx, u=C,zsinxp. Cartesian coordinates (x, y, z)
correspond to spherical polar coordinates (6, ¢, r) respectively,
with 0<x <7, 0<y<2m, and z extends across a “thin” layer. The
velocity up depends only on the azimuthal field B, since this is
the dominant field in aw-dynamos. In order that the nonlinear
velocity uy is independent of the sign of B,, we assume up
proportional to BZ. In this simple form it is the radial gradient
0,ug which is most important, and in the same spirit as adopted
for the azimuthal velocity we take a linear profile in z: ug=AzB2%,
with A=const.

Within the thin layers we assume B to be independent of
height z, and therefore we do not need to specify any radial
boundary conditions for B at the top and bottom of the layer.
The velocities # and up have an idealised z structure such that 0,
is constant. Since we are only solving for B independent of z we
can treat the induction equation at any height (z=const), and we
choose z=0 without loss of generality. Essentially we have
adopted the following spatial scaling for B: 6, <d,, d,, with d,, d,
both O(1).

Since B is divergence free it is natural to express B in terms of
toroidal and poloidal functions

B=curl curl(£¢)+ curl (3). . ®)

Substituting Eq. (8) into (7), and making appropriate scalings to
¢ and ¥, together with the limit C,<C,,, gives:

467

Fig. 2. The effect of curvature de-
monstrated by an arbitrarily intro-
duced perfect conductor boundary
condition at 45° latitude. Snapshots
of poloidal field lines and contours
of constant toroidal field are
plotted for a complete cycle with-
out latitudinal boundaries (upper
two rows) and with 6, =45° (lower
two rows). Broken contours denote
a negative sign

DP=DVy-(cos xVyy),
9‘{,=ax(5in xq))_ax[(axd/)s]y (9)

where 2=(0,— V%), and V,=(0,, d,,0). Variables ® and ¥ are
related to ¢ and ¥ by Poisson type equations:

Vig=0,

Viy=1Y, (10)
where the z independent B is given explicitly by

B=(0,y, —0,y, — D). (11)

3.2. The boundary conditions

Periodic boundary conditions are used for B in the y-direction,
but the conditions at the poles are not so obvious in this
geometry. In a sphere, the 8 — ¢-dependence of the potentials in
Eq. (8) can be expanded in terms of spherical harmonics
P (cos 6), if the external magnetic fields are taken to be current
free (Stix, 1971). We assume that ¢, § have the same behaviour at
the poles as Pj'(cos 8), that is:

¢=y=0 at x=0,n if m=0,

0.p=04=0 at x=0,7 if m=0. (12)

Note that such conditions in this geometry make the 6-com-
ponent of field vanish at the poles. This is unphysical, but arises
because we have neglected the (sin x) ™! factor associated with the
curvature in By=(sin x)”'0,¥ in spherical geometry. However,
we are still solving for the correct form of potential  and the
actual value of B, does not directly affect the results.
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3.3. Axisymmetric solutions (0,=0)

Uncurling Eq. (9) once recovers the system studied by Jennings
and Weiss (1989b):

2.A=D cos xB,,

9,B,=sin xd,4— B3, (13)

where 9, is the usual 1-D diffusion operator, and A= —0,¢.

3.4. Non-axisymmetric solutions

We seek solutions representing travelling waves in the azimuthal
direction which can be further classified according to their parity
S or A. For non-axisymmetric fields the real part of the following
series expansions for the potentials ensure that the boundary
conditions are satisfied

o(x, y, )= Re[e""ly i Dum(t) sin nx:|,

n=1

v(x,y, t)=Re|:ei"‘y i Vom(t) sin nx:l. (14)

n=1
For practical calculations these series must be truncated, and in
all the following analysis (for a single wavenumber m) we truncate
each series at n=16. This truncation appeared satisfactory when
compared to results with 32 terms for typical parameters.

