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In order to obtain a better insight into the excitation conditions of magnetic fields in flat objects, such 
as galaxies, we have calculated critical dynamo numbers of different magnetic field modes for spherical 
dynamos with a flat r-effect distribution. A simple but realistic approximation formula for the rotation 
curve is employed. In most cases investigated a stationary quadrupole-type solution is preferred. This is 
a consequence of the flat distribution of the a-effect. Non-axisymmetric fields are in all cases harder to 
excite than axisymmetric ones. This seems to be the case particularly for flat objects in combination 
with a realistic rotation curve for galaxies. The question of whether non-axisymmetric (bisymmetric) 
fields, which are observed in some galaxies, can be explained as dynamos generated by an axisymmetric 
%to-effect is therefore still open. 

KEY WORDS: z-elTect, dynamo action, galactic dynamos. 

1. INTRODUCTION 

Whether or not a magnetic field in a cosmical object can be explained by a 
dynamo depends on the excitation conditions of the competing magnetic field 
modes of different symmetry type: in a sufficiently weak nonlinear regime only that 
mode which can be excited most easily is of physical interest (Krause and Meinel, 
1988). However, it is necessary to investigate the distribution of the marginal 
dynamo numbers in parameter space also for some of the other modes. Only then 
is it possible to discuss the tendencies that the object has towards different types of 
solutions under various circumstances. 

The calculation of a complete set of eigenvalues is a solved problem for 
spherical objects. However, for flat objects, e.g. galactic disks, the solutions so far 
presented have been obtained under certain approximations which are derived 
from plane layer models (Zeldovich et al., 1983; see also Baryshnikova et al., 1987). 
One cannot be sure that the eigenvalues of these models are representative for 
disks with a finite radial extension (Krause, 1990). 
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96 A. B R A N D E N B U R G  ET AL.  

The results we present here are based on methods similar to those we used 
earlier for the investigation of spherical dynamo models (see Brandenburg et al., 
1989b). The step towards flat objects is achieved following the concept of Elstner 
et al. (1990). We assume flat profiles for the a-effect embedded in a homogeneously 
conducting sphere which may emulate a galactic halo. The assumption of constant 
magnetic diffusivity, q, in the halo is made for the sake of simplicity. However, 
investigations of models with a flat distribution of q have shown that the 
excitation conditions between different modes can be changed substantially (see 
Donner and Brandenburg, 1990). 

Our main interest is the question of whether there are conditions under which 
non-axisymmetric fields can be more easily excited than axisymmetric ones. For 
reasons of convergence it is clear that our method can hardly apply to objects 
with realistic flatness; only the tendencies can be studied here. In order to gain 
deeper insight more appropriate methods have to be developed (cf. Elstner et al., 
1990; Moss and Tuominen, 1990). 

2. BASIC EQUATIONS AND MODELS 

We consider dynamo action in a rotating and conducting sphere of radius R 
surrounded by empty space. The generation of a mean magnetic field, B, can be 
described by the induction equation 

?B - = V  x (U x B + &  - q V  x B), 
?t 

which applies inside the sphere. We assume that the electric current vanishes 
outside the sphere, which implies that the field continues as a potential field 
outside; q is the magnetic diffusivity of the fluid, which is considered to be 
constant; u is the velocity of the mean motion of the fluid and 8 is the mean 
electromotive force caused by fluctuations of the motions and of the magnetic 
field. For 8 we take here only the usual r-effect 

c: = aB, 

where a depends on the spatial coordinates. For the mean motion we assume only 
a differential rotation given by: 

u=Rxr,  (3) 

where R is the mean angular velocity. 
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2.1. The Numerical Method 

91 

The equations governing the B-field pose an eigenvalue problem for the complex 
eigenvalue 2, where 94% 1. is the growth rate and 9ii 1 the eigenfrequency. We look 
for marginal dynamo numbers C, (see later), for which the largest growth rate 
vanishes. We represent B in terms of poloidal and toroidal field parts by 

