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Summary. The physical significance of growth rates of kinematic
dynamos is discussed in the context of the observation that
usually a magnetic field of a single symmetry dominates in the
Sun and other cosmic objects. It is concluded that these growth
rates are not the decisive factor determining the final state of the
field. The possibility that the stability of different solutions of
nonlinear dynamos determines the final state is investigated with
the help of several models. The examples of simple a2-dynamos
investigated show that, in spite of the asymptotic equality of the
kinematic growth rates, usually the only solution which remains
stable is that with the smallest marginal dynamo number.
Dynamo models in spherical geometry are found, however, in
which both symmetric and antisymmetric solutions are stable.
The kind of symmetry finally established depends in these cases
on the initial conditions, i.e. on the history of the object. In no
case was a steady solution found that was a superposition of the
two distinct symmetry types, that is a non-symmetric steady final
state was never reached. However, in connection with the investi-
gations of the oscillatory dynamo we discovered a case where
both the symmetric and the antisymmetric solutions are unstable.
The attractor is in this case a torus: non-symmetric quasiperiodic
solutions oscillate between the unstable symmetric and anti-
symmetric solutions with a long period.

Key words: hydromagnetic dynamos — nonlinear stability — the
Sun: magnetic field

1. Introduction

The typical astrophysical dynamo is modelled by an electrically
conducting rotating sphere, the internal structure and the mo-
tions of which show symmetry with respect to the rotational axis
and to the equatorial plane. In the kinematic case a model of that
kind excites eigenmodes of different symmetry types. The fields
will either show symmetry or antisymmetry with respect to the
equatorial plane. We denote them by S and 4, and will also speak
about even (S) and odd (A4) modes.

The essence of kinematic mean-field dynamos may be found
in stability maps, which display the lines of zero growth rates for

Send offprint requests to: F. Krause

the different eigenmodes B,. An example is given in Fig. 1. C, and
C, are dimensionless parameters characterizing the a-effect and
differential rotation. In the denotation Am and Sm, the number m
corresponds to the dependence on the longitude by ™.

Clearly, one wishes to know which of these eigenmodes will
be realised for the cosmic object considered. Obviously this
depends where the object is situated in that diagram. In region (i),
where only one mode has a positive growth rate, a unique answer
can be given: a field of type A0 will be excited. In region (ii) a field
of type SO has also a positive growth rate and will compete with
the A0-field. Region (iii) represents a much more complicated,
already highly nonlinear, situation where non-axisymmetric
modes will also grow.

It is widely assumed that in the competition between different
B-modes the one with the largest growth rate wins. In this way
a criterion seems to exist and may be checked by observation.
However, calculations of growth rates carried out earlier
(Yoshimura et al., 1984) have revealed that a significant difference
between the growth rates of fields with different parity exists only
close to the critical dynamo number. All numerical examples
studied so far show that the growth rates of the first odd parity
mode and the first even one are asymptotically equal for large
dynamo numbers. In this way practically no decision is possible
unless one assumes that the dynamo number of the cosmic
object, e.g. the Sun, is close to the critical value.

We investigate here the behaviour of the growth rates of
further models. First we consider dynamo models in which this
problem can be treated analytically. Then we calculate numeri-
cally solar-type aw-dynamos. In all cases we will find the growth
rates of the first modes of even and odd parity are asymptotically
equal.

The observational results from the Sun and the planets Earth,
Jupiter, and Saturn reveal that these objects excite magnetic
fields with a clear dominance of one parity, in these cases the odd
one. In the Sun this is most clearly manifested by Hale’s polarity
law revealing the dominance of the odd parity for the toroidal
field. Stenflo and Vogel (1986) furthermore derived the result that
only the odd parity of the poloidal field has a clear 22-year cycle.

Consequently we have to conclude that the criterion based on
the growth rates does not apply. A quite different criterion was
formulated by Krause and Meinel (1988), who postulated that
the stability of nonlinear solutions determines which field is
finally excited by an object. We follow here this approach and
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Fig. 1. A stability map for the kinematic dynamo model of Steenbeck
and Krause (1969). The lines of zero growth rate are plotted for different
modes A0Q, SO, Al and S1 in C,—C,-plane. The subscripts “st” and “osc”
refer to stationary and oscillatory modes. The sign of C,, is such that on
the right hand side (C,,>0) the angular velocity w is increasing inwards
from the surface of the sphere. The regions (i), (ii), and (iii) represent
different degrees of nonlinearity (see text)

study the nonlinear behaviour of a one-dimensional a2-model
and furthermore investigate numerically certain nonlinear a?-
and aw-models in spherical geometry.

