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The stability of nonlinear mean-field dynamo models in spherical geometry has been investigated
numerically. Assuming axisymmetry and incompressibility we find stable stationary solutions of both
even and odd parity over a range of four decades in the Taylor number. Furthermore, we extend
studies on solutions with “mixed parity”, which have been found previously for an aw-dynamo model,
neglecting here, however, the explicit feedback on the mean motions. Plots of trajectories in phase
space and Poincaré maps, showing intersections of the trajectories with certain hyperplanes in phase
space, reveal that the solution lies on a torus for some of these models.
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1. INTRODUCTION

The stability of simple nonlinear aw-dynamos has been studied by Kleeorin and
Ruzmaikin (1984), who found a simple criterion for the stability of the solution at
the first bifurcation from the trivial solution. Recently Krause and Meinel (1988)
found that the solutions at all higher bifurcations are always unstable, at least in a
finite neighborhood of the bifurcation from the trivial solution. In the linear
regime these solutions have certain symmetry properties. They are either sym-
metric or antisymmetric about the equator and they can also be symmetric about
the rotation axis. Krause and Meinel pointed out that the type of symmetry of the
magnetic field realized in a dynamo model is determined by its stability properties.
An unstable field configuration will evolve to another within a relatively short
time. These investigations were based on a one-dimensional model. Brandenburg
et al. (1989, hereinafter referred to as Paper I) considered the stability properties of
axisymmetric (two-dimensional) fields in more complex mean-field dynamo models,
such as o?-dynamos in a sphere, where the dynamical interaction with the mean
field flow is included simultaneously. Also aw-dynamos have been found in which,
for certain dynamo numbers, only (unsteady) solutions with mixed parities are
possible. The models discussed in Paper I are just some few examples of an
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obviously rich variety of different possibilities. The goal of the present paper is,
therefore, to extend the parameter range of these investigations, and to attempt to
gain new insight into the phenomena involved.

2. MODELS WITH BACK-REACTION ON THE MEAN FLOW

Proctor (1977) studied a*-dynamos of dipolar parity which included the dynamijcal
interaction with a self-consistently calculated mean flow in the presence of
rotation. His main interest was to investigate the possibilities of a magnetostrophic
state, where the Lorentz force is balanced only by the Coriolis force and other,
gradient, terms. He did this by integrating the time-dependent, incompressible
MHD-equations in a sphere assuming axisymmetry. We write these equations here
in the following dimensionless form:

Du

Et=—grad?]—Ta”zixu—BxcurlB+Pszu. (1)
%—?:curl (ux B+<;CB—Curl B), (2)
divu=divB=0, (3)

where Ta=(2QR?/v)? is the Taylor number and P,=v/n the magnetic Prandtl
number (v and 5 are kinematic viscosity and magnetic diffusivity, and R is the
radius of the conducting sphere). 2 is a reduced pressure (which can contain also
gravitational and centrifugal potentials), and the other quantities have their usual
meaning. The time unit is the magnetic diffusive time, R*/x, as is usual in dynamo
theory. Taking the radius R as the unit of length, the velocity and the magnetic
field are measured in units of /R and /(up)n/R, respectively. Here p is the
constant density and u the magnetic permeability. Both kinetic and magnetic
energies are measured in units of p(n/R)?. Outside the sphere we assume a vacuum,
which implies curl B=0. This leads to a boundary condition for B on r=R, which
is handled using a method described by Jepps (1975). The boundary is assumed to
be stress free, so angular momentum is conserved. Since we restrict ourselves to
axisymmetric fields it is possible to solve this problem in terms of stream functions
for u and B together with their azimuthal components. We use a numerical
method similar to that of Proctor (1977).

Proctor noted the occurrence of persistent oscillations for high Taylor numbers,
which he interpreted as an indication of a lack of stability of the magnetostrophic
state. On approaching this magnetostrophic limit, these oscillations require not
only a very high temporal resolution, but also long computational times, until a
final solution is reached. The question arises whether this instability might allow
the system to evolve to a new state of another symmetry type (or perhaps even to
a state of mixed parity).
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Figure 1 The total magnetic energy and the kinetic energy of the meridional circulation versus Taylor
number for P,,=1 (upper panel) and magnetic Prandtl number for Ta=4x 10* (lower panel). a is
constant in time and the dynamo number C,= 10.