B = V x V x (is) + V x (iT) (4) 

and expand the functions S and T as a series of spherical harmonics. We then 
obtain an eigenvalue problem for an infinite set of ordinary differential equations 
for SY and TY. This is solved numerically using a truncated set of equations with 
N, spherical harmonics and N, grid points in the radial direction. We usually solve 
first all eigenvalues to relatively low accuracy, by adopting small truncation 
parameters N, and N,. After this we increase the truncation parameters and then 
look only for the eigenvalue with the largest growth rate, 9'81. For further details 
see Brandenburg ec al. (1989b). 

2.2. The a-distribution 

We are interested in an a-distribution which changes sign at the equator and 
which approaches zero at some relative height zo above and below the equatorial 
plane. A simple expression is: 

where z is the coordinate in the direction parallel to the rotation axis normalized 
by R. Here we have introduced a constant a. which is related to the dynamo 
number C, = a, R/q.  We express a in spherical coordinates (i.e. z = r cos 0, r being 
the relative distance from the center) and expand it in terms of Legendre 
polynomials: 

where N, is a truncation level of this expansion. The functions al(r) can be 
calculated from 

1 

a,(r) = f(21+ 1) j ~ ( C O S  B)a(r, e)p,(cos e). ( 7) 
- 1  

The analytic expressions for the first terms are given in Table 1. In the upper row 
of Figure 1 the functions al(r) for different values of 1 between 1 and 7 have been 
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98 A. BRANDENBURG ET AL.  

Table 1 The results for the functions q ( r )  for I =  1,3,5,  and 
7. We have used ; = z o / r  as an abbreviation and cq has been 
normalized here to zo. 

1 z,&r'[5iZ-3] 3r3i5 
3 3  - $3 fr'iS[5i2 -71 
25 0 9 r 3 i 5 [ i 4  - 2 i z +  11 
1- 0 &3;5[13i6 - 33i4 + 27 i2  -71 

plotted. Note that the alternating positive and negative contributions from the 
terms rl are of nearly equal size. This would suggest that the expansion does not 
converge very quickly. The shape of the x-profile for retaining only the first few 
modes can be seen in the lower row of Figure 1. We feel that the last case with 
N ,  = 7 resembles sufficiently well a flat distribution of a. The relative thickness 
used in Figure 1 was zo=0.3. For thinner disks one should take more terms into 
account. 

For the rotation velocity u =  uJr ,  n / 2 )  we take here a simple empirical formula: 

where ro is the characteristic radius at which the solid body rotation close to the 
center changes to a constant velocity. The parameter n determines how sharp this 
transition is. The strength of the rotation is measured by a non-dimensional 
number C,,,=uoR/q. The functions u(r) and n ( r ) = u j r  have been plotted in Figure 2 
together with the rotational shear 2R/Sr which determines the local production of 
the toroidal field from the poloidal field. Note that the angular velocity here is 
constant on concentric shells. We feel that this assumption is reasonable, because 
the magnetic field close to the axis of rotation and far away from the disk turns 
out to be quite weak and is therefore not much influenced by Q. In Figure 2 we 
have used the values r o = 0 . 2  and ro=0.5 on the left-hand and on the right-hand 
side, respectively. For the parameter n we have always taken n = 2 ,  which is typical 
of the observed rotation curves for galaxies (see for example Ruzmaikin et al., 
1988). 

3. RESULTS AND DISCUSSION 

For all the models presented here we have chosen for the truncation level in the 
expansion of x [see ( 6 ) ]  the value N , = 7 .  We consider first the case with zo=0.3 
and ro = 0.5. Then we study models with different values of zo and ro.  A summary 
showing the dependence of the marginal dynamo numbers on C, is given in 
Figure 3. 
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Figure 2 The functions Mr), R=o/r and ?a/+ for the values r0=0.2 and ro=0.5,  respectively. (Here u 
has been normalized with co.)  
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Figure 3 Summary of four different models considered. The marginal dynamo number C,  has been 
plotted versus C ,  for the modes A0 (solid), SO (broken), A1 (dashed), and S1 (dot-dash). The values for 
zo and ro have been marked inside each panel. Note in particular the dimerent behavior of the AO- and 
SO-mode between the cases with z o = 0 . 3  (top left) and zo= 1.0 (top right) for IC,I= IOOO. 