2. A spherical dynamo with a = const.

As shown by Krause and Steenbeck (1967), the spherical
a?-dynamo with o =const. may be represented in terms of
Bessel functions whose order is half an odd integer. The growth
rate A, of the mode B, is determined by the set of equations

()2
A = Ul - U3, (1
1 2
Caz = u::l) + utrl)’ (2)
and

Jn s 1/2(“5-}))-] - 1/2(“%)) —Ju- 1/2(”21))Jn+ 1/2(“53)) =0, (3)

with u{} # u?). C, = uoaR is the dynamo number, where u is the
magnetic permeability, ¢ the conductivity and R the radius of the
sphere. n denotes the order of the multipole, which is the form of
B,, outside of the sphere. [ denotes the number of knots inside of
the sphere in the radial direction (Krause and Réidler, 1980,
Sect. 14.4).

We consider the case where C, is large and fixed. Then the
largest value of 4,, is given by that pair of 4!}, u?) which satisfies
(3) and for which u}) ~ ul’ ~ C,/2. Let uf) = C,/2 + 6, i=1,2.
From (2) it follows that

5,+8,=0. )

Using the asymptotic representation of Bessel functions we
find from (3)

8 =In/2[1+2n/C2(n+(— 1) *TcosC,)] + O(CS ), (5)
and from (1)
Ay =(C2—1?1%)/4 —1?7%n/C?

x[n+(=1)y*tcosC,] + O(C;3). (6)

We see that, indeed, for all modes the growth rates have an
asymptote which is independent of the order of the multipole n.
The asymptote depends on the number [ of knots in the radial
direction only.

3. A one-dimensional a’>-model

We will consider now the basic equations

OB/0t = curl(aB) + (us) " 'AB 7
inside a plane layer (—d < z < d);

curlB=0 8)
outside the layer (|z| > d); and

divB=0 ©)

everywhere. B is continuous at the boundaries of the layer and
vanishes as |z| —» co. We seek solutions of the form B = B(z, t).
This leads to the equations

0B, /0t = — d(aB,)/0z + (uo)~ ' 0*B,/0z*

0B,/0t = 0(aB,)/0z + (uo)™ 1 0°B, /022 (10)

for the nonvanishing components B,(z, t) and B,(z, t), with the
boundary conditions

B.(d,t) = B,(d,t) = B,(— d,t) = B,(— d, 1) = 0. (1)

We note that Egs. (10) and (11), with B, and B, replaced by B,
and By, are often used as a simple model to study axisymmetric
disk dynamos within the “local approximation” (cf. Zeldovich et
al., 1983). However, this approximation is not well justified, as
mentioned by Réadler and Bréauer (1987). In particular the use of
the boundary condition (11) is not correct in that context. We
therefore consider the model (10), (11) only as a mathematical
idealization (one-dimensional reduction) of the 3-dimensional
a2-dynamo problem.

Introducing dimensionless coordinates {, t, defined by

t = pod?r, z=d(, (12)
and the complex function

B({,t) = B, +iB,, (13)
we obtain the equation

B=B"+iC,(afB), C,= uoayd, (14)
with the boundary conditions

B(l,7)=B(—1,7)=0. (15)
Here we have assumed

o = 0yd(z)f(BB*) (16)

where «, is a positive constant, &(z) a prescribed function of z
and f(BB¥*) a prescribed function modelling the back-reaction
of the magnetic field on the turbulence.

Now we consider the special case

. { 1 for0<{<1
& =
—1

for —1<{<0
and discuss first the kinematic problem, i.e. f= 1. The general
solution of the problem (14), (15), (17) is given by

B = B + B(S),

17)

(18)
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where
B(A)( - C’ T) = - B(A)(C’ 1)9
B®(—{, 1) =B®(( 7).

