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Abstract. We present results of simulating turbulent three-
dimensional magneto-convection under the influence of rotation
for a layer whose depth is about one pressure scale height. The
fluid is assumed to be a compressible conducting perfect gas.
The axis of rotation and the direction of gravity are parallel and
oriented downwards. That is, our model may be compared with
a location at the southern pole of the Sun. For 300 times super-
critical Rayleigh numbers irregular variations of the magnetic
field and velocity pattern occur on a time scale comparable with
the rotation period (which corresponds to about five turnover
times and about two Alfvén times). We find a systematic sep-
aration of positive and negative kinetic helicity, (' - &) (with
' = curld), in the upper and lower layers of the model, which
is obviously due to the influence of rotation. Magnetic helicity,
(J' - B'), has a similar variation with depth, but the sign is
opposite to that of the kinetic helicity. The mean electromotive
force (#’ x B') is directed downwards in the upper layers and
upwards in the lower layers, whilst the mean magnetic field (B)
is mainly directed downwards. This may be described by an
a-effect with (&' x B’) = a(B), where o is positive in the upper
part and negative in the lower part. o determined in this way
is roughly equal to 0.1t (@’ - &), where 7 is the correlation time.
Traditional results for the a-effect in mean-field dynamo theory
give a negative proportionality to the kinetic helicity. We argue
that the positive proportionality found from the simulations is
a topological consequence of the particular way field lines are
being twisted by the flow.
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1. Introduction

The hydrodynamics of stellar convection zones is still very poorly
understood. One reason is that the Rayleigh and Reynolds num-
bers in these regions are extremely high, and are far from being
accessible by laboratory experiments or numerical simulations.
Order-of-magnitude estimates and coarse numerical simulations
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are the only practicable approaches for the computation of stellar
models. It may appear surprising that standard mixing length
models give satisfactory results for many stars by adjusting a
single parameter, which, in addition, turns out to be close to
unity. However, as shown by Gough & Weiss (1976), the only im-
portant effect of the mixing length parameter in envelope models
is to determine the entropy jump, which occurs in a very thin
layer close to the surface for non-giant stars. Models calculated
with different formulations of the mixing length estimates, but
calibrated to a given radius and luminosity, have practically the
same entropy jumps, and only the detailed structure of the thin
superadiabatic layer differs.

Less success is achieved when the mixing length concept
is employed in dynamo theory. Mixing length estimates for
the turbulent magnetic diffusivity #, and, in particular, for the
strength of the a-effect (Steenbeck et al., 1966), give results which
are several orders of magnitude larger than what is needed
for traditional kinematic «Q2-dynamos to produce the 22-year
magnetic cycle period of the Sun. It is possible to obtain realistic
models for the solar cycle, with the observed large-scale field
geometry and migration properties, but « and x; have to be
reduced by factors of about 200 and 10, respectively, compared
to mixing length estimates (Brandenburg and Tuominen, 1988).
The question is whether this discrepancy is really only a matter
of appropriate scaling factors, or whether the underlying physics
is seriously misunderstood.

Self-consistent stellar dynamo models have been computed
by Gilman and Miller (1981), Gilman (1983), Glatzmaier (1985)
and others. They find generation of global magnetic fields and a
generation of differential rotation with a positive radial gradient
(0Q/0r > 0), which results in toroidal magnetic field belts
migrating towards the poles. rather than towards the equator
as in the Sun. These models have angular velocities which are
nearly constant on cylindrical surfaces (cf. the Taylor-Proudman
theorem), which seems to be inconsistent with the increasingly
accurate measurements of the internal rotation of the Sun (cf.
Libbrecht, 1988, and other papers in the same proceedings).
A possible reason for this discrepancy may be the insufficient
resolution of the small scales in the models (cf. Nordlund, 1985).
The smallest horizontal scale resolved by Gilman (1983) and
Glatzmaier (1985) is about 100 Mm, which is the scale of giant
cells. Near the solar surface, most of the convective flux is carried
by motions on the scale of a few Mm, with larger scale motions
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from deeper layers superimposed. The dominant feature of these
motions are isolated, fast, filamentary, and twisting downdrafts
that merge into successively larger scale downdrafts with depth
(Stein & Nordlund, 1989). To describe motions on such scales in
models of the global convection zone is presently not possible.
To address these major problems of dynamo theory using ab
initio computer simulations is a formidable task, that may not
be achievable for a number of years.

On the other hand, mean-field models for the dynamo and
the differential rotation would provide a powerful approach, if
only the theory of the turbulent transport coefficients could be
relied upon. For example, analytical models for the small-scale
turbulent motions by Riidiger (1980) give expressions for the
Reynolds stresses which may lead to a negative radial gradient
of Q and also to equatorwards migrating toroidal field belts.
Furthermore the contours of constant angular velocity are no
longer cylindrical, but may be “disk-shaped”, when higher order
parameters are included (Tuominen & Riidiger, 1989; Riidiger,
1989).

Turbulent transport coefficients (like turbulent diffusivity
and the a-effect) describe the dependence of certain correlation
functions on the mean magnetic field, the mean velocity, and other
quantities. The question is, whether it is possible to determine
these coefficients by means of direct computer simulations of
convection in a small test domain, which is thus considered to
represent the conditions in a part of a stellar convection zone.
This is not a simple task, and it may even be an impossible
one. The situation is similar to the problem of subgrid-scale
modeling in codes for solving the Navier-Stokes equations. Due
to the nonlinear terms, energy is transferred towards smaller and
smaller scales continuing down to the dissipation length. If this
scale is not resolved by the code, kinetic energy accumulates in
the smallest scales resolved. To avoid this, one may either simply
use enhanced molecular viscosities, introduce a flow-dependent
turbulent viscosity, or else resort to numerical methods that
directly prevent accumulation of too much kinetic energy in the
smallest scales. The question is how applicable such methods are
in MHD cases. Here we use an enhanced molecular viscosity,
because it leads to a well posed problem, and quantitative
comparisons with previous work can be made.

We expect that turbulent diffusivities and other mean-field
transport coefficients should, in some sense, always be related
to the scale on which they are used. For example, a model
with 100 gridpoints in one direction is limited to a Reynolds
number of about 100, if we restrict ourselves to a maximal grid
Reynolds number of about unity. Similarly, the Taylor number
should not exceed a value of about 1002. For a model with
solar rotation rate @ = 3 x 107%~! and an extension of, e.g.,
d = 100 Mm the “effective viscosity” (corresponding to Ta = 10%)
is 2Ta=1/2Q4d? ~ 5 x 10'2cm?/s. The turbulent viscosity in the
Sun is expected to be anisotropic on large scales (cf. Kippenhahn,
1963). The strength and direction of such anisotropies depend
on the rotation rate and the properties of the turbulence and
may be obtained, in principle, from computer simulations. We
anticipate that on sufficiently small scales the effective viscosity
is approximately isotropic and may then be replaced by the
expressions valid for the molecular viscosity.