3.1 Models with Different Disk Thickness zo 

The results for the marginal dynamo number, C,, and the eigenfrequency, A H A ,  
are given in Table 2 for different strengths of differential rotation (measured by 
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DYNAMOS WITH A FLAT a-EFFECT 101 

Table2 Marginal dynamo numbers for a 
model with z0=0.3 and r,=0.5. max(a)= 
1 . 0 6 ~  lo-'. The smallest value of C, for a 
given value of C, is printed in bold face. The 
truncation level is N,=50 and N,= 10. 

C" A0 so A1 s1 
- lo00 
- 300 
- loo 

0 
100 
300 

lo00 

- lo00 
- 300 
- 100 

0 
100 
300 

lo00 

1120 1707 2063 1919 
687 1943 1779 1686 

1057 1624 1594 1536 
1386 1412 1420 1436 
1643 1131 1535 1590 
1925 768 1686 1778 
1706 327 1922 2065 

-9ml  

0 k95.8 -917 -910 
0 k10.7 -262 -259 
0 0 -80 -80 
0 0 -0.57 +0.57 
0 0 80 79 

+11.7 0 259 261 
I 9 6  0 909 917 

C,). For C,=O the AO-mode has the smallest critical dynamo number and is 
therefore the easiest to excite. (The smallest value C,  for a given C,=O has been 
printed in bold face.) For positive values of C ,  (c 1000) the SO-mode is preferred. 
In contrast, for negative values of C ,  the AO-mode is preferred. This finding is in 
agreement with the results for ellipsoids obtained by Stix (1975). On the other 
hand, it is well known that for most of the dynamo models for the Sun or planets 
the AO-mode has the smallest critical dynamo model number when a is positive 
and dR/dr negative, i.e. C,>O and C,>O (see e.g. Roberts and Stix, 1972; Radler, 
1986; see also the stability map in Figure 1 by Brandenburg et a/., 1989a). 

In order to see whether this is a consequence of the flat a-effect distribution, we 
have presented in Table 3 the results for the same model but with zo= 1. Note at 
first that all values of C,>O are two orders of magnitude smaller than in the 
previous case. The basic reason for this is that the maximum of a is in this case 
much larger (0.39, while it was 0.011 in the previous case). More important is that 
for IC,I = lo00 the preference of the AO- and SO-modes is reversed compared with 
the previous model, i.e. for C,>O and C,>O the AO-mode is the easiest to excite. 
This result confirms that this property is really due to the flat a-effect distribution. 
The non-axisymmetric modes are, in the presence of differential rotation, in both 
cases much harder to excite. Only for C,=O are the marginal values of C,, for all 
the modes, very close together (Radler, 1986a). 

Although the vertical extension of the ionized gas in the galactic halo is 
uncertain, it seems that the thickness of the a-effect distribution in the first case is, 
with z,=O.3, still far too large to resemble real galaxies. Therefore in the next 
model we decreased the thickness by a factor of three, i.e. we set z,=O.l, keeping 
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102 A. BRANDENBURG ET AL. 

Table 3 Marginal dynamo numbers for the 
same model as in Table 2, but with z,=I.O, 
max (1) = 0.39. 