3.5. Marginal dynamo numbers

The system Eq. (9) can be made linear in ¢ and y simply by
removing the cubic term associated with buoyancy. In a linear
analysis of Eq. (9) the time dependence of the coefficients ¢,, and
¥, can be explicitly written as ¢, and for each mode we calculate
the value of D (positive and negative) for which the real part of ¢
is zero. If, at these marginal dynamo numbers, ¢ has a non-zero
imaginary part then the field is overstable and oscillates.

Marginal values of D and their corresponding frequencies are
given in Table 3. It is seen that axisymmetric modes are the most
unstable for D <0, and whether or not non-axisymmetric fields
are important depends upon the stability of finite amplitude
solutions to non-axisymmetric perturbations, while it is also
possible that a pure Sm or Am type solution could stabilise at
large D. For D>0 however, the most unstable mode is Sl1,
meaning that, initially at least, stable nonlinear solutions will be
non-axisymmetric (see Fig. 4).

3.6. Stability of nonlinear axisymmetric solutions

Before discussing fully the 2-D nonlinear calculations we first
examine the stability of the Jennings and Weiss solutions to non-
axisymmetric perturbations. Thus we write

¢=¢0(X, t)+£¢1(~x9 y9't)’
Y=volx, ) +ey,(x, y, 1), (15)

where £<1, and all terms of O(e?) are neglected. At O(1) the
Jennings and Weiss system is recovered while after rescaling, we
get at O(e):

20, =DV (cos xVyy,),

DY, =0, (sin x®,)—3,(B23,,). (16)

Table 3. Marginal dynamo numbers and frequencies for the
(non-axisymmetric) 2-D model without radial extent

Mode D Frequency D Frequency
A0 —102  4.56 26 0

Al —803 2831 108 3.00

A2 —1231 3442 305 7.17

SO -9 0 189 9.36

S1 —429 18.60 15 0

S2 —994 28.29 246 3.00

The axisymmetric solutions are coupled to the perturbations
through the nonlinear buoyancy term. The evolution of these
small perturbations is followed by stepping the ¢, and ¥, coeffici-
ents of Eq. (16) forward in time and using data from the Jennings
and Weiss solutions for BZ. Non-axisymmetric perturbations of
both parities (S1 and A1, for m=1) are considered because either
can be coupled to an A0 or SO solution through the nonlinearity.
Yet, since they are linear, the perturbations of each parity do not
couple with one another. If the perturbations grow or decay then
we say that the purely axisymmetric field is unstable or stable,
respectively.

3.7. Results from the stability analysis

Stability results are most easily presented on a bifurcation dia-
gram. In Fig. 6, the axisymmetric SO and AO solutions of
Jennings and Weiss are plotted as solid lines, if stable to 3-D
perturbations, and dotted, if unstable. The bifurcations of the
axisymmetric and the first non-axisymmetric modes from the
trivial solution are summarized in Table 3.

As expected, for positive D the S1 perturbations are unstable
from the onset. The steady A0 branch shows no sign of stabilising
with increasing D: on the contrary oscillatory Al perturbations
also grow from the pure AO solution for D larger than 200. Such
linear analysis is unable to determine whether or not mixed
parity solutions such as S1 + A0 bifurcate from the initially stable
pure S1 and D is increased.

The results for negative D are perhaps the most significant for
stellar dynamos. The pure AO branch, which was stable to
axisymmetric perturbations, loses stability to a mixed mode
consisting of A0+ S1 modes at D~ — 555 (see Fig. 3). See Fig. 5b
for the resulting S1 field configuration. Note that the field geo-
metry is very similar when the perturbation is applied to the
trivial solution, see Fig. 5a. The pure S1 disturbances are oscil-
latory with a frequency roughly double that of the periodic A0
field at the bifurcation. Increasing D only increases the growth
rates of the S1 disturbances, and eventually the A1 disturbances
were also excited. From these results we can also draw a specu-
lative bifurcation diagram for the non-axisymmetric solutions to
the fully nonlinear 2-D equations, see Fig. 6.