Our code to solve equations (1)<(3) uses a difference scheme defined on the
range 0<0<n (0 the polar angle; unlike that of Proctor which was restricted to
the range 0<0<n/2). Thus the parity type of our solutions is not pre-selected by
boundary conditions on 6=mn/2 and solutions of either or mixed parities are
always accessible (see Paper I for details). We have computed numerically several
solutions with different values of Ta and P, and a=C,cosf, where C, is a
dynamo number. For the models described in this section we have taken always
C,=10. In Figure 1 we have plotted the dependence of the total magnetic energy,
E .- and the kinetic energy of the meridional circulation, Ey;,, on Taylor number
(upper panel) and on magnetic Prandtl number (lower panel). We denote by E,,,
the energy of the mean magnetic field inside the sphere, i.e. Emagz%jdVBz.
Similarly, E,;, refers to the kinetic energy of the mean meridional motion, i.e.
Eyin=1[dVul,.. The solutions can be symmetric or antisymmetric with respect to
the equatorial plane. We call the symmetric solutions “S-type”, “even” or
“quadrupolar”, and the antisymmetric solutions “A-type”, “odd” or “dipolar”. Both
magnetic and kinetic energy at first decrease with increasing Taylor number, but
for Ta>500 they increase with Ta. The magnetic energies of the A- and S-type
solution become asymptotically equal for large Ta and also for large P,. The same
is the case for the kinetic energies of both solutions.

2.1 Stability of the solutions

Having obtained a solution, we investigated its stability by perturbing it with
another solution of opposite symmetry type. We then monitored the quantity:
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Figure 2 The evolution of E and P for a dynamo model with Ta=4 x 10* and P,,=1. The type of
symmetry finally established in the model depends on the relative contribution of E® and E“ in the
initial state.
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where E® and E“Y are the energies of the symmetric and antisymmetric part of
the magnetic field. The quantity P was used quite frequently in Paper I. For pure
symmetric solutions we have P =1, while for pure antisymmetric solutions P= —1.

In Figure 2 we have plotted the evolution of P for a dynamo model with
Ta=4x10* and P,,=1. This shows that the type of symmetry finally established
in the model depends on the relative contribution of E® and E“) to the initial
condition. This is consistent with similar results in Paper I, where only the case
Ta=4 was considered. Also for smaller P,,=0.1 we find that pure solutions are
stable, but when starting with a “fully mixed” solution with P~0 we were not able
to follow the evolution of the model. This was presumably because of numerical
instability, which could not even be avoided with extremely short timestep (e.g.
x 200 shorter). Similar numerical problems arise for larger Taylor numbers so that
the stability of these solutions is still uncertain.

2.2 Stabilisation of solutions with pure parities

We shall now describe some properties of the solutions and their stability
behavior. Particular attention will be paid to the variation of the mean flow as the
parity of the solution changes. In Paper 1 it was argued that the spatial
dependence of the feedback may be responsible for stabilizing either parity, at least
when C, exceeds a certain value. The feedback limiting the magnetic field strength
is, in the present case, mainly the differential rotation produced by the Lorentz
force. This differential rotation tends to quench the toroidal magnetic field.
However, the field geometry, displayed in Figure 3, is more complicated than in
the case, where the feedback comes only through an a-effect, which depends on B
(see Figure 7 of Paper I). Two toroidal field belts develop in the southern
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Figure 3 Poloidal field lines (first line), lines of constant toroidal field strength (second line),
streamlines of meridional circulation (third line) and contours of constant angular velocity (last line) for
the dynamo model in Figure 2 starting with P=0.1. In this case the final field geometry is even. The
dashed lines denote a negative value.
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Figure 4 Same as Figure 3, but starting with P=0.0. In this case the final field geometry is odd. Note
the oscillatory behaviour of the meridional circulation pattern on a time scale somewhat longer than
the Alfvén time (~0.05).
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hemisphere (t=0.1), while there is only one in the northern hemisphere. The
meridional motions behave quite violently and are oscillatory in the beginning, but
their role in stabilizing field configurations may be minor compared to the toroidal
motion. Figure 4 is similar, but starting with slightly smaller P. In this case the
final field geometry is odd, and not even as in the previous case.

3. aw-DYNAMOS .