Mean-field transport coefficients, such as the a-effect, have
often been derived from simple MHD-flows which arise from
various linear instabilities (e.g. Soward, 1979; Brestensky &
Raédler, 1989). On the other hand it is also possible to compute
directly magnetic field generation and dynamo action as a result

of convective motions (Childress & Soward, 1972; Fautrelle
& Childress, 1982). Recently, Meneguzzi and Pouquet (1989)
investigated turbulent convective dynamo action by means of
direct 3-D simulations in a shallow layer of incompressible fluid
with and without rotation. Our present work is related to that
of Meneguzzi and Pouquet. The main differences are that we
allow the fluid to be compressible and we assume a vanishing
horizontal magnetic field at the boundaries. We take an initially
vertical homogeneous magnetic field, rather than only a weak
seed-field, as in the computations of Meneguzzi and Pouquet,
because we are here mainly interested in deriving an o-effect
rather than simulating a self-excited dynamo. Here, in contrast
to the cases studied by Meneguzzi and Pouquet, rotation seems
to play an important role, because it leads to a systematic
separation of regions with positive and negative helicities, which
is important for the a-effect.

This paper is arranged as follows: in Sect. 2 we review the
basic equations and boundary conditions defining the mathemat-
ical problem. We then describe various 2-D test calculations and
comparisons with previous results by Hurlburt et al. (1984) and
Hurlburt & Toomre (1988). In Sect. 4 we describe the results of
our 3-D runs and discuss the relevance for a-effect dynamos in
Sect. 5. In the last section we give the conclusions.

2. The model

We consider a fully compressible fluid heated from below taking
the dynamical effects of magnetic fields and rotation into account.
We are interested in the lower layers of the convection zone and
we may therefore neglect radiation. On the other hand, we need
the presence of heat conduction and viscosity in order to keep
the Rayleigh number finite. We take constant coefficients " and
1 for heat conduction and shear viscosity, which allows direct
comparisons with previous models by Hurlburt and Toomre
(1988). However, this leads to a strong variation of the local
Rayleigh number with height, and it may be more reasonable to
instead treat the kinematic viscosity v = pu/p as a constant (and
similarly k = % /yp). For the present runs, which cover only one
scale height, the variation of the local Rayleigh number with
height is perhaps not so critical.

We assume all variables to be periodic in the horizontal
direction. This is numerically convenient and avoids artificial
boundaries. However, it is then impossible to include the cen-
trifugal force in the momentum equation. In some of the cases
considered below this approximation may not be strictly justifi-
able as the centrifugal force may not be small compared to other
horizontal forces. (It is, of course, always negligible compared to
gravity.) However, we do not feel that this neglect influences our
general results about the nature of the turbulent motions.

2.1. Basic equations

We solve the equations for conservation of mass, momentum,
energy, and the induction equation in the form

Dilnp .

Dt +diva =0, 1)
1 1

D P nptg—20 xu+ 1J x B+ LDivs, @)

Dt p p p
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Dt = '—% divu+ 7 VZe + Qvisc + QJoules (3)
B

ac’i_t =curl(u x B—J /o), 4)

where e is the specific internal energy of the gas which we
assume to be ideal, ie. p/p = (y — 1)e, where y is the ratio of the
specific heats ¢, and c,, respectively. (c, and c, are assumed to
be constant.) In the following we assume y = 5/3.

The stress tensor 7 is

Tij = uluij + uji — %éijdivu), 5)

where commas denote derivatives and index 3 refers to the
z-direction. In the case of constant u we simply have

Divet = u(Viu + %grad divu). (6)
Qvisc 18 the rate of viscous heating
Ovisc = TijUij/p, @]

which is given explicitly by

Ovisc =§ (w12 + u1)* + (w23 + u32)® + (u3 1 +u13)? @
+20ui ; +u3, +u33) — F(diva)?].

Ojoute = J%/po is the rate of Joule heating per unit mass,
where J = curl B/ug is the electric current and o the electric
conductivity. The condition divB = 0 has to be satisfied by the
initial field.

2.2. The initial and boundary conditions

For reasons of comparison we have computed all our models
with the same boundary conditions as Hurlburt and Toomre
(1988). The initial mean state is a polytropic stratification with
the polytropic index m = 1 and a constant, vertically oriented
magnetic field By. The initial profiles for p and e are given by
p=po(z/z0)", and e=gz/[(y —1)(m+1)], (&)
where pg is the initial density at the top layer z = zy. The initial
state is then specified by po and g. The vertical coordinate z in-
creases downwards. The degree of stratification is parameterized
by the density contrast y = p(zg + d)/p(z0) = (1 + d/zp)™. The
number of pressure scale heights covered by the model is then
np = Alnp = I'lny, where I' = (m+ 1)/m.

As the thermal boundary condition we keep the temperature
on the top layer constant and prescribe the vertical gradient of e
on the bottom, i.e.

e=gzo/[(y —(m+1)] on z=z,

(10)
de/dz =g/[(y —1)(m+1)] on

z =2z9+d.

In order to facilitate comparison with Hurlburt and Toomre we
choose pg =1 and g/[(y — 1)(m + 1)] = 1. We take the depth of
the layer d = 1, which automatically determines the time unit to
be [(y — 1)(m+1)d/ g]l/ 2 This is related to the sound travel time
across the layer, _[ dz /c, which is 2()(1/2’”—1)[y(y—-1)()(1/’”—1)]_1/2
in these units (e.g. 0.79 for y = 2 and 1.39 for y = 11). Here,
¢ is the adiabatic speed of sound with ¢ = y(y — 1)e . In the
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following we shall refer sometimes to “sound travel time” and
mean by that the time unit as defined above.

The initial velocity field consists of a combination of a cellular
flow and a random perturbation. We exclude penetration and
require the horizontal components of viscous and magnetic stress
to vanish at both boundaries, i.e.

uz=up3=u3=0

(11)
Bi=B,=0

} at z = zg,z9 + d.

From divB = 0 it follows that B33 = 0 at z = zp,z9 + d.
Such closed boundary conditions are perhaps not quite adequate
for simulating a “test volume” in the convection zone but it
is difficult to formulate physically correct open conditions for
MHD-flows. We feel that it may be more important to consider
these simulations as a well posed problem, rather than as a “toy
box”.

2.3. The numerical method

We solve the equations (1)-(4) numerically, using a modification
of the code by Nordlund and Stein (1989), which employs
a second order Adams-Bashforth time advance and spatial
derivatives calculated from cubic splines. Since the density can
vary substantially over the layer it is convenient to use Inp instead
of p as one dependent variable. The other dependent variables
are u, e, and B. We use a Cartesian (x, y,z) coordinate system,
where z increases downwards. € is also directed downwards,
which corresponds to the situation at the southern pole of the
Sun. A uniform z-mesh is used for simplicity. The time step is
constantly adjusted to approximately 20% of the Courant time.