B™) and B'S are solutions of (14) for 0 < { < 1 with the bound-
ary conditions

B™(0,7)=0, B"(1,7)=0,
B®"(0, 7) + iC,B®(0, t) = 0,

(19)

(20)
B®(1,7) =0. 1)

The conditions at { =0 follow from the continuity of B and
B’ +iC,aB (see Eq. (14)) together with Eq. (19). These solutions
can be found in the form

A o (A ANT oA
BY = 3 e M),

n=1

(22)

had s) A®g o
BO = 3 ¥ B (0)

n=1

(23)

where ¢{» and ¢{¥) are arbitrary complex constants determined
by the initial conditions.
The antisymmetric modes (for 0 < { < 1) are given by

BW(L) = e~ 1Cl/ 25in nn( (24)
with the eigenvalues

AN = C2/4 - n?n. (25)
The symmetric modes are (0 < { < 1)

BP(() = e~ 2sin [6,(1 - {)] (26)
with the eigenvalues

2= C2/4- 32, @7

where the J, have to be determined as nontrivial solutions of the

transcendental equation
i

5, = 3 C,tand,. (28)

Without loss of generality we assume Re d, > 0, and arrange the
solutions according to

2n—1)n/2 < Red, < nn.

In contrast to the antisymmetric modes, the symmetric modes
have always complex eigenvalues A5, The growth rates Re 4, for
the first modes are depicted in Fig. 2. The first S-mode is growing
for C, > 4.0066, the first A-mode for C, > 2n. For large C, the
growth rates become undistinguishable. This can also be seen by
comparing the asymptotic expansion of (27), (28)

A8 = C2/4 —n*n? + 4in’n?/C, + 12n*n*/C2 + O(C; %) (29)
with (25), i.e.
Re A —Re AN = 12n272/C2 + O(C, 3). (30)

Thus the results of the kinematic analysis can be symmarized as
follows: For C, < 4.0066 no dynamo activity is possible, any
initial magnetic field will decay. For 4.0066 < C, < 27 a sym-
metric magnetic field mode will grow. For C, > 2n symmetric
and antisymmetric modes are growing and a prediction of the
final state is impossible on the basis of the kinematic results
alone.
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Fig. 2. Growth rates of different modes in the one-dimensional
a?-model. The solid curve denotes the growth rate A of the first
symmetric mode and dashed ones refer to the next higher A- and S-
modes. Note the convergence of modes with the same n, but different
symmetry
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4. Growth rates for aw-dynamos of solar type

In this section we present results of numerical calculations con-
cerning the growth rates of some aw-dynamos. We will find
further evidence that the asymptotic equality will also hold here,
although a rigorous proof is not available.

First we investigate the growth rate of the first odd parity
mode and the first even mode for the Steenbeck—Krause model 1
(Steenbeck and Krause, 1969). The results are given in Table 1.
/ denotes the growth rate and £, the frequency of the magnetic
cycle. Both quantities are here dependent only on the dynamo
number C,C,, where C, is determined as before and C, is a
dimensionless measure of the differential rotation. We find that
the magnetic field B = 0 becomes unstable for C,C,, ~ 20.7 103
and here a field of type A0 with a dipole parallel to the axis of

Table 1. The frequency and growth rate for model 1 of Steen-
beck and Krause (1969) for different values of the dynamo
number C,C,,. These eigenvalues in this and the other tables were
computed with 100 radial gridpoints and 14 spherical harmonics

A0 mode SO mode
107%c . c, =, N 0 A

0. .0 -9.9 .0 -20.2
10. 22.2 -8.0 20.4 -17.1
20. 31.2 -0.4 29.6 -6.3
30. 37.9 5.9 36.5 1.3
40. 43.2 11.3 42.1 7.5
50. 47.8 16.2 46.9 12.8
60. 51.9 20.6 51.2 17.5
80. 59.1 28.3 58.6 25.7
100. 65.4 35.1 65.2 32.8
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Table 2. The frequency and growth rate for different values of C,
for the same model as in Table 1, but the a-effect producing the
toroidal field from the poloidal one is included. C,=1000. See
also Fig. 1 and Fig. 3

A0 mode SO mode
Co: :tﬂm A iﬂm A
0. .0 -9.9 .0 -20.2
10. 22.3 -7.6 20.3 -16.0
20. 31.6 2.1 29.9 -2.1
30. 37.8 13.3 36.5 11.5
40. 39.1 26.3 37.8 26.1
50. 41.0 35.8 39.8 35.8

rotation will start to grow. From C,C,, ~ 28.310° on, a field of
type SO will also grow, but the growth rate of the A0-type field
remains larger.