C" A0 SO A1 SI 

- lo00 
- 300 
-100 

0 
100 
300 

lo00 

- lo00 
- 300 
-100 

0 
100 
300 

lo00 

20.5 17.7 34.3 
15.7 24.2 28.8 
165 20.4 22.0 
18.2 18.7 19.5 
21.4 18.2 21.7 
23.4 22.4 28.2 
17.0 19.7 35.1 

- 9m i 

k36.7 k39.8 -480 
0 k13.6 -154 
0 0 -59.4 
0 0 0.49 
0 0 62.7 

k15.1 k8.3 186 
k39.0 k36.1 478 

34.6 
29.4 
22.1 
18.8 
21.3 
31.9 
34.7 

-478 
- 152 
- 60.3 

62.6 

48.1 

I .94 

173 

Table 4 Marginal dynamo numbers, 
divided by lo3, for the same model as in 
Table 2. but for a thinner disk with :,=0.1, 
max(z)=3.9x The results are not all 
of the same accuracy (due to convergence 
problems) 

C, A0 so A l  s1 
0 11154 111.64 127.9 148.1 

lo00 125.7 34.43 120.8 114.8 
300 117.2 82.02 118.7 

- 2)n i. 

0 0  0 - 16.4 15.4 
300 0 0 280 

lo00 0 0 964 949 

however the value of N ,  unchanged. It turned out that these models converged 
very badly as the truncation parameters N, and N, were increased. The values 
given in Table 4 are therefore unfortunately not all of the same accuracy. 
However, the results suggest that there is no reason to hope that the non- 
axisymmetric modes will be more easily excited for thin disks. 

3.2. Models with Dfferent Rotation Curves. 

Now we consider models with different rotation curves, i.e. different values of ro.  
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DYNAMOS WITH A FLAT a-EFFECT 103 

Table5 Marginal dynamo numbers for the 
same model as in Table 2, but with a different 
rotation curve with r,=O.2. The transition from 
rigid to differential rotation occurs for this 
profile closer to the center than in the previous 
models for which we have used r,=0.5 

c, A0 so A1 SI 

- lo00 
- 300 
- 100 

0 
100 
300 

lo00 

- lo00 
- 300 
-100 

0 
I 0 0  
300 

lo00 

591 
1012 
1236 
1386 
1595 
1798 
1948 

0 
0 
0 
0 
0 
6.23 

59.2 

1951 2512 
1775 1934 
1550 1696 
1412 1420 
1283 1556 
1076 1851 
657 2457 

- 9 m l  

k59.3 -670 
0 -177 
0 -35.6 
0 -0.57 
0 46.5 
0 172 
0 677 

2449 
1850 
1557 
1436 
1635 
2048 
2549 

-671 
- 173 
- 46.3 

+0.57 
46.4 

133 
260 

Many galaxies are observed to make the transition from rigid to differential 
rotation quite close to their centers. In Table 5 we give the results for a model 
with ro = 0.2 instead of ro = 0.5 as in the previous case. There is now an even larger 
gap between the marginal dynamo numbers for axisymmetric and non- 
axisymmetric modes in the presence of differential rotation. Comparing the values 
of C ,  for the SO- and S1-modes between C,=O and C,= 1O00, we notice that the 
difference is, in the latter case, larger by a factor of two. According to the 
interpretation of Radler (1986b), the field lines of non-axisymmetric fields are 
wound up by the influence of differential rotation leading so to an enhanced 
dissipation. Whilst the core region is nearly free of differential rotation we have an 
enhanced dissipation of non-axisymmetric modes for r > ro.  In the last case with 
ro=0.2  almost the whole domain is affected. A close inspection of the rotation 
profile of Figure 2 shows that the maximum of dR/dr  is for r0=0.2 about three 
times larger than for ro=0.5.  We see that the differential rotation is obviously also 
here the reason for the large marginal dynamo numbers of non-axisymmetric 
modes. Values of C, for ro = 1.0 are given in Table 6. 

The field geometry of non-axisymmetric fields is hard to visualize (for a 
discussion see Krasheninnikova et al., 1990). One possibility is to adopt the vector 
potential A=Vx( iS )+ iT  In a given plane we can plot contours of that 
component of A, which is perpendicular to this plane. The contour lines 
correspond then to field lines of that part of the field which lies in this plane and 
is divergence-free. In Figure 4 we have plotted contours of A B  in the equatorial 
plane for models with different values of ro and C,= 1OOO. For r0=0.2  there is a 
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104 A. BRANDENBURG ET AL. 