The main differences from previous calculations by Nordlund
and Stein are the following: their artificial diffusion is replaced
by the expressions for molecular viscosity and heat conduction;
their penetrating boundaries are changed into impenetrable
boundaries; radiation transfer is neglected; and the equation of
state is that of a perfect gas. Instead of assuming natural splines
(vanishing second derivative on the boundaries), we use a spline
boundary condition for the first derivative, which is computed
from a third order one-sided derivative. A fiducial upper layer
(Stein et al., 1989) is not present.

Most of the calculations were carried out on the CRAY
XMP-14 and on the CRAY XMP-EA/432 of the National
Computing Center of Finland. For a resolution of 31 x 31 x 63
gridpoints the code needs, in the present form, approximately 0.8
sec of CPU time per time step and approximately 1.6 Mwords of
memory. About 480 time steps are necessary to cover one sound
travel time.

2.4. Horizontal averages

In the following we shall often refer to horizontal mean values
which we define as

<f>=fdxdyf/fdxdy,

where the integration is taken over the whole x — y domain. This
definition of the averages implies that the Reynolds rules hold.
All differential operators commute with the averaging operator
and the average of x and y derivatives vanish, ie.

(12)
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(0f /0x) = 0(f)/0x = 0,

(0f Joy) = 0(f) /0y =0,
(0f /0z) = 0(f)/0z.

(13)

Since div(B) = divB = 0, these equations immediately imply
that (B,) is independent of z. With reference to the induction
equation (4) we note that d(B,)/0t must also vanish, because on
the right hand side of Eq. (4) only x and y derivatives occur, for
which the average vanishes. We have therefore
(B;) = const = B, (14)
ie. (B;) is independent of z and ¢ Note that the periodic
boundary conditions for B conserve the vertical magnetic flux,
ie. (dxdy B; = const.

2.5. Dimensionless quantities

It is convenient to discuss properties of different models in terms
of non-dimensional numbers. The most important one is the
Rayleigh number,

gd* ds©

Ra kv dz’

(15)

where kK = A /yp is the coefficient of thermal (or radiative)
conductivity, v = p/p the kinematic viscosity, and s© the entropy
of the initial stratification. The entropy is measured in units of
cp with s = In(p'/? /p). The entropy gradient for the initial
stratification is given by ds©/dz = [1 — (m + 1)(1 — 1/y)]d/z.
Note that (Ra/Pr)!/2 is the ratio of the diffusive time scale,
14 = d%/v, to the convective time scale, 7. =| Ngy |~!, where
Nﬁv = —gds/dz is the square of the local (generalized) Brunt-
Viisdld frequency. Pr = v/k is the Prandtl number and in all
cases considered in this paper we keep Pr = 1. From now on
Ra denotes the Rayleigh number evaluated in the middle of the
layer. In practice we prescribe Ra and determine x and v for a
given stratification using Eq (15).

The strength of the initial vertical magnetic field is measured
by the Chandrasekhar number,

B2 d? 2

Q= —— = (va0d/v0)" Pm, (16)
Ko un

and the rotation rate is measured by the Taylor number,

Ta = (2Qd? /vg)>. (17)

(Note that g is the induction constant and u the viscosity.) v4
is the initial Alfvén velocity at z = zo with vy = (B?/uop)!/>.
Pm = vg/n is the magnetic Prandtl number, where n = 1/ugo and
vo = u/po denotes the kinematic viscosity at the top layer for
the initial stratification. (The magnetic Prandtl number used by
Hurlburt and Toomre (1988) is { = n/k = Pr /Pp,.) The relative
strength of the Lorentz force and the Coriolis force is given by
the Elsasser number, El=0/Ta!/2,

In addition to the control parameters Ra, Q, and Ta, the
system is determined by the two Prandtl numbers, Pr and Py,
the stratification parameter y, and by the ratio 4 of the width to
the height of the box (aspect ratio).

The strength of the resulting convection is measured by the
Nusselt number,

Nu = (Frot — Fag) /(F) — Foa),

rad (18)

where Fiot = Fcony + Frad + Fin + Fvise. The various fluxes are
defined as positive quantities when flux is directed upwards.
Feonv = —y{peus) is the convective flux, Fyj, = —%(pu2u3) the
kinetic flux, Fyjsc = (ujt;3) the viscous flux, and Fr,q = A 0(e)/0z
the radiative flux. Fr(g()1 = A Ale)/Az is the radiative flux, for a
linear variation of e with depth, and F,q = # (3{e)/0z)aq is the
radiative flux for an adiabatic stratification.

The mean convective or turbulent velocity u; = ((u?))1/? is
measured by the Mach number, Ma = u;/c, where the double
angular brackets denote a combined horizontal and vertical
average. The importance of advection relative to diffusion is
measured by the Reynolds number Re = u;d/vy, whilst the
importance of advection relative to rotation is measured by the
Rossby number, Ro = Re/Tal/2,

3. Results of calculations in 2-D

In this section we discuss statistical properties of flows for
different values of Ra, Ta, and y, obtained in the two dimensional
approximation. We compare some of these results with models
of Hurlburt et al. For all cases in this section where a magnetic
field is included we assume Q = 72 and Py = 4, ie. { = 0.25,
which was also considered by Hurlburt & Toomre.

3.1. Test-computations in 2-D with Q = B =0

We first performed calculations for an isothermal atmosphere
neglecting rotation and magnetic fields. After introducing a
local disturbance in entropy we observed evolving Brunt-Viisélad
oscillations and gravity waves. We found good quantitative
agreement with predictions from the linear theory of local
perturbations in an isothermal atmosphere (Brandenburg, 1988).

Next we studied an unstable stratified polytropic layer, with
a density contrast y = 1.5, taking Rayleigh numbers between
103 and 10°. In all cases a stationary final state developed.
Table 1 summarizes our results for the Nusselt, Reynolds, Mach
numbers and other properties. The Reynolds number usually
has its maximum close to the bottom of the model, because
Re oc p. At the top layer the Mach number is maximal, because
Ma oc ¢! and ¢ decreases upwards. The entropy gradient has its
minimum somewhere in the middle layers, or slightly below.

The last run in Table 1 may be compared with results by
Hurlburt et al. (1984, their Table 1, first line). The resulting
Nusselt numbers and Mach numbers agree within 8% and
the convective and kinetic flux within 5% accuracy. We note,
however, that the number of convection cells does not always
agree with the number given by Hurlburt et al. (1984). The
number of rolls is obviously determined not only by the aspect
ratio, but also by the initial conditions. We confirmed that
starting with a single pair of convection rolls may also lead to a
stable configuration. An example showing the evolution towards
a final state with two pairs of cells is shown in Fig. 1, where we
have taken as an initial condition a small local perturbation in
entropy.