3.8. Fully nonlinear solutions of the model equations

In order to proceed beyond the linear stability analysis we now
solve the fully nonlinear model equations (9) using a finite
difference method. ¥ is determined at each time step by solving
Eq. (10) for ¥ using a successive over-relaxation method. The
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Fig. 3. The growth rates far axisymmetric and non-axisymmetric modes

for the 2-D model without radial extent
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Fig. 4. Stability for S1 and A1 modes for positive and negative dynamo
numbers. For —D < —555 symmetric perturbations to an axisymmetric
field decay, but grow once —D> —555. For each dynamo number the
antisymmetric perturbations A1 decay to zero. Note that this decay can
be either steady or oscillatory. The symmetric perturbations grow
steadily for D>0

boundary conditions in the form of Eq. (12) cannot be employed
in this case, because we need a single condition for solutions
containing both axisymmetric and non-axisymmetric fields. We
take a condition that mimics the behaviour at the poles in real
spherical geometry by introducing a virtual “dummy layer” at
x= —Ax and x=n+ Ax. In this layer the fields are identical with
the fields inside the boundary at x= +Ax and x=n—Ax res-
pectively, but shifted in the y-direction by m:

O(t, x+Ax, y)=D(t, x—Ax, y+7) }
on x=0,7

17)
Y, x+Ax, y)=Y(t, x—Ax, y+7)

We display the field evolution by means of a parity parameter

P=[E®—EW]/[E®+E™] (18)
and degree of non-axisymmetry by the quantity
M=1-E9/E, (19)

where E® and E™ are the energies contained in the sym-
metric (S) and antisymmetric (A) part of the magnetic field and
E=E® + E®W is the total energy of the magnetic field. E‘? is the
energy of the magnetic field averaged over the y-direction.

In Fig. 7 we show the evolution of the quantities E, P, and M
for D= —400. The initial field configuration was a weak seed field
with Px 1 and M =~ 1, that is the field geometry was like that of an
S1 mode. Eventually AO contributions grow leading to a decrease

Fig. 5a and b. Non-axisymmetric S1 perturbations from the zero solu-
tion at D= —429 (a) and from a nonlinear A0 solution at D= — 555 (b).
The B, and B, components are displayed as vectors. Lines of constant B,
are superimposed. Broken contours denote negative values. Note the
similarity between the two field configurations

14

I S1 st
12 L
<B*> AO+S1 os R
10 | , |
8 L S1 st A
6 L _
4 L AO os _
2 L SO st -
) -D
0 : L
~350 0 350 700

Fig. 6. Bifurcation diagram for the non-axisymmetric dynamo without
radial extent. Note the secondary bifurcation from the AQ solution at
D= —555, leading to a mixed solution consisting of A0 and S1. The
branch belonging to this mixed solution is drawn only approximately and
is possibly subcritical

of P and M. The final state is a non-axisymmetric periodic mixed
parity solution. Snapshots showing the field geometry in three
intermediate stages are given in Fig. 8. Since there is no evidence
of quasiperiodicity (see Fig. 7) it seems likely that the mixed
parity solution has bifurcated from the oscillatory AQ branch
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Fig. 7. Nonlinear evolution of E, P, and M for D= —400. The final state
is a periodically oscillating mixed parity solution

through a pitchfork bifurcation. In the last picture two equatorial
field belts with a positive and negative enhancement at two
different latitudes can be clearly seen.

The fact that this mixed solution is present at D= —400
suggests that the bifurcation at D= —555 is subcritical. The
mixed solution is therefore initially unstable and only gains
stability at a saddle node bifurcation at some — D> —400. For
D=—600 a pure S1 type solution was found showing that a
further bifurcation has occurred (for the definition of pure solu-
tions in the non-axisymmetric case see Réadler et al., 1990).

These mixed solutions were obtained using a resolution of
30 x 31 mesh points, which is probably inadequate to make
definitive statements for such highly supercritical dynamo num-
bers. The computational resources needed are already relatively
high, because a very short time step is needed. Thus, and also in
view of the approximations of this model which are not physi-
cally well motivated (e.g. no radial extend, no winding-up of field
lines), we feel that it is not worthwhile to pursue further details of
this particular nonlinear model.