When the a-effect producing the toroidal field from the polo-
idal one is not neglected compared with effects of differential
rotation, the asymptotic equality of 40 and SO modes is more
clearly demonstrated. This can be seen from Table 2 and Fig. 3,
where we present the results for this case using model 1 of
Steenbeck and Krause with C,, = + 1000. The growth rates of
the two fields become undistinguishable for C, > 40. The results
for a further model with o and w profiles as in Radler (1986,
Fig. 16) are presented in Table 3 and Fig. 4. The behaviour of the
growth rates is here more complicated. For example the growth
rates of the S-type solution exceed that of the antisymmetric one
for certain C, values. For even higher C, the SO-mode splits into
two non-oscillatory solutions. This does not mean that a new
eigenvalue emerged because all axisymmetric oscillatory modes
have a pair of complex conjugated eigenvalues. Also the A0-
solution becomes non-oscillatory, but the second eigenvalue

40
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=20
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Fig. 3. Growth rates of the first A- and S-type solutions (solid and
broken lines, respectively) for the same model as in Fig. 1 for C,, = + 1000.
The a-effect producing the toroidal field from the poloidal one is not
neglected here, in contrast to the model used in Table 1

Table 3a. The frequency and growth rate for different C, of a
model with « and w profiles as in Radler (1986, Fig. 16) with
C,= —1000. See also Fig. 4. For C,> 3.2 the first modes are only
non-oscillatory and their growth rates become asymptotically
equal

A0 mode SO mode
1. mode 2. mode 1. mode 2. mode
C Q0 A +Q A +0 A 0 A

R
3
3
3
E)

.0 .0 -9.9 0 -20.2
0.1 .0 -14.1 0 -13.6
0.5 11.9 -11.5 .0 -8.2
1.0 15.7  -7.5 .0 -5.2
1.5 17.7 -4.1 .0 -3.7
2.0 18.8 -0.5 2.5 -6.7
2.2 18.9 1.1 6.4 -3.9
2.4 18.8 2.9 8.4 -0.8
2.6 18.1 4.9 9.6 3.0
2.8 16.7 7.1 9.9 7.2
3.0 13.1 9.2 8.6 12.3
3.05 11.7 9.4 8.0 13.4
3.10 8.8 9.0 0 -10.2 6.9 14.9
3.15 .0 13.6 7.6 1.4 4.7 16.6
3.20 .0 20.3 11.6 1.5 .0 19.1 .0 17.4
3.25 .0 25.1 13.4 2.3 .0 25.0 .0 14.4
3.30 .0 29.4 14.3 3.2 .0 29.4 .0 13.4
3.40 .0 37.6 15.0 5.2 .0 37.7 .0 12.6
3.50 .0 45.9 14.6 7.2 .0 46.0 .0 12.3
3.60 .0 54.6 13.0 9.3 .0 54.6 .0 11.7
3.70 .0 63.8 9.4 11.2 .0 63.8 .0 14.8
3.80 .0 73.5 .0 20.0 .0 73.5 .0 23.7
4.00 .0 94.5 .0 40.2 .0 94.5 .0 40.6

Table 3b. The frequency and growth rate of the first non-axi-
symmetric modes A1 and S1 for some values of C, using the same
model as in Table 3a. Note that the growth rates of both
symmetries are always very close to each other

Al mode S1 mode
Co( Qm A Qm A
2.0 995.2 -22.0 1000.4 -21.4
2.6 997.9 -8.7 999.3 -8.5
2.8 999.6 -1.0 999.1 -1.0
3.0 999.0 8.5 999.2 8.6
3.2 999.4 19.8

transforms with another non-oscillatory one to a pair of complex
conjugate oscillatory modes.