3.2. Test-computations including magnetic fields

We tested the magnetic part of the code by computing simple
stationary and time-dependent MHD flows. Some of these test
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Table 1. Summary of various quantities for a series of runs with different Rayleigh numbers (y=1.5, 4=3). The maximum values
of Fonv, Fin, and F,. and the minimum value of F,4 are given. As denotes the entropy difference between bottom and top
of the final state. In the last column are the results obtained by Hurlburt et al. (1984) for Ra=1.2 10° are given for comparison

Ra 10 2x10° 5% 10 10+ 5% 104 10° HTM 84
Nu 1.6 2.4 3.3 3.9 7.0 8.0 7.4

Re 5.9 9.1 15 22 51 73

Ma(max) 0.05 0.05 0.06 0.06 0.06 0.06 0.07
As) 0.063 0.037 0.028 0.023 0.017 0.014

Foa/Fox 0.84 0.79 0.78 0.78 0.73 0.75 0.76
Foon Fiot 0.16 0.21 0.22 0.22 0.27 0.25 0.24
Fiin/ Fox 0.000 —0.001 —0.004 —0.004 —0.020 —0.016 —0.016
Fsel Fion 0.002 0.003 0.003 0.004 0.003 0.003

Ty e e s S PP

N z
TN
[ ARRERRENNNY

Fig. 1. Snapshots showing the evolution after introducing a small distur-
bance in entropy at the center of the computational domain with 4 =4
in 2-D. (Ra = 10°, y = 1.5 and Q = 0.) Time increases downwards. The
last frame shows two pairs of convection cells after about 160 sound
travel times

calculations involved slightly modified boundary conditions for
u and B. We have computed horizontally propagating Alfvén
waves and find good agreement between the propagation velocity
of the wave pattern and the theoretical Alfvén velocity. Another
test concerns the free decay of a vertical magnetic flux tube
with a Gaussian distribution, for which we found the correct
decay rate. (Because of the periodic boundary conditions the
final state is a homogeneous field.) Finally we have computed
a Hartmann flow with rigid upper and lower boundaries. This
is essentially a 1-D problem only. The profile for the velocity
and the magnetic field is in good agreement with the analytical
solution (e.g. Jackson, 1962).

We then consider convective rolls with an initially vertical
magnetic field. We choose the parameters Ra = 10% and y = 11,
which allow a direct comparison with the results of Hurlburt and
Toomre (1988, their Fig. 1, 2). In Fig. 2 we show the evolution of

Fig. 2. Vector plots of the velocity (left) and magnetic field (right) showing
the evolution of a weak and initially homogeneous vertical magnetic field
affected by convection. (Ra = 105, x=11,A4=3, Q=72 and P, =4.)
The time instants are 23, 44, 54, 93, 177 (time increases downwards).
During an intermediate stage there are two flux tubes present which
merge finally into a single one

an initially homogeneous magnetic field affected by convection.
During an intermediate stage there are two flux tubes present
which finally converge into a single tube. The final result is in
good agreement with that of Hurlburt and Toomre for the same
case. Also the variation of magnetic pressure, p, = B>/2uo, the
dynamic pressure, p; = pu?, and the gas pressure, p, across the
flux tube, depicted in Fig. 3 for z = 0.15 close to the surface,
agrees with that of Hurlburt and Toomre (see their Fig. 2a).
Other parameters of this model are summarized in the first
column of Table 2.

3.3. Results in 2-D with rotation

We are interested in the effects of rotation, because, for example,
the a-effect is only present with rotation. On the other hand, the
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Fig. 3. The magnetic, dynamic, and gas pressure (pm, p4, and p, respec-
tively) across the flux tube at z = 0.15 for the final stationary solution
corresponding to the last panel in Fig. 2. (Ra = 10, y = 11, 4 = 3,
Q = 72, and Py, = 4.) This picture is in agreement with Fig. 2 of Hurlburt
and Toomre

Table 2. Summary of the various mean quantities for different
runs where magnetic field is included (Q=72). In the first three
columns are listed 2-D runs with Pm=4, whilst the last one
contains the results of a 3-D run with Pm=1

Ra 10° 10 210* 10°
Ta 0 10* 104 10*
X 11 11 2 2
A 3 3 2 2
Nu 2.2 1.3 1.9 4.4
Re 5.5 6.0 10 40
Ma(max) 0.09 0.09 0.03 0.04
Als) 0.431 0.500 0.075 0.040
FraalFiot 0.79 0.90 0.85 0.77
Foonv/ Fiot 0.27 0.11 0.15 0.23
FainlFiox —0.06 —0.006  —0.000  —0.003
i ylu; 0.70 0.25 0.17 0.3
Cuyu? 0 0.49 0.34 0.3
uzylu? 0.30 0.25 0.49 0.6
Cuguyyfu? 0 —0.30 —0.22 0.04
Uy [<uzy™”? 1.25 0.22 —0.04 0.1
Uy uly? 5.0 3.2 2.3 2.5
{B2)|By 1.34 0.38 0.24 1.5
(B2)|B: 0 0.02 0.72 1.5
{B.>|B; 2.81 1.70 4.2 4
B.B,>|B? 0 —0.02 —0.39 0.03
EB:>/%9§°>3/2 2.3 1.4 1.9 3
(BYY(B2Y? 6.6 2.4 4.2 10

a-effect is fundamentally a 3-D phenomenon. Therefore we have
not investigated the 2-D case with rotation very deeply.

Some results are summarized in the second and third column
of Table 2. In the presence of rotation the Nusselt number
is reduced and the critical Rayleigh number is increased (see
Chandrasekhar, 1961). For example, for Ra = 10* and Ta = 10°
the stratification is still stable. Therefore we have adopted in
the following Ta = 10*. The mean Reynolds numbers were
still quite small (Re =~ 6) and the Rossby number was only

0.1, i.e. the flow was strongly dominated by rotation. A strong
correlation between uy and u, appears, because the velocity field
is systematically stretched by the effect of rotation. However,
this is an artifact of the 2-D nature of the flow allowing a
non-vanishing y-component of the flow (and magnetic field), but
making variations along the y-direction impossible. A strong
(uxuy) correlation is not present in a true three dimensional flow
(see the last column of Table 2 for a 3-D run considered in the
following section).

4. Results for 3-D magneto-convection

In this section we present results obtained for three dimensional
magneto-convection. The Rayleigh number was taken sufficiently
large to lead to fully developed turbulent convective flows. We
took an aspect ratio 4 = 2 and a density contrast y = 2.
According to our experience, the resolution in the z-direction
should be higher than in the horizontal directions. We chose
a z resolution four times finer than the horizontal resolution,
although a factor of two might have been adequate. It turns
out that the upper limit we were able to treat with a resolution
of 31 x 31 x 63 mesh points was Ra = 10°, which is about
300 times supercritical. We have kept the same Chandrasekhar
number and Taylor number as in the 2-D runs, namely Q = 72
and Ta = 10*. This corresponds to an Elsasser number El=0.72
which takes us into an astrophysically interesting regime (cf.
Roberts, 1988). However, for the previous value Py, = 4 we
found a critical accumulation of magnetic energy in the smallest
scales. We therefore carried out most of the simulations with
Py, = 1, but some were performed with Py, = 2 which is really at
the border of what is attainable with the present resolution.