4. 3-D stability analysis for a spherical model

Let us now return to the linear stability analysis of non-axisym-
metric perturbations of axisymmetric finite amplitude solutions,
including full radial structure. The torus-type solutions of the
aw-dynamo equations obtained in fully spherical geometry
(Brandenburg et al., 1989b) may just be an artifact of the 2-D
approximation employed. We cannot exclude the possibility that
the torus solutions are unstable to fully 3-D non-axisymmetric
perturbations, similarly to some of the 1-D axisymmetric solu-
tions of Jennings and Weiss (see previous section). This pos-
sibility was first demonstrated by Réadler and Wiedemann (1989)
for a 3-D a?-dynamo, where certain nonlinear pure mode solu-
tions were found to be unstable.

4.1. The basic equations

Consider a nonlinear, strictly axisymmetric solution to the mean-
field dynamo equation

(8,~V*)B=curl(xB+u x B), (20)

B, (r, 0, t) say. This solution may be time varying or invariant. In
principle the nonlinearity can take several plausible forms, but
here we focus on the simple “a-quenching” mechanism writing

a=C,cos 0/(1+|Bo|?). 1)

The stability of the axisymmetric solution can be tested quite
simply by numerically perturbing the solution and following its
subsequent time evolution.

4.2. The axisymmetric solutions

Several such a-quenched solutions have previously been des-
cribed. These displayed a variety of interesting phenomena, such
as the coexistence of two stable steady solutions at the same
parameter values, and the existence of up to three stable unsteady
solutions, including a limit cycle of constant but mixed parity and
a torus type solution with large oscillations in the mean parity,
and a limit cycle of pure parity (Brandenburg et al., 1989b). The
question of the stability of these solutions to non-axisymmetric
perturbations naturally arises.

The torus-type solutions mentioned above are obtained for
quite strong differential rotation with C,,= — 10*. In this case the
time scale associated with non-axisymmetric solutions are very
short. Conveniently we find very similar bifurcation properties
when C,= —103, if C, is increased by a factor of ten. The basic
parameter in this parameter range is therefore the dynamo
number D. For example, torus-type solutions were found for
C,=8.5 and 9.0. The long term oscillations in E and P are
displayed in Fig. 9. Pure AO-solutions are stable for C, < 7.5 and
pure SO-solutions are stable for C,210.0. For C,=8.0 there is a
stable mixed parity limit cycle solution. Properties of these
solutions are summarized in Table 4.

4.3. The linearized equations

Write B(r, 0, ¢, t)=By(r, 6, 1)+ B,(r, 0, , t), where |B,|<|B,|
Substituting into Eq. (20) and linearizing gives

(0,—V?)B, =curl(u x B, +a,B,)+curl(x; By), (22)
where oy =a(B,, cos 0) and
;= —2By" Byao/(1+]|Bo|?). (23)

Eq. (22) is just the linear dynamo equation for B, with the
additional term curl(x, B,). Given the function ay(r, 6, t), Eq. (22)
can be integrated forward in time for an arbitrary initial pertur-
bation B, (t=0).

The energy, E, of the non-axisymmetric field contained in the
volume of integration eventually will either grow or decay ex-
ponentially (if E oscillates, then replace E by its average over a
cycle). If E grows, the solution By(r, 6,t) is unstable to small
perturbations, otherwise it is stable. The growth rate of the
dominant mode is given by +d1n E/dt. This approach can, how-
ever, say nothing about metastability, nor the long term evol-
ution of an unstable solution. To answer these questions a fully
nonlinear code is required.
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Fig. 8a—c. Snapshots showing the field configuration at times 9.9 (a),
10.4 (b) and 12.0 (c). Vectors and contours have the same meaning as in
Fig. 5
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Fig. 9. Long term oscillations in E and P for C,=85and C,=—10°

A code has been written (in complex arithmetic) to solve
Eq. (22) for a single azimuthal Fourier mode m (B, ocexp(im)).
The zero order field, B,, is calculated simultaneously by the
standard axisymmetric dynamo code. It has been tested by

putting «; =0, and reproducing the known critical values of C,
for dynamo excitation, both for C, zero and non-zero. In the
latter case the frequency of the critical solution is also in satis-
factory agreement with that found by an eigenvalue method.
When the axisymmetric solution is of pure parity, P=+1, an
initially pure parity (Am or Sm) perturbation retains its initial
parity, whereas when the axisymmetric solution is of mixed
parity type, then even an eventually pure parity perturbation
becomes mixed. Components Am and Sm are locked, and it is
meaningless to talk of one of these modes decaying faster than
the other.