Section 6.4 of Paper I considered an aw-dynamo with constant prescribed
differential rotation, 6Q/dr=C,= —10*. The feedback of the magnetic field on the
mean motions was, however, neglected, i.e. only the induction equation (2) was
solved, although o was allowed to depend on the mean magnetic field via:

C,cos0

T+B(,0.0° ®

a=or,0)=

Note that we have omitted any scaling factor in front of B? in (5), because it
would only renormalize the total magnetic energy of the solution. Therefore the
energy is now of order unity, in contrast to the values of the energies in the
previous section.

We should mention here that it is not clear at present what type of nonlinearity
is the most important one limiting the magnetic field strength in the Sun and in
stars, and on the other hand in the Earth and in planets. Spiegel and Weiss (1980)
and Noyes et al. (1984) have argued that buoyancy is the most important
mechanism in stars. Dynamos limited by magnetic buoyancy, and their stability
properties, will be the subject of a further paper (Moss et al., 1989). Here we shall
restrict ourselves to the simple a-quenching mechanism. Results obtained in Paper I
will be discussed and examined in more detail.

3.1 Solutions with mixed parity

While studying the stability of oscillatory, nonlinear aw-dynamos it was found that
in a certain range of C, neither purely symmetric, nor purely antisymmetric
solutions were stable. Perturbing a pure solution leads to persistent quasi-periodic
oscillations with variable P. In Paper I an example of such a solution with C,=0.9
was given. On a long term period of approximately 10 times the basic magnetic
cycle period the quantity P varied between positive and negative values, but never
reached exactly plus or minus unity. In Figure 5 we have plotted the variation of
the magnetic energy and the quantity P for the case C,=0.85. In contrast to the
case with C,=0.9 the solution has for about 509, of the time the value
—1<P<—0.9, ie. it is most of the time nearly of dipolar type. However, bursts
appear regularly bringing the system for brief intervals to nearly P= +0.8. Figure
5 shows also that at the same time the energy drops to very small values.
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Figure 5 The variation of the magnetic energy (upper panel) and the quantity P for the case C,=0.85.
The “grand minima” in the energy correspond to strong deviations from the mainly dipolar symmetry
type. The energy is here much smaller than in previous cases (Figures 1 and 2), because of the different
nonlinear feedback, which is given here by Equation (5).

Somewhat speculatively one might ask whether during the solar Maunder
minimum there were also clear deviations from the odd magnetic field parity. One
might also note that such a phenomenon would appear on a single hemisphere as
a sudden “field reversal”, of the sort that is familiar from terrestrial magnetic
records.

In Paper I we commented that for the case C,=0.9 the long period was
approximately equal to the beat frequency of the two pure solutions. Further
calculations, presented in Table 1, suggested that this is not a general property of
the solution.

3.2 Poincaré maps

In the language of nonlinear dynamics a periodic oscillatory solution, such as the
magnetic cycle of a pure solution, can be described as a limit cycle in some phase
space. The fact that the mixed solutions from the previous section show two
distinct periods suggests that the trajectories of the solution lie on a torus in some
phase space. In order to confirm this we projected the trajectories of the solutions
onto a suitable hyperplane in the phase space. The dependent variables are in our
case the ¢-component of the magnetic vector potential A and the ¢-component of
the magnetic field B. For the numerical computations we used 40 x 81 gridpoints
(in r and 0O-directions respectively) so that the dimension of our phase space is
2 x40 x 81. Figure 6 gives the trajectory of the solution projected on to the plane
(a,,b;), where a,=A(r=3R/4, 0=mn/4) and b,=B(r=3R/4, O0=mn/4), and the
corresponding Poincaré maps, showing the intersections with the hyperplane
B(r=3R/4, 0=37n/4)=0 for C,=0.75 and 0.90. A different situation is met for
C,=0.8. In this instance the trajectory and the Poincaré map, shown in Figure 7,
result from a small disturbance of a S-type solution. The solution approaches first
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Table 1 Summary of some solutions of the aw-dynamo for different C,. The table is not complete, but
contains only solutions found so far. In the first column is indicated their stability (s for stable, u for
unstable). The third column, denoted with E, gives the minimum and maximum values of the total
magnetic energy. The next column contains the value of P. In the case of mixed solutions the range
covered by P is indicated. Q,, is the magnetic cycle frequency, and QF the frequency of the long-term
oscillation. The latter coincides with the beat frequency (given in the last row) only for C,=0.9