4.1. Properties of the flow

We describe here the results of a particular run with parameters as
stated above. After about 30-50 sound travel times a statistically
nearly stationary state developed. An example of the resulting
flow and magnetic field vectors, projected onto a horizontal and
vertical plane in the middle of the regime (upper and lower two
panels, respectively), is shown in Fig. 4. The mean vertical density
contrast is slightly stronger than in the initial polytropic state
and the entropy becomes nearly constant except in a boundary
layer of about 10% thickness of the total depth at the upper
boundary (Fig. 5).

It is hard to visualize the behavior of an irregular time-
dependent three dimensional flow. The irregularity of the flow
may be demonstrated in terms of sections of the trajectories
in phase space and its intersections with certain hyperplanes
(Poincaré maps). An example is shown in Fig. 6 where we have
plotted the x- and y-components of the velocity (a) and the
magnetic field (b) measured in the middle of the computational
box. The intersections with the planes u, = 0 and B, = 0 are
marked in the right panel. The trajectories do not seem to
approach any simple kind of attractor, but the simulation was
not run for a very long time.

A more direct presentation of the rich temporal variations
of the convection patterns is given by a sequence of snapshots
of the u, and B, fields in a horizontal plane, which is shown in
Fig. 7 for z = 1.5 (the middle of the box). The first snapshot is
at ¢ = 80 and the time between two pictures is about 15 sound
travel times. The last twelve frames are for a magnetic viscosity
half as large (P, = 2) as in the first part of the run (Pp = 1).
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Fig. 5. The mean stratification of density and entropy for fully developed
convection (solid lines) in comparison with the initial state (dotted lines).
The entropy is normalized to zero at the top

4.2. The Reynolds and Maxwell stress tensor

Other important properties may be obtained by considering
certain correlation functions. The simplest of these are the
components of the Reynolds and Maxwell stress tensor, (ugu})
and (B{B]f), respectively, where u and B are split into mean and
fluctuating parts,

u={w+u and B=(B)+B. (19)

The quantities (u:u;) and (B{Bj’.) are still functions of ¢ and z.
We display them in three different ways.

Fig. 8 shows contour maps of these functions in the t — z-
plane. There are temporal variations visible in all six quantities,
the time scale of which is comparable to the rotation period,
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Fig.6. A plot of the x- and y-components of the velocity (upper panel
on the left) and the magnetic field (lower panel on the left) measured in
the middle of the computational box. The starting point is marked by a
dot (t = 50). Poincaré maps showing intersections with the planes u, =0
and B, = 0 are given respectively in the right panels

27/Q = 92 sound travel times) and to the Alfvén time, d/vg
(=~ 50 sound travel times). (The turnover time, d/u;, ~ 20 sound
travel times.)

The z-average of these quantities, is plotted against time
in Fig. 9. We note that the values (1) and (B/?) seem to
decay slowly. These slow variations may either be physical and
reflect some thermal adjustment associated with the diffusion
time scale, or they may be due to the fact that energy is not
exactly conserved numerically.

The non-diagonal components vary about zero, and only the
horizontal stress (u\u)) has slightly more contributions from
positive values. The same seems to be the case also for (B} Bj),
but the evidence is less strong here. On the average these cross
correlations are therefore quite small, which is in contrast to
the 2-D results with rotation. The results for both cases may be
compared in the third and fourth column of Table 2.

The upper two panels of Fig. 10 shows the variation of the
rms-values of w and B with depth. We have taken the time
average over the interval ¢t = 50...270. The data for later times are
excluded here, because they were obtained with different value
of Pp. B is measured by the Alfvén speed v4. The variation with
depth is relatively small. Note that the rms magnetic field in the
fully developed turbulent states exceeds the initial field (dotted
line) by almost a factor of three.

4.3. Anisotropy

In the theory of stellar differential rotation the degree of
anisotropy of the motions is important.

The anisotropy of turbulent motions may be measured by
the quantity (in spherical coordinates)

Ay = 2t ((uf) — ) (20)

(cf. Riidiger, 1980, Eq.(4.11)). For a stress-free rotation law we
have 0lnQ/0lnr = Ay /v;, where v; = %rutz and 1 denotes a
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Fig.7. A series of snapshots of the u, (upper part) and B, (lower part)
fields in a horizontal plane for z = 1.5. Bright tones correspond to a
positive sign of u, and B, (ie. to a downward oriented field). The first
snapshot is at t = 80 and the time between two pictures is about 15. The
time instants are 80, 95, 109, 124, 139, 150, 159, 174, 188, 203, 234, 249,
265, 283, 298, 314, 324, 333, 348, 364, 379, 394, 408, 424, and 439. The
magnetic diffusivity for the flow depicted in the last twelve frames is two
times smaller than during the first part of the run

correlation time. Since in our 3-D cases the x- and y-directions
are equally preferred, we consider instead of Eq. (20) the
expression

Ay /3v ~ (W) + W) — 2(u2)) /. (1)
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Fig. 8. Plots of the functions (u;u}) (upper part) and (B;B;) (lower part)
as contour maps in the ¢ — z-plane. Dotted lines refer to negative values.
The numbers given in the title denote the maxima values in each panel

In the second row of Fig. 10 we have plotted 4y /3v; from Eq.
21 and, in analogy to that, also the quantity ((B{2) + (B;,z) -
2(B;2))/B§, abbreviated in the Figure to M. The extrema of
both functions occur at the upper and lower boundaries and their
shape resembles that of a cosine. If in a stellar convection zone
the profile of 4y /3v;, and thus of the gradient of angular velocity,
were really like a cosine, then the profile of the angular velocity
would be roughly sinusoidal. This is indeed the profile emerging
from recent results of helioseismology (see Dziembowski et al.,
1989, their Fig. 2). With such a profile is has also been possible
to construct solar kinematic dynamo models (Brandenburg &
Tuominen, 1988).

4.4. Skewness and flatness

Two important quantities describing a turbulent flow are the
/3 /2\3/2 /4 72\2
s.kewness and ﬂatnggs, (u; )((ui )3/ al?d.(ui )/{u;*)*, respec-
tively. These quantities describe the deviation of the flow from
isotropy and Gaussian statistics. It turns out that the skewness of
the vertical component of the velocity has a positive maximum
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near the bottom of the domain. This result is qualitatively in
agreement with that of Eidson et al. (1986) for incompressible
Rayleigh-Bénard convection with Ra = 10°. The reason why the
skewness is positive near the lower boundary is that the density
stratification induces the formation of concentrated downdrafts,
immersed in a background of gentler ascending fluid (cf. Stein &
Nordlund, 1989).

