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THE NONLINEAR SOLAR DYNAMO AND DIFFERENTIAL
ROTATION: A TAYLOR NUMBER PUZZLE?

A. BRANDENBURG!, D. MOSS'-2, G. RUDIGER?, and I. TUOMINEN

(Received 9 August, 1989; in revised form 29 September 1989)

Abstract. We consider dynamically consistent mean-field dynamos in a spherical shell of incompressible
fluid. The generation of magnetic field and differential rotation is parameterized by the a- and A-effects,
respectively. Extending previous investigations, we include now the cases of moderate and rapid rotation
in the sense that the inverse Rossby number can approach or exceed unity. This can lead to disk-shaped
Q-contours, which are in better accordance with recent results of helioseismology than cylindrical
Q-contours. On the other hand, in order to obtain aw-dynamo cycles the Taylor number has to be so large,
that eventually cylindrical Q-contours become unavoidable (cf. Taylor—Proudman theorem). We discuss the
different possibilities in a state diagram, where the inverse Rossby number and the relative correlation length
are taken as the elementary parameters for mean-field dynamos.

1. Introduction

The nature of the solar dynamo has become a matter of debate since recent results of
helioseismology provided new constraints for the internal angular velocity of the Sun
(e.g., Brown and Morrow, 1987 ; Libbrecht, 1988 ; Dziembowski, Goode, and Libbrecht,
1989). Attempts have been made to develop models that account for these new
constraints (cf. Gilman, Morrow, and DeLuca, 1989). In the present paper we discuss
how far we can understand the solar dynamo in terms of the traditional aw- concept
by including also the momentum equation for the mean motion.

Many features of the solar magnetic field can be reproduced already in the framework
of kinematic (linear) dynamo models where the profiles for - and w-effect are prescribed
according to results from the mixing-length approach and from helioseismology, respec-
tively (cf. Brandenburg and Tuominen, 1988). However, the nonlinear nature of the solar
dynamo is also quite apparent. The variation of sunspot number is aperiodic and the
occurrence of grand minima is irregular. The number of sunspots in the northern and
southern hemisphere is not the same and there is evidence for long-term variations of
the symmetry properties of the solar mean magnetic field (Brandenburg et al., 1989;
Brandenburg, Krause, and Tuominen, 1989).

Also from a theoretical point of view one ‘needs’ nonlinear effects, because the
dynamo equation (cf. Krause and Radler, 1980)

0 (BY/ot = curl({u) x (BY + a{B) — y,curl (B)), (1)

with constant macro- and micro-velocity fields, is linear in {( B) and the solution is,
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therefore, proportional to e* (A is complex). The molecular magnetic diffusivity is
neglected compared with the turbulent magnetic diffusivity, #,. For sufficiently strong
(supercritical) a the exponential growth of (B> can only be halted by a nonlinear
feedback, either on « or on the mean velocity {u). In both cases the feedback comes
via the Lorentz force terms in the momentum equation. In the following we shall
distinguish between these feedbacks by referring to them as micro- and macro-feedback,
respectively, because « is affected by the Lorentz force acting on the small-scale motions
while (u) represents the large scale motions.

The micro-feedback is quantitatively not very well understood and it would, therefore,
be helpful if its importance relative to that of the macro-feedback was small. (This may
or may not be true in practice!) This point will be examined in the first section. The role
of the mean-field momentum equation is not only that it provides the macro-feedback,
but also that it determines the differential rotation law. As a simplification the differential
rotation has often been taken from the observations rather than being computed as a
self-consistent solution of the momentum equation.

In the framework of mean-field theory the differential rotation can be generated by
the non-diffusive parts of the Reynolds stress tensor components {u, uy,» and {uguy)
which are parameterized by the A-effect, i.e., by 4, and A,,, respectively. (Primes refer
to the fluctuating quantities.) We follow here the concept introduced by Riidiger (1980,
1989). Dynamo models with constant A, and vanishing 4,, have been recently investi-
gated by Brandenburg ef al. (1990, hereafter Paper I) and the basic results will be
discussed in Section 3. The assumption of neglecting {uyu ), and thereby also of 4,
is appropriate in the case of slow rotation, in the sense that Ro~! = 2Q,1.,. < 1. This
1s not justified for the Sun. We shall, therefore, extend our previous models to the case
of moderate rotation, including the effect of A,,. Our conclusions will be given in the
last section.