Table6 Marginal dynamo numbers for the 
same model as in Table 2, but the transition 
from rigid to dinerential rotation ocurs for this 
profile at ro=  1.0, i.e. at the boundary between 
the conducting halo and the vacuum exterior 

c, I A0 so A l  s1 
~~ _____ 

-lo00 244 
-300 633 
-100 10525 

0 1386 
100 1603 
300 1854 

lo00 1654 

- 1000 0 
- 300 0 
-100 0 

100 0 
3000 k2.7 

lo00 k93.7 

1657 1762 
1853 1614 
1591 1466 
1412 1420 
1110 1492 
723 1584 
294 1692 

- , f m r  j. 

k93.7 -982 
0 -287 
0 -0.57 
0 93.0 
0 288 
0 981 

1690 
1538 
1492 
1436 
1444 
1613 
1761 

-981 
- 288 

+ 0.57 
91.8 

287 
982 

typical spiral field structure in the outer parts in the sphere. In contrast, for 
ro > 0.5 the field is concentrated close to the center. The reason for this behavior is 
understandable again from Figure 2: the field is located in that region of the 
sphere where the minimum of IdR/dr( occurs. Hence the magnetic field, which is 
generated in the region close to the center, is screened by the differential rotation. 
This effect was already anticipated by Krause (1983) for A-type stars with dynamo 
excitation in their convective cores. 

A particular property of the rotation curves used here is that ldQ/dr( never 
vanishes. This is in contrast to the profiles used by Steenbeck and Krause (1969), 
for which Krause (1971) and Roberts and Stix (1972) found a preference of the S1- 
mode for certain values of C,. From Figure 2 we see that regions with small 
IdR/drl are not only possible for large values of ro, but also when ro is very small. 
It may be that the value ro=0.2, adopted for the model of Table 5, is still too 
large. We have therefore included in Table 7 also some results for ro=O. l .  
Comparing this with the case ro=0.2 we find that the marginal dynamo numbers 
of the axisymmetric modes now increase drastically, whereas those of the non- 
axisymmetric fields decrease only slightly. This is shown more clearly in Figure 5, 
where we have summarized the variation of the marginal dynamo numbers for 
different values of the rotation parameters ro.  It might be desirable to take the 
calculation to still smaller values of ro. However, a higher computational accuracy 
would then also be needed. 

Another visualization of non-axisymmetric fields is given directly by contour 
plots of certain field components. In Figure 6 we have plotted contours of B, in 
an arbitrary meridional plane for the same models as in Figure 4. A negative value 
of B ,  is indicated by a dotted line. Note the rapidly alternating sign of B, for 
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- ... ............................. 
I I I I I 

. . _ _  ..  

Table7 Marginal dynamo numbers for 
the same model as in Table 2 and in 
Table 5, but the transition from rigid to 
differential rotation occurs at ro =O. l .  i.e. 
still closer to the center than in the 
model of Table 5 

1000 
500 

0 

C, A0 SO A1 SI 

- _ _  so 
- .............. ............................... 

I I I I I 

0 1386 1412 1420 1436 
100 1448 1366 1482 1525 
300 1586 1280 1779 1789 

lo00 1841 1043 2364 2240 

9m i. 

0 0 0 -0.57 +0.57 
100 0 0 23.0 24.1 
300 + 1.7 0 90.8 54.1 

lo00 k9.3 0 152 146 

1 0.8 ro 0 0.2 0.4 0.6 

ro=0.2 in the outer parts of the sphere and close to the equator. For ro>0.5 the 
sign of B, is, at least within the equatorial plane, more or less the same. 