It is also possible to define magnetic skewness and magnetic
flatness, (B]%)/(B/%)3/2 and (B,*)/(B}?)?, respectively. There is
a strong positive skewness of the vertical component of the
magnetic field in the upper part, which is obviously due to the
field concentration.

The flatness of the three velocity components is about 2,
which is also in agreement with values quoted by Eidson et al.
The magnetic flatness is much higher, between 5 and 20. The
flatness is a measure of the intermittency of the velocity or the
magnetic field. We thus conclude that the magnetic field is about
three times more intermittent than the velocity field (for Py, = 1).
For smaller magnetic diffusivity (Pp, = 2) the degree of magnetic
intermittency turns out to be even larger. Some results for the
skewness and flatness are included in Table 2.

4.5. Helicity

We next investigate the various helicities of the flow and
their distribution with height. Helicity is widely believed to be
an important ingredient for dynamo action. According to the
theory of Steenbeck et al. (1966) the kinetic helicity (o - ')
should be negatively proportional to «, where o’ = curl#
and o parameterizes the functional dependence of the mean
electromotive force & = (&' x B') on the mean magnetic field (B),
in the simplest form via
& = o(B). (22)
Furthermore, when the magnetic field becomes strong one expects
a back-reaction on the a-effect governed by magnetic helicity
(J' - B') which gives

x= 3 (e ) — (I B/ () @)

(Pouquet & Patterson, 1978), where (J' - B') acts against (@’ - &)
if both have the same sign.

From our simulations we have evaluated the two helicities
mentioned above and also the cross helicity (« - B’), which is
a measure of the degree of linkage of the vortex lines of the
u-field with the lines of force of the B-field (Moffatt, 1978). Fig.
11 displays the dependence of the various helicities on z and
t as contour maps. We find a systematic separation of positive
and negative kinetic helicity in the upper and lower layers of the
model, which is obviously due to the influence of rotation. We
have confirmed this by rerunning the same case with opposite
direction of rotation, which leads to a reversed sign of the
helicities. The magnetic helicity has a similar variation with
depth, but we discovered to our surprise that the sign is opposite
to that of the kinetic helicity. The nature of this feature will be
discussed in more detail in Sect. 4.7.

4.6. The balance of forces

We have looked at the z-components of the kinetic and magnetic
interaction terms (@’ x '), and (J' x B'),. It turns out that
these also have opposite sign (cf. the right hand panel of Fig.
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Fig.11. The spatial and temporal dependence of kinetic, magnetic and
cross helicity (left panels) and the z-components of the kinetic and mag-
netic interaction terms together with the z-component of the mean elec-
tromotive force. Note the systematic separation of positive and negative
values on all four contour maps

11), i.e. there is no balance between magnetic and kinetic forces.
An approximate balance between kinetic and magnetic forces
appears in nearly stationary flows in the absence of buoyancy
effects, for instance in incompressible mean-field dynamo models
(cf. Brandenburg et al., 1989c).

We have checked the importance of each term in the hori-
zontally averaged momentum equation and find that the mag-
netic and kinetic forces are balanced by the “buoyancy force”
(—p~'Vp + g). Near the bottom the buoyancy force is directed
upwards and in the top layers, because of buoyancy braking
it is directed downwards. In our simulation the magnetic and
kinetic force is directed opposite to the net buoyancy force. The
residual force on the rhs of the horizontally averaged momentum
equation, ie. 0(u,)/dt, is relatively small compared to the other
terms.

4.7. A cartoon picture of the field line twisting

A sketch of the velocity and magnetic field configuration is given
in Fig. 12. As a consequence of the Coriolis force, w and Q are
parallel in regions of converging flow and antiparallel in regions
of diverging flow. Thus, there is positive kinetic helicity (o’ - & )
in the upper parts and negative helicity in the lower parts of the
layer. Moreover, since the magnetic field is concentrated mainly
in the converging regions, the vorticity induced on B is always
oriented into the same direction (downwards), and, at first glance,
the only twisting of the magnetic field expected would be due
to differences in vorticity between the top and bottom layers; cf.
panel (i).

However, because field lines are anchored at different hor-
izontal positions in the top and bottom layers, a much more
efficient winding-up of field lines occurs; cf, panels (ii) and
(ii). At the upper boundary the associated current is directed
upwards, ie. (J'- B') <0, and at the lower one downwards, i.e.
(J' - B') > 0. Thus, the signs of kinetic and magnetic helicity are
opposite to each other.

Panel (iii) of Fig. 12 also depicts the orientation of the
horizontal parts of the velocity and magnetic field vectors. In
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Fig. 12. A sketch of the field topology showing the twisting of field lines
under the influence of rotation. See text

the upper layers, around the regions of converging flow, the
horizontal parts of # and B lead to a downward oriented u x B,
whilst in the lower layers u x B is pointing upwards, in accordance
with Fig. 11.

4.8. The interplay between velocity and magnetic field

Let us now analyze further the correlation between # and B. B,
is concentrated in the converging regions, which near the upper
surface coincide with the downdrafts. Thus, close to the upper
boundary the vertical components of # and B point in the same
direction. However, it turns out that the cross helicity (W - B is
negative (see Fig. 11). Moreover, one would expect the net em.f.
to vanish, which is not the case either. Therefore, obviously, the
horizontal parts of both fields play an important role. In the
following we discuss these horizontal field components in more
detail.

Figures 13 and 14 show projections of the fields u, o, B,
and J onto horizontal planes at the levels z = 1.14 and z = 1.9,
respectively. Let us first concentrate on the flow geometry in
the upper layer (Fig. 13). We want to show qualitatively why
there is a non-vanishing positive vertical em.f,, &,. First, the
field is mainly vertical in the downdrafts (see third row in Fig.
13) and therefore does not contribute much to &,. A significant
horizontal magnetic field is present only in the updrafts and in
the regions between up- and downdrafts. In the vector plots of
Figs. 13 (first and third row) we have marked the line u, = 0.
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Fig. 13. Snapshot at ¢t = 169 showing the fields #, w, B and J, at the level
z = 1.14. On the left hand side are projections of the field vectors in the
x — y-plane (view from below). For the u- and B-fields a single contour
plot u, = 0 is superimposed marking the up- and downdrafts. On the
right hand side contours of the z-component of the corresponding field
are plotted

We see that the horizontal components of the magnetic field are
almost parallel to the contours u, = 0. The field vectors circle the
contours u, = 0 in a counterclockwise sense, when looking from
below. Along and inside these contours the flow is diverging,
leading so to uxBj, > 0 and uyBy < 0. This means that &, > 0 in
the top layers.

The situation at the bottom layer is different in some respects.
Here the updrafts are topologically connected, whilst at the top
the downdrafts are connected. The horizontal components of
the magnetic field are again parallel to the contours u, = 0,
but the field vectors now circle the contours in a clockwise
sense (looking from below). However, in both cases the flow is
expanding outwards across the closed contours u, = 0 (cf. in
Figs. 13 and 14). Since the orientation is changed only for B,

Fig. 14. Same as Fig. 13 but at the level z = 1.9. Note that now the
updrafts are topologically connected

and not for u, we now have a reversed sign of &, (ie. & < 0).
The situation in Figs. 13 and 14 is in qualitative agreement with
the simple cartoon picture (Fig. 12).