2. The Relative Importance of Micro- and Macro-Feedback

The quantities « and #, in Equation (1) parameterize the correlation between the fluc-
tuations u’ and B’ with

(u' xB") =a(B) - n,curl (B )

(Krause and Rédler, 1980). We neglect here the possibility that « and #, can be tensors.
However, there can be a functional dependence of « (and #,) on (B} (Rudiger, 1974;
Roberts and Soward, 1975) which is complicated and unfortunately also still not
well-determined for solar and stellar conditions. The approximate result for weak fields
is

o= oo(1— (B)?/B3), 3)
where ay ~ QI cos 0 is a correlation length. B? is related to the turbulent pressure
BYju~ pu? )

(Kleeorin and Ruzmaikin, 1982). The r.m.s.-velocity of the turbulence, «,, does not
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directly enter into the mean-field equations, but only via the turbulent magnetic
diffusivity

r’t = Cr]uzl ’ (5)

where C, is a factor typically between 3 and ;5 (Parker, 1979). Inserting u, from
Equation (5) into Equation (4) we find

B~ oz ' (upn?/R?), (6)

where az = C2¢? and & = J/R is the correlation length relative to the solar radius R.

From now on we shall use only dimensionless quantities, measuring length in units
of R and time in units of the turbulent diffusion time R?/#,. Velocity (and «) is measured
in units of #,/R and B in units of #,/R \/u—p Equation (3) becomes then

a=C, cos0(1 - az (B)?), @)

where we have introduced the abbreviation C, = 3 P,, Ta'/2¢. Here, Ta = (2Q,R?/v,)?
is the Taylor number and P,, = v,/#, the turbulent magnetic Prandtl number (v, is
kinematic turbulent viscosity). For simplicity we assume the quantities v,, #,, &,, and
I to be constant. Physically we expect « — 0 as { B) — co. As a numerically convenient
extension of Equation (7) for arbitrary field strength we adopt in the following the form
a=C,cosb/(1+ ag (B>?).

The total energy of the mean magnetic field, £ = %j {B)? dV, grows approximately
linearly with C, (see Figure 8(a) and Figure 9(a) in Brandenburg ez al., 1989). For the
a*-dynamo we find the following scaling approximations:

E~0.12(C,£)"*(C, - C$Y) (micro-feedback), (8)
E~54(C, - C¥) (macro-feedback), %)

where C¢? is the marginal dynamo number for the antisymmetric (4-type or dipole-type)
solution. The importance of the micro- and macro-feedback terms is equal when
¢= ¢ ®0.05/C, = 0.15...0.5, depending on the value chosen for C,. Macro-
feedback dominates over micro-feedback for small values of £, For oscillatory
aw-dynamos the scaling approximations are:

E~1.6x107%(C,¢)~3(C, - C{Y)C,, (micro-feedback), (10)
E=~0.37(C, - C)0.7V®P_Ta'’? (macro-feedback) (11)

(see Figure 11 in Brandenburg, Krause, and Tuominen, 1989 and Table 8 in
Brandenburg et al., 1990). In the case of Equation (11) the differential rotation is
generated by the A-effect, for which in a full sphere C,~x 0.7V®P, Ta'/?. The
micro- to macro-feedback terms are of comparable importance when &= ¢, ~
~ 0.02/C, = 0.06...0.2, that is for a given value of ¢ the aw-dynamo is more sensitive
to micro-feedback than then a2-dynamo.

When [/ is identified with the mixing-length from standard solar envelope models we
have at the bottom of the convection zone ¢ 0.13. Thus the importance of both
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feedbacks is then roughly equal. In upper layers with ¢ < £_;, the macro-feedback may
play a more important role. However, it is not justified to draw detailed conclusions for
the Sun, because the models with macro-feedback are based on an incompressible fluid.

So far ¢is, in principle, a free parameter. As mentioned above, & might be chosen to
be in agreement with the value for the solar convection zone at some level. No further
constraints on ¢ exists for these models. In the next section we shall see that the
mechanism for the generation of differential rotation also involves ¢ as a parameter,

which leads then to a further constraint.

3. Dynamos with Differential Rotation

3.1. THE BASIC EQUATIONS

Here, as in Paper I, we consider the initial value problem of an incompressible, and
conducting fluid with constant density, p, in a rotating shell with inner and outer radii
R, and R, respectively. We solve the dynamo equation (1) together with the momentum
equation in an inertial frame of reference, starting with a rigid rotation with angular
velocity, €,, and a weak ‘seed’ magnetic field. The momentum equation for the mean
fields is, in dimensionless form,

D<{ud
Dt

where 2 is a reduced pressure (including gravitational potential and turbulent magnetic
pressure). Similarly to the o-effect in the induction equation, the new terms
2; = {uju; » and %, = {(B;B; ) now appear. As in Paper I we neglect 2 and adopt
for 2 the form

= -V2- (B> x curl (B — div(2 - &), (12)

’Qij = Aiijk - ]szklal {ugy s (13)

where Q = Z{u,,) /r sin f and 2 is the unit vector along the axis of rotation. The second
term on the right-hand side of Equation (13) describes a diffusive transport of angular
momentum. The tensor N, is in general anisotropic. For simplicity we neglect here such
effects and take Ny, = P, (0,0, + 0,0,) + ... (here, the dots indicate the presence of
a further term proportional to 0,0, which, however, gives no contribution for a
solenoidal flow). In Equation (12) the molecular kinematic viscosity is neglected against
v,. The A-term depends essentially on the anisotropic nature of the turbulence. Riidiger
(1980) employed an expansion for A which is, in dimensionless form,

4,2=(AQ),,/sinf = P, (VO + VVsin>0 + ...)Q,
A Q= (AQ)g,/cos0 =P, (HVsin?6 + ...)Q.