4.4. Results

The stability of several models to m = 1 perturbations was investi-
gated. (It was assumed that m=1 would be the “worst” non-
axisymmetric perturbation.) For the a*-dynamo (C,=0) at
C,=10 the axisymmetric solutions display a “watershed” effect,
the eventual steady solution being of SO or A0 type, depending on

Table 4. Summary of some solutions for the aw-dynamo for
different C, and C,,= — 10. Their stability is indicated in the first
column (s for stable, u for unstable). The third column, denoted
by E, gives the minimum and maximum values of the total
magnetic energy. The next column contains the value of P. In the
case of mixed parity solutions the range covered by P is indi-
cated. Q. is the magnetic cycle frequency. In the last column the
type of solution is given (limit cycle or torus) and, in the case of
torus solutions, the frequency ratio of short and long term
oscillations is also shown. The numerical resolution is 21 x41
mesh points

C, E P Q.
s 70  013...033 —1 562 lc.
s 75  018..044 —1 570 lc.
s 80  014...034  —039...-007 609 lc.
s 85  017..062 —094...4+058 59.6 torus 34
s 90  021..073  —096...40.79 63.5 torus 30
u 100  040...092 —1 632 lc.
s 100 071...158  +1 668 lc.
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the initial conditions (see Brandenburg et al., 1989a). We find that
the SO mode is unstable against S1 perturbations
(d In E/dt ~0.64), but stable against Al perturbations (d In E/dt ~
—2.0). The A0 mode turns out to be stable against S1 and Al
perturbations, (d In E/dt~ —0.30 and — 3.6 respectively). These
results are in agreement with those of Ridler and Wiedemann
(1989) and Rédler et al. (1990).

Now we turn to the more interesting case of the a>w-dynamo.
Consider first the axisymmetric torus type solution for C,=8.5.
As mentioned above, the Al and S1 perturbations cannot now be
separated. At all points during the long torus cycle (period & 1.85)
the solution is stable, with a very short decay time for the
perturbations. Also for C,= 8.0, where the axisymmetric solution
is a mixed parity limit cyle, the perturbation decays rapidly.

These results demonstrate that there is only one stable steady
solution of pure parity type for the a-quenched, a2-dynamo (since
a pure nonlinear non-axisymmetric mode cannot exist), and that
the unsteady mixed parity a?w-solutions are stable to small
amplitude non-axisymmetric and axisymmetric perturbations.
The «?> A0 mode is, of course, unstable to large amplitude
axisymmetric perturbations, which in the axisymmetric analysis
take it into the SO mode, which itself is unstable to S1 perturba-
tions. The ultimate fate of such a system cannot be determined
with the present method. However, the recent analysis of Radler
et al. (1989) shows that the solution does not settle to an unsteady
mixture of axisymmetric and non-axisymmetric parts, but even-
tually it finds its way back to the AO configuration. The stability
of the a?w-solutions is perhaps not altogether surprising, as at
C,, = — 103 the non-axisymmetric modes are very hard to excite
in a model with a prescribed, time invariant a-profile. However
the possibility of a bifurcation from the mixed parity branches at
lower dynamo number than that of the non-axisymmetric bifur-
cation from the trivial solution cannot, a priori, be discounted.