C, E P Q. Qx
s 0.78 0.20...0.50 -1 59.1 0
u 079 - 0.08...0.20 +1 66.4 0 ’
s 0.14...0.35 —041...—0.13 59.0 0 74
s 0.20...0.62 -1 61.3 0
u 0.80 0.09...0.23 +1 67.6 0
s 0.13...0.37 —0.46...+0.14 61.1 4.07 8.3
s 0.21...0.52 —091...-0.90 59.4 0
s 0.21...0.54 ] 59.3 0
u 0.81 0.12...0.30 +1 66.6 0
s 0.16...0.50 —0.73...+0.40 59.4 0
u 0.24...0.60 -1 59.3 0
s 0.82 0.14...0.50 —0.78...+0.53 61.0 3.55
u 0.83 0.16...0.39 +1 66.0 0
s 0.15...0.56 —0.89...+0.54 62.8 3.06
s 0.23...0.57 —0.88...—0.86 60.1 0
u 0.16...0.64 -1 59.5 0
N 0.85 0.16...0.63 —0.99...4+0.67 60.5 1.80
u 0.90 0.22...0.52 +1 68.3 0
s 0.21...0.69 —0.79...+0.83 66.1 6.96 6.7
u 0.30...0.72 1 61.6 0
N 0.92 —0.61...4+0.89 61.9 9.42
s 0.94 0.25...0.74 —0.27...+0.92 67.6 124
N 0.96 0.29...0.76 —0.10... +0.94 68.4 13.7
s 1.00 0.34...0.81 +1 69.8 0 44
u 0.38...0.87 —1 65.4 0
s 1.20 0.34...0.81 +1 71.4 0 0.0
u 0.38...0.87 -1 714 0
s 1.50 0.34...0.81 +1 76.6 0 -19
u 0.38...0.87 -1 78.5 0

a torus (right panel). This torus is obviously unstable, since after several
revolutions a limit cycle is reached. The solution is, however, of mixed parity. This
is shown in Figure 8. For some slightly different initial conditions, we find for the
same dynamo number also a pure A-type oscillatory solution, which is shown in
Figure 9. The limit cycle of this solution (Figure 10) lies well outside the region
which is covered by the mixed solution (compare with Figure 8).

3.3 The transition from A- to S-type limit cycles

In this section we shall examine in more detail the solutions in the parameter
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Figure 6 The trajectory of the solution in the plane A(r=3R/4, 0=mn/4) and B(r=3R/4, 6=n/4). For
C,=0.75 (upper left panel) the trajectory of the solution is a stable limit cycle. The corresponding
Poincaré map (upper right panel) shows then only two points. For C,=0.9 (lower left panel) the
trajectory of the solution looks now more confusing, but the corresponding Poincaré map (lower right
panel) shows two rings, which indicate the boundary of a stable torus.



138 A. BRANDENBURG ET AL.

b,=0
1.5 £
1 L L
0.5 L
& 0
-0.5 | L
L3
-1 L
=1.5 1 N L j
-5 0 5 -5 0 5
10° a, 10° a,