(14)

V(@ is of order of unity and V® and HV are expected to scale quadratically with the
inverse Rossby number

Ro~!'=2Q,1,

or

= P, Ta'C,¢>. (15)
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Introducing a scaling factor { we write V(? = H" = {2 Ro~ 2. Using the definition of
C,wehave Ro~! = 2C,a}/?. From this expression we see that the micro-feedback and
the higher-order terms in the A-effect become simultaneously important (i.e., az = O(1)
and ¥ = H® = 0(1)) when { = {_,;, = (2C,) . The results for C, and {* Ro~ 2 for
different values of Ta and ¢ are given in Table I.

TABLE 1

The scaling results for C, and Ro~? for different values of Ta and ¢ for C, = 0.32. The values for
C, =5 are marked in bold (see text).

op — 10~ 10-3 10-5 10-7
P2 Tal| E=1 0.01 0.01 0.001
102 5 10 05 10-3 005 1077 0.005 1011
10* 50 103 5 107! 0.5 10-3 005 107°
106 500 10 50 10 5 1073 05 1077
108 5000 107 500 10 50 101 5 10-5

Our previous dynamo models of Paper I, where only macro-feedback is considered,
have been computed for slightly supercritical values of C, between 5 and 15 (depending
on the Taylor number). Table I shows that the corresponding values of & vary between
1 (for Ta = 10?) and 10~ 3 (for Ta = 10®). The related values of ¥V and H® vary
between 1 and 10~ 5. In this sense higher order terms in the A-effect seem to be negligible
for Ta > 10°. This is at first glance surprising, since one would expect that large Taylor
numbers and large inverse Rossby numbers correspond to the same limit. (Note,
however, that this is a consequence of treating only slightly supercritical values of C,.)

3.2. DISK-SHAPED £2-CONTOURS

In the case of large Taylor numbers the contours of constant angular velocity lie on
cylinders. This is not in agreement with recent results of helioseismology (Libbrecht,
1988 ; Brown and Morrow, 1987) and such models fail, therefore, to explain the geometry
of the solar angular velocity, which seems to be more ‘disk-shaped’ than cylindrical.

Disk-shaped angular velocity profiles results when higher-order terms in the A-effect
are taken into account (Rudiger, 1989; Tuominen and Riidiger, 1989). In Figure 1
(upper row) we show the Q-contours for various Taylor numbers for the case V@ = — 1
and VY = HW = 1 and with ¢ being small enough so that no magnetic field is generated.
For small values of Ta the angular velocity is clearly a function of z = r cos 6. Note that
the angular velocity is constant in the equatorial plane. Furthermore, it becomes evident
that the disk-shaped Q2-contours change to cylindrical contours as Ta is increased. The
transition from disk-shaped to cylindrical contours happens between Ta = 10* and
Ta = 108. It seems, therefore, that, assuming our model with its many simplifications
has some validity, then in the Sun the Taylor number cannot exceed a value of about
10°. This corresponds to a value of v, & 10!* cm? s !, i.e., about one order of magnitude
higher than the values usually adopted.
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FRo™=1.0  ¢FRo™®=15

Fig. 1. Contours of constant Q for different Taylor numbers (upper row, for {Ro~! = 1) and different
values of {Ro~ ! (lower row, for Ta = 10*). V@ = —1.

Since disk-shaped contours are favoured as { Ro~! increases one might guess that
one might delay the onset of the Taylor—Proudman effect by increasing { Ro~! suf-
ficiently. This is, however, not the case. In Figure 1 (lower row) we have plotted
Q-contours for different values of { Ro~!, keeping Ta = 10* and V® = - 1. For
0 < {Ro~! <1 we have the interesting case of equatorial acceleration together. with
0Q/or < 0. For {Ro~! > 1 there is a certain latitude where §Q/dr ~ 0. (This position
moves away from the equator as Ro ™! is increased.) This case was discussed already
by Kichatinov (1987). For {? Ro~2 2 2 the Q-contours tend to be cylindrical even for
relatively small Taylor numbers. Thus, for the Sun we expect {Ro~! ~ 1, or slightly
larger.