5. Conclusions

The understanding of complicated physical systems by means of
truncated and simplified models is useful in order to demonstrate
the different phenomena possible in more elaborate models and
perhaps also in nature. We have shown that there are certain
bifurcation features in simple 1-D models, which can also be
found in more realistic 2-D models, for example, the transition
between two states of pure parity via a mixed parity solution.
However, a very detailed comparison between these approaches
is not justified. On the other hand, the neglection of “curvature
terms” and cutting off the polar regions from the computational
domain seems to affect the solutions only slightly. This can
therefore be a useful approximation in simplifying simulations of
convective dynamos.

Being aware of the limitations due to models without radial
extension we have demonstrated the possibility that aw-dynamos
can possess mixed solutions containing non-axisymmetric contri-
butions. This result may be of relevance for understanding secu-
lar modulations of stellar light curves and probably also of the
solar active longitudes. In the mean-field model non-axisym-
metric magnetic fields seemed to be possible only for dynamos
with weak differential rotation, because for strong differential
rotation the excitation of non-axisymmetric solutions is much
harder than of axisymmetric solutions. Thus an explanation of
the observed non-axisymmetric contributions in solar and stellar
mean fields via secondary bifurcations appears to be more likely.

For example, photometric light curves of an FK Comae-type star
(Jetsu et al., 1989) can be interpreted in terms of a mixed solution
(quasiperiodic A0+ S1). It remains to be seen if such behaviour is
borne out in more detailed models with radial extension. For
positive dynamo numbers the 2-D model does favour non-
axisymmetric fields (S1), which is certainly an artifact of neglect-
ing the radial extension. Therefore a full 3-D analysis is necessary
in order to draw more precise conclusions. At least for only
slightly supercritical dynamo numbers it seems to be reasonable
to assume the solutions of aw-dynamos to be axisymmetric. In
particular axisymmetric mixed parity solutions with long-term
variations prove to be stable against 3-D perturbations.

However, there are still many uncertainties associated with
more realistic models for solar and stellar dynamos. The location
and extent of the dynamo inside the star is still at present
unresolved. The solar internal angular velocity has been mea-
sured in recent years with increasing success (e.g. Libbrecht, 1989;
Brown and Morrow, 1987) using helioseismology as the basic
tool. However the accuracy achieved is still not enough to rule
out conclusively certain models, e.g. those which have 0Q/dr <0
at some depth beneath the equator.

While linear aw-dynamos easily reproduce the observational
requirements of migrating dynamo waves with the correct lati-
tudinal structure, and toroidal and poloidal components with the
correct phase and amplitude relations (Stix, 1976), there is still
considerable uncertainty regarding nonlinear dynamos. It is gen-
erally accepted that the solar cycle is a nonlinear oscillator, partly
because phenomena like the recurrence of Grand Minima (see
e.g. Stuiver and Braziunas, 1988) are highly suggestive of non-
linearity. Nevertheless, our models show such nonlinear behavi-
our to be model dependent, sensitive to both the geometry used
and the form of the nonlinearities considered. The dominating
nonlinearities operating in the dynamos of various cosmical
objects are still not well determined. This leaves us to make
heuristic selections of nonlinear terms which are related to prop-
erties of the full equations. It is reasonable to consider a-quen-
ching when treating mean fields, but our results show that if the
solar dynamo really does work in a thin layer beneath the
convection zone then such a-quenching leads to the “wrong” type
of nonlinear behaviour, that is only a steady quadrupolar sol-
ution exists, even for a wide range of dynamo numbers. The other
nonlinearity considered here — buoyancy — is motivated by the
observations of sunspots and theory (Parker, 1955; Spiegel and
Weiss, 1982).

Magnetic activity cycles for other stars are now well estab-
lished (see e.g. Soderblom and Baliunas, 1988), and show the Sun
not to be a special case. It is found that stars with similar age,
mass, and rotation rate as the Sun can have a range of behaviour,
including virtually steady activity. While it is tempting to link
such observations to the rich and varied responses of our theor-
etical models, we do not feel that this is yet justified. Instead we
conclude that there is still a great deal to be learnt about
nonlinear stellar cycles, and that progress may be made by
careful studies which simultaneously use “exploratory” idealised
systems together with more sophisticated models.
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