Figure 7 The trajectory and the Poincaré map for C,=0.8. The solution first approaches a torus
(right panel). This torus is obviously unstable, since after several revolutions a limit cycle is reached,
which is placed in the lower, left corner, as well as at the upper right edge.
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Figure 8 The variation of E and P for the solution shown in Figure 7. The final state is of mixed
parity. This is an example of a mixed parity solution, which does not lie on a torus, but is a limit cycle.
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Figure 9 The same as Figure 7, but starting with another mixed solution, obtained for C,=0.9. Note
that the Poincaré map consists only of two dots, which are located outside the region covered by the
trajectory of the solution of Figure 7.
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Figure 10 The variation of E and P for the solution shown in Figure 9. The final state is not of mixed
parity, as in Figures 7 and 8.
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Figure 11 The maximum energies of the magnetic field versus dynamo number C,. The solid line
refers to stable solutions, whereas dotted lines indicate unstable solutions. The mixed mode branch,
denoted by M, is a torus solution. For 0.80<C,<0.83 there is another mixed mode branch, which is,
however, a limit cycle solution. When C,~0.79 the branch of torus solutions has also changed into
limit cycle solutions. For even smaller C, we have not been able to follow this branch any further.
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Figure 12 The solutions of the aw-dynamo displayed in a P— C,-diagram. The range of P covered by
stable torus solutions is indicated by arrows. The left-most arrow, however, belongs not to a torus, but
to a limit cycle (l.c.). There are also “mixed-parity” limit cycle solutions for 0.80 < C,<0.83 (two lines at
Pz~ —0.9). The dashed and heavy lines for P+1 are respectively unstable and stable solutions with
pure parity.
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range (C,), where mixed solutions are possible. For C,=0.75 only the A-type
solution was found to be stable. The S-type solution, which already exists (positive
growth rate), is, however, unstable. We then gradually increased C, and always
checked the stability of the solutions of pure symmetry type. For C,=0.98 we
found the S-type solution to be stable. Mixed parity solutions, described in the
previous section, could be followed in the range 0.79<C,<0.98. The maximum
energies of the magnetic field are plotted on a bifurcation diagram, shown in
Figure 11. There is still another mixed-solution branch for 0.80=<C,=<0.83, Jfor
which the attractor is presumably a limit cycle rather than a torus. However, we
cannot exclude the possibility that this attractor is also a torus, for which the
second period is too long to be found in our computations. This solution in the
range 0.80=C,<0.83 (limit cycle, denoted by l.c. in Figure 12) is obtained by
starting the integration from a superposition of two solutions belonging to the
same value of C,, but with opposite symmetry type. In contrast, the torus-type
solution is accessed in the same range of C, by taking as initial condition a torus
solution belonging to another (larger) value of C,. We were not able to follow a
mixed parity solution into the range C,<0.79. The reason may be that such a
solution is unstable in this range. It is a consequence of the method of stepping
forward in time that we cannot find an unstable mixed-parity solution. It is
therefore impossible to close the “loose ends” in the bifurcation diagram (Figure
11) and in Figure 12.

4. CONCLUSIONS

The calculations reported here develop two models for strictly axisymmetric
nonlinear dynamos in spherical geometry that were first introduced in Paper I.
Whilst these models do not yet show all the richness of bifurcations found in the
very highly parameterized “toy” systems with O(1-10) independent variables that
have been extensively studied in the last few years (e.g. Jones et al., 1985), they are
one step nearer physical “reality” and the phenomena they reveal may possibly
have more relevance to astrophysical systems.

The calculations of Section 2 for dynamically consistent models of a-type (with
only small differential rotation, generated by the Lorentz force) demonstrated that
the sensitivity of the parity of the final solution to the choice of initial conditions
persists for a wide range of Taylor numbers, at least when the Prandtl number is
unity. Our experiments approach, but probably do not quite attain, solar values of
Ta, and may be still further from the terrestrial values.

In Section 3 we considered aw-dynamos in which the nonlinearity is restricted
to the a-quenching of (5). We have shown something of the richness of behaviour
displayed in a certain range of C, values—in particular the existence of a
“window” where stable modes of either purely odd or purely even parity cannot be
found and where, typically, the trajectory of the solution in its high-dimensional
phase space is a torus. The potential richness of behavior of our system is
apparent from the results presented.

The calculations are computationally time consuming and, unlike many of the



NONLINEAR STABILITY OF DYNAMOS 141

systems previously investigated (e.g. Jones et al., 1985), it is not possible to do
more than look at a few points in parameter space. Clearly we can make no
claims about the full range of properties of our models, and it is very probable
that more “interesting” parameter values exist. In particular we have not found
any evidence for chaotic behaviour. Additional modelling of physical processes
might be incorporated, introducing further nonlinearities (and parameters!). One
obvious limitation of all our analyses is the restriction to strict axisymmetry. Our
methods do not allow us to test the stability of our solutions to nonaxisymmetric
perturbations. There is a suggestion from the work of Ridler and Wiedemann
(1989) that some of our apparently stable solutions might be unstable to such
perturbations—<learly this is an important question. Of course a nonlinear model
that is not restricted to be axisymmetric offers many new possibilities for
interesting behaviour including, for example, solutions which are mixtures, possibly
unsteady, of axisymmetric and nonaxisymmetric modes!
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