3.3. DYNAMOS WITH DISK-SHAPED £2-CONTOURS

We investigate now the possibility of dynamo action for the case where the Q-contours
are disk-shaped and we take therefore ¥® = — 1 and { Ro~! = 1. The dynamo starts
to operate for Ta = 10* when ¢ = 0.28 and C, { = 0.13, where we have assumed P,, = 1.
This corresponds to C, = 14. The resulting field and flow configuration is displayed in
Figure 2. Note the concentration of magnetic energy close to the poles. The field is
stationary, but becomes oscillatory for C, = 20, i.e., for { > 0.4 and C, { < 0.06. Snap-
shots for such a solution are given in the last three columns of Figure 2. The field
geometry and the strong gradients of the angular velocity at the poles due to the magnetic
feedback are unrealistic for solar application.

From previous investigations (Paper I) it is clear that magnetic cycles with field
migration close to the equator are possible only if P2, Ta = 107, In order to keep still
the disk-shaped Q-contours we are forced to have Ta < 10*-5 in other words
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¢,=20,a C,=20,b (,=20,

Fig. 2. The field geometry for models with different values of C, with ¥® = — 1 and {Ro~! = 1. In the

first row the magnetic field lines of the poloidal field are plotted, in the second row contours of constant

toroidal field, in the third row stream lines of the meridional motion, and in the last row contours of constant

angular velocity. Dashed contours refer to negative values (or poleward circulation in the third row). In the

last three columns are snapshots (a, b, and c) for C, = 20. The time difference between each of them is
0.085.

P, = 10...100. It is not only theoretically rather hopeless to explain such an extreme
value for the (turbulent) magnetic Prandtl number, but also does not even lead to the
expected oscillatory dynamo solutions.

4. Discussion

The present investigations have shown that already simple incompressible dynamo
models with dynamically constrained differential rotation and meridional circulation
can illuminate some problems of the solar dynamo. The micro-feedback and higher
order terms in the A-effects complicates the situation, because new unknown
parameters are involved. Including various scaling dependencies of the different mean-
field transport coefficients reduces the number of free parameters or at least puts limits
to them. This becomes additionally important once even more ill-known parameters are
included. For example, not only « but also #, and, in particular, also A can be quenched
by the magnetic field (Kichatinov, 1988; Riidiger and Kichatinov, 1990).

It seems that the solar disk-shaped Q-contours provide an important contraint for
hydromagnetic dynamo models. However, there is a dilemma: one wants the Q-effect
(differential rotation) to be strong enough to allow oscillatory dynamo solutions with
field migration close to the equator. This requires also a rapid rotation, i.e., a high Taylor
number. On the other hand one wants the Taylor number to be sufficiently small,
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because otherwise disk-shaped Q-contours become impossible. Thus, obviously, the
solar dynamo operates in a regime of intermediate rotation rate.

It appears useful to take the relative correlation length, & and the inverse Rossby
number, Ro ™!, as the elementary parameters of the dynamo. Additionally, C,, ( and
P,, have to be specified (but these values should not deviate by more than one order
of magnitude from unity). We discuss the different possibilities for dynamos in a (&,
Ro ~1)-diagram (Figure 3). Dynamo action becomes possible for dynamo numbers
C,Co~Ro™2C, 272 2 10%: this condition is fulfilled in the shaded areas of the
diagram. Furthermore, cylindrical Q-contours can be avoided only for
Ta~Ro™2C, 2¢~*P, % 5 10% These two constraints leave a thin strip in the (¢
Ro ™ !)-diagram. However, the left-hand part cannot apply to the Sun, because the
latitudinal differential rotation is too weak (cf. Paper I). To the right-hand side of the
strip the ratio C,/C, ~ & becomes too large and leads so eventually to a stationary
a*-dynamo.

g no dynamo .o steady
dynamo

== oscillatory #y
disk-shaped

Ro 1 1 °
Fig. 3. A schematic state diagram for dynamos. For the Sun various constraints on an oscillatory dynamo

with disk-shaped Q-contours must determine the values for ¢ and Ro ~ . The question mark after ‘oscillatory
disk-shaped’ on the figure refers to the conjectural nature of such a dynamo state.

In the framework of incompressible mean-field models it has not been possible so far
to solve this Taylor number puzzle of oscillatory dynamos. We expect that including
more physics, such as stratification and thermodynamics, will alter some of the results
substantially. For example, at the bottom of the convection zone v, is small and the
effective Taylor number (locally) large. Thus, large radial 2-gradients may occur which
can cause an oscillatory dynamo. However, one may hope that the (£, Ro = ')-diagram
remains qualitatively correct in the sense that the solar dynamo, due to stratification,
operates in different (£, Ro ™ !)-states simultaneously.
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