5. Mean-field transport coefficients and dynamo

To explain the large scale magnetic fields and flows in the
Sun, the usual approach is to consider only mean values of the
velocity and magnetic fields, and to solve directly the equations
governing these mean fields. However, this involves ill-known
quantities such as & and the Reynolds and Maxwell stress
tensors. The hope is that these quantities may be expressed as
functionals of the mean field itself. The full expressions for & can
be quite complicated and Eq. (22) is only a very simple example
of such a relationship. In this section we discuss the possibilities
for evaluating o from the simulated data and apply the results
to solve the mean-field induction equation.

© European Southern Observatory ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1990A%26A...232..277B&amp;db_key=AST

FTI99DARA © C2327 " Z77B0

288
5.1. The a-effect

Let us assume here the validity of (22). We may solve this
equation for a to obtain

o= & (B)/(B)% (24)
Adopting in Eq. (24) combined horizontal and temporal averages
we find for o the profile shown in Fig. 15. We have displayed a
in units of #/d which shows immediately that the value for the
dynamo number C, = max(xd/#%) is about ten (x 11.8).

We have compared this result with the profile of the kinetic
helicity which is also averaged over time (lower panel in Fig.
15). Both functions look similar, they vanish at the boundaries
and have a transition through zero somewhere in the lower half.
Note, however, that « and (@’ - #') have the same sign, which is
in contrast to results of first order smoothing (Steenbeck et al.,
1966, see also Eq. (23)). This is a consequence of the winding-up
of field lines in our simulation, as discussed in the previous
section. Such topological effects are not covered by first order
smoothing, but occur once higher order correlations are included
in the closure equations (Moffatt, 1974; Krause & Rédler, 1980).

Let us nevertheless compare the magnitude of o with first
order smoothing results. The quantity ad/#n is expected to scale
with P Tal/? (cf. Brandenburg et al., 1989c). By comparing the
two panels in Fig. 15 we find
ad/n ~ 0.1PyuTa'’? (o' - i) /2Qu, (25)
ora ~ 0.1t (w’-#'), where © = d/u is assumed. Thus, o determined
in this way is about five times smaller than the value obtained
from the often adopted estimate max(x) ~ Qd, which is a crude
simplification (e.g. correlation length is equal to d) of an more
complicated expression derived by Krause (1967).

5.2. Comparison with mean-field models

Taking the horizontal average of Eq. (4) we obtain for the three
components of (B)

01(Bx) = 0;[(ux){Bz) — (uz)(Bx)] — az(’say + ’76?<Bx>s
3t(By) = 0:[(uy)(Bz) — (uz)(By)] + 0:6x +ndZ(By),
0t(B;) = 0.

(26)

These equations may be simplified formally by defining complex
variables B = (By) +i(B)), it = (ux) +i(u,), and & = & +i8),
which leads to

0:B = Byd, it — ,((u;)B) +10,& + no?B. 27
A similar equation has been studied by Krause and Meinel
(1988) for the case @ = (u;) = By = 0 and & = aB with o = const
(«3-dynamo), where the critical value of ad/# is C;‘“ = 2xn. This
is half the value for ad/n found from Eq (24). However, because
of the presence of a non-vanishing (B;), it is not correct to speak
here about a self-excited dynamo.

In our case « is not constant and changes sign. The solutions
are then typically oscillatory with somewhat higher critical
dynamo numbers (for example, when o is a symmetric step
function profile then Cfit = 8.01 with a period of 0.445 diffusion
times, cf. Brandenburg et al., 1989a). If we use the « profile of
Fig. 15 and then put & = (u,) = By = 0, we find (numerically) the
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Fig. 15. The profile of « obtained from Eq. (24) (upper panel) compared
with the profile of the kinetic helicity (lower panel). The shape and the
location of the zero-transition is approximately similar in both cases

solution to be 15% supercritical with a period of 0.79 diffusion
times, which corresponds to 385 sound travel times.

It is evident that the expression adopted here for o is much
too simple to reproduce the results of the simulations for (By)
and (By). This is demonstrated in Fig. 16, where we have plotted
different solutions of Eq. (26) for (Bx) and (By) at z = 1.48
(upper and lower panel, respectively). The initial condition is
taken from the simulation at ¢t = 100. Solid lines give the result
when the (time dependent) function & = (&' x B’) is evaluated
from the simulation. We note that this solution reproduces
accurately the functions (Bx) and (B)) taken directly from the
simulation. The influence of the mean velocity (#) is only small.
This is demonstrated by dashed lines representing the case where
(u) is neglected (but & included). In contrast, neglecting (' x B’)
(dotted lines) leads to clear deviations from the solid curve on
a short time scale. It seems, however, that on a longer time
scale the dotted curves follow the solid ones. That is, short-term
fluctuations are smoothed out. The dot-dash lines refer to the
case where (¢’ x B') is replaced by «(B). In particular in the
upper panel one sees a small part of a sinusoidal (overstable)
oscillation. Clearly, the a-term over-represents &, meaning that
either « should be smaller or that it should be quenched by the
magpnetic field (nonlinear feedback).

In any case, the fact that the time scale of the a-effect dynamo
is much longer than the convective time scale indicates that we
should also formulate the mean-field equations for time averages,
in such a way that a time dependence on a longer time scale is
retained.

Finally we note that rerunning a simulation with negative Q
confirms our expectation that (@' - &) and o then both reverse
sign compared to the case with positive Q.

5.3. Anisotropy of o

We have assumed so far that o« is isotropic. This is certainly
not the case for Rayleigh-Bénard convection with impenetrable
walls. Instead of using Eq. (22) it might be more appropriate to
use, for example,
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Fig. 16. Solutions of Eq. (26) for (Bx) and (B,) (scaled by a factor of
thousand) at z = 1.48. The different lines are explained in the text and
also with key words in one of the two panels

& = ag(By) +ay(By), (28)
where (By) = ((Bx), (B)),0) and (By) = 2B,. Note that only ay
enters into Eq. (26). In order to determine oy we consider an
initially horizontal magnetic field (0, Bg,0) replacing the upper
and lower boundary conditions B, = 0 by B, = By. The result
for o is shown in Fig. 17. We have plotted in the lower panel
the kinetic helicity (solid line) as well as the horizontal and
vertical parts of the helicity, (w'y - #y) and (@), -u},) (dotted and
dashed lines, respectively). It turns out that oy is now a negative
multiple of the helicity and it is about four times smaller in
magnitude than o . This result for the sign of oy is in agreement
with predictions of mean-field theory.