The most preferred magnetic field mode was, in the three models considered 
above, of SO-type. The contours of constant B,  for this SO-field are shown in 
Figure 7 in a meridional plane. It was stressed by Krause and Meinel (1988) that 
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only the solution with the smallest marginal dynamo number-here the SO-type 
solution-is stable and physically relevant. On the other hand, further into the 
nonlinear regime other solutions (e.g. ‘mixed solutions’) can also occur (see 
Brandenburg et al., 1989a). This was shown also for galactic nonlinear am- 
dynamos by Moss and Tuominen (1990). They found long-term oscillations 
between AO- and SO-symmetry in axisymmetric models. Since A l -  and S1-modes 
are located between the SO- and AO-modes (for r,>0.4 and C,=300, see Figure 
5) ,  we would expect that non-axisymmetric contributions may be involved in these 
oscillations. 

Because of that possibility we have also studied here the S1-mode, which is 
much harder to excite, in more detail. In Figure 8 we demonstrate the effect of 
increasing differential rotation on the field geometry of the S1-mode. The 
differential rotation is varied from C,= 100 to C,= 1OOO. The phenomenon of field 
lines being wound up is best seen in the last case with C,= 1000. Note that in the 
case of weak differential rotation the field seems still to be concentrated close to 
the center. Only when C, exceeds a value of about 500 does flux expulsion 
towards the outer regions occur. Already from this geometrical appearance one 
might suggest that, if bisymmetric galactic fields are really caused by an 
axisymmetric am-effect, the magnetic Reynolds number for the differential rotation, 
C,, must be of the order of lo3. This is, however, in contradiction with the fact 
that the effective dissipation of non-axisymmetric fields is, under such conditions, 
much higher than for axisymmetric fields. This suggests that the bisymmetric fields 
observed in some galaxies are caused by other important properties, for example 
by an anisotropic or non-axisymmetric a-effect. 

4. CONCLUSIONS 

The results presented here are a first attempt to investigate systematically the 
excitation conditions of simple mean-field dynamos with flat a-effect distribution 
avoiding local approximations. The results for different degrees of flatness and 
various rotation curves seems to exclude the possibility of a preferred non- 
axisymmetric mode under the assumption of an isotropic and axisymmetric a- 
effect. We suggest therefore that one of these restrictions should be relaxed. The 
spherical models by Rudiger (1980) for a non-isotropic a-effect (i.e. s-iB,) show a 
very strong preference for non-axisymmetric modes, which may remain also for flat 
a-effect distributions in the presence of differential rotation. This type of aniso- 
tropy is much better suited for a treatment in cylindrical coordinates (Elstner et al. 
1990). 

The dependence of the marginal dynamo numbers on the thickness of the disk 
and on the shape of the rotation curve does not seem to change the gross behavior 
very much. In most of the cases investigated here a stationary SO-mode is 
preferred, which is in agreement with the models by Stix (1975). We have 
demonstrated that this result is connected with the flat geometry and that an 
oscillatory AO-mode, similar to the Steenbeck-Krause (1969) models, is recovered 
in the non-flat case (zo = 1). 

The rotation curves in galaxies have the property that laO//arl is always different 
from zero, i.e. winding-up of field lines does occur throughout the entire domain. 
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This is one of the reasons why non-axisymmetric modes are hard to excite. Earlier 
results showing a preference of non-axisymmetric modes in spherical models in the 
presence of weak differential rotation are based on rotation curves for which 
l&2/drl vanishes in most parts of the sphere. This finding therefore does not apply to 
galaxies. Another important difference is the degree of overlap between the a- and 
o-effect induction layers. In the case of an overlap, a weak differential rotation can 
already decrease the marginal dynamo number of axisymmetric fields substantially 
and so make non-axisymmetric fields comparably harder to excite. The opposite is 
the case for models with a gap between the two induction layers. At present there 
is, however, no observational evidence for such a gap in galaxies. Finally, we want 
to mention that models with other rotation curves should be investigated too, in 
particular for the case of smaller values of r,, than was possible in the present 
study. 
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