The crucial question is whether this anisotropy of « is due to
the preferred direction imposed by g, 2, or by both of them. In
order to answer this question one has to investigate the a-effect
for different Rossby numbers and for various angles between
Q2 and g. We have made a trial run for Q - & = cos75°and
Ra = Ta = 10% which gives a 2.3 times larger inverse Rossby
number (Ro = 0.17) than in the previous case (Ro = 0.4). The
result is that in this case the anisotropies given by the preferred
directions due to g and 2 are both of similar magnitude and
both contribute to the negative sign of the ratio ag /oy .

5.4. The turbulent magnetic diffusivity

In Eq. (22) we have neglected the turbulent magnetic diffusivity,
#¢. Including this effect leads to

€ = a(B) —nupo(J) (29)

(Steenbeck et al, 1966), where anisotropic effects are again
neglected. It turns out that a good approxiation is simply
Mo = —& - (J)/{J)2, because ((J) - (B))? < (J)2(B)2. Adopting
again combined horizontal and temporal averages, we find
ne ~ —2n or, in terms of u,,

1 ~ —0.05u,d (30)

Fig. 17. The profile of ay obtained as a solution of Eq. (28) (upper panel)
compared with the profile of the kinetic helicity (lower panel). The dotted
and dashed curves in the lower panel denote (w}; - #}y) and (o', - u)),
respectively.

(the usual approximation is +%u,d.) A negative value for 5 + #;
seems to be typical for convective flow fields and has been found
previously for 2-D magneto-convection (cf. Brandenburg et al.,
1989b). A positive magnetic diffusivity would describe a diffusion
of magnetic flux. However, convection acts in the opposite way
in that it concentrates magnetic flux.

We have reconsidered recently the determination of #; im-
posing a gradient in (B). Taking as boundary condition for
example B, = By at the bottom and By = 0 at the top leads
to a systematic electric current in the x-direction. The resulting
turbulent magnetic diffusivity has then a positive extremum in
the middle of the layer with max(n;) ~ 10%. This is in qualitative
agreement with customary expections.

6. Conclusions

The present investigation has demonstrated that topological
effects may be of great importance for MHD-convection. It is
shown that, as a consequence of topological effects, anisotropies
of the a-effect can play a dominant role. In particular the sign of
oy can be opposite to that expected from a first order smoothing
approach. In addition, it seems that the usual approximations,
o~ Qd and n; & %utd, could be seriously in error. The order of
magnitude smaller values obtained for these coefficients found
in the present investigations (although with the opposite sign),
might well produce more realistic solar dynamo models.

It is interesting to note that Nicklaus and Stix (1988)
have considered corrections to first order smoothing and found
considerable modifications to previous results, in particular that
the sign of the mean-field coefficients may change. In another
context (topological pumping) Moffatt (1974) has pointed out
that topological effects enter into the closure equations only for
third order and higher correlation approximations.

It should be noted that even in the framework of first order
smoothing the often quoted relation « = —%t(w’ ') is only
a crude evaluation of the correlation integral of # and @’ (cf.
Krause and Ridler, 1980, Eq.(3.29)). One cannot exclude the
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possibility that an exact evaluation of this integral may lead to
a change of sign of « for certain types of turbulence.

However, a too close comparison between mean-field theory
and simulations is at present not justified for a number of
reasons. The presence of boundaries and flow patterns extending
from top to bottom of the domain are not really in accordance
with the picture of mean-field theory. It seems desirable to check
whether our surprising results occur also for other field and flow
constellations and for other boundary conditions, or whether it
is just an artifact of the special model considered.

The magnetic Reynolds number achieved in the present 3-D
simulations is around 40, which is close to, but still below, the
critical value of about 60 for dynamo action found by Meneguzzi
and Pouquet (1989). Thus, nearly twice the number of gridpoints
may be needed to simulate convective dynamos. However, the
possibility of dynamo action may depend on other things as well,
for example on the magnetic boundary condition: Meneguzzi
and Pouquet have employed a perfect conducting boundary
whereas in our model a non-vanishing vertical magnetic flux is
present from the beginning. Thus, an enhanced magnetic energy
compared to the initial state (see Fig. 10) can just be a result
of flux concentration rather than dynamo action. It is therefore
impossible to detect dynamo action in our case.

The convection model considered here may perhaps not
be well suited for modeling the lower part of the convection
zone, because of the assumption of closed boundaries, and also
because we have used enhanced molecular diffusivities rather
than subgrid-scale diffusivities. The convective flux in our models
is relatively small (at most 25%, cf. Tables 1 and 2. The
convective flux would be much higher if, in the energy equation,
the (enhanced molecular) diffusion of internal energy, e, was
replaced by a (subgrid-scale) diffusion of entropy, s (cf. Chan
and Sofia, 1986).

Applying our model to a layer above the base of the
convection zone between 0.7 and 0.8 solar radii, we have, with
g ~ 1.5 x 10*cm/s?> and d S 10%m, a sound travel time of
about a quarter of an hour (cf. Sect 2.2). Thus, a time span of
500 sound travel times corresponds to about five days and the
rotation period of our model would be about one day! Since the
Taylor number for our model is 10* we have then a viscosity of
about 10'“cm?/s and a mean magnetic field strength of nearly
200 kgauss. These are, of course, not appropriate conditions
for the Sun: the rotation is too rapid, the viscosity too high,
and the magnetic field too strong. On the other hand, we may
also consider the solar rotation period of 25 days as the basic
quantity. Compared to the Sun the speed of sound of the model
is then 25 times too slow (or the gravity about 500 times too
weak). A time span of 500 sound travel times corresponds then
to about one hundred days, the viscosity is then 5 x 10'2cm? /s,
and the mean magnetic field strength 10 kgauss.

Clearly, the real conditions at the base of the solar convection
zone are impossible to simulate with present day computers.
Although the rotation for our model is too rapid compared to the
sound travel time, the rotation is in some sense also slow because
there is, for example, no evidence for the flow being forced to be
two dimensional (cf. Taylor-Proudman theorem). However, the
most important quantity which should be comparable with the
solar value is probably the ratio of rotation period and turnover
time (= 4nRo = 5). This is not too far from the solar value of
about unity. We feel that, in this sense, our model may really be
of relevance for understanding convection at the bottom of the
solar convection zone.

Although there are a number of limitations associated with
the model, we hope that some progress in determining the -
effect for the Sun may be possible in the near future with the
aid of direct simulations. There are, however, several important
ingredients for the a-effect dynamo, which should be considered.
For example, one could allow 2 to be inclined with respect to
g. Effects of curvature may be important, necessitating an angle
between 2 and g that varies across the computational domain.
Another problem is that of the boundary conditions, whose effect
should be minimized. Instead of complicated penetrative bound-
ary conditions one may confine the convective part between two
stably stratified layers, similar to the computations of Hurlburt
et al. (1986). Such techniques have been studied thoroughly in
the non-magnetic case and it is tempting to apply them in the
future to the MHD dynamo problem.
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