All these calculations have in common the asymptotic equa-
lity of the growth rates for A0 and SO modes. This result was also
obtained by Yoshimura et al. (1984) for different types of models.
We further see that there also seems to be asymptotic equality for
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Fig. 4. Growth rates of the first A- and S-type solutions for a model with
o and Q profiles as in Radler (1986, Fig. 16). We have chosen C,= — 1000,
which means that Q increases inwards with his definition. Note that the
growth rates of the S-type solution (dotted) exceeds that of the anti-
symmetric one (solid) for C, between 2.8 and 3.2. For even higher C, and
SO branch splits into two non-oscillatory modes. The AO-solution
becomes also non-oscillatory, but the second eigenvalue transforms with
another non-oscillatory one to a pair of complex conjugate oscillatory
modes

the fields of type S1 and A1, although with an asymptote which
differs from that of A0 and SO (see Table 3b). These numerical
results confirm the conjecture that no decision between odd and
even parity fields can be based on the considerations of the
growth rates of the linear eigenmodes.

5. Nonlinear analysis of the one-dimensional a?-model

The dynamo model treated in Sect. 3 allows the reduction of the
solution of the nonlinear steady problem to a quadrature. It can
easily be shown that antisymmetric steady nonlinear solutions
are possible. The boundary conditions (20) reduce the problem
for (0 < { <1) to the model discussed by Krause and Meinel
(1988). While symmetric steady solutions are impossible, solu-

tions of the form
BO(L, 1) = B({)e! " (31

can be found, where Q,, is a real constant to be determined as the

eigenvalue of the ordinary differential equation
iQ,8=B"+iC,[f(BB*)BY (32)

following from (14) for 0 < { < 1. The corresponding boundary
conditions are

B’ +iC,f(BB*)B|;- =0,
B(t)y=0.

(33)

The steady nonlinear solutions of A-type bifurcate from the
trivial solution B = 0 at the critical values C{A) = 2nn and co-
incide there with the steady kinematic modes. Correspondingly
the symmetric solutions (31) bifurcate at the marginal values C'S
of the symmetric oscillatory kinematic modes. At C$) the eigen-
values Q,,, of (32), (33) coincide with Im (>,

415

We considered more closely the case

f(BB*)=1/(1 + BB¥). 34

Numerical stability tests of the different nonlinear solutions have
been carried out using (14) for —1 < { <1 without symmetry
restrictions. The first S-type solutions (bifurcating at C{
= 4.0066, see Fig. 5a) proves to be stable against arbitrary
perturbations. The first A-type solution (bifurcating at C%’
= 2m) is stable against antisymmetric perturbations but unstable
against symmetric perturbations. All higher solutions of both
types are unstable.

A particular stability test was based on the quantity P
defined by

P=[E® —EWN]/[E® + EANT,

(€8))

0 5 10 15 20 25 30

Fig. 5a. Bifurcation diagram for the nonlinear one-dimensional
a2-model. The S-type solution is oscillatory and the frequencies deviate
quite substantially from those of the linear theory, if C, is large. The
energy for the oscillatory solution is time independent

| | | |
0 02 04 0.6 08 1

Fig. 5b. Evolution of P for the one-dimensional a>-model of Fig. 5a. For
all different initial ¢ (or P) the solution turns into a pure symmetric one,
i.e. P=1. These curves were obtained by taking C,=8
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where E® and E) are the energies of the symmetric and
antisymmetric part of the B-field inside the conducting region.
Note that P =1 for a pure symmetric field and P= —1 for a
pure antisymmetric one. The energy is defined here as

ESIN = 1)2 f dx| BSIM 2 (36)

volume

where B'®) and B denote the symmetric and antisymmetric part
of B.

We now test the stability of the A-type solution by adding a
fraction ¢ of the S-type solution to the B-field:

B, = B + ¢B®. (37

Similarly the stability of the S-type solution is tested by taking
B, = B® + ¢BW (38)

as the initial condition.

Figure 5b gives the evolution of P in the one-dimensional
model for different initial disturbances obtained by step by step
integration of B in time for initial values of P in the range (— 1,
+ 1). Note that we used (37) for P < 0 and (38) for P > 0, and
moreover that the initial condition is not fixed by P alone but
also by relative phase of B and B®. However, the qualitative
nature of the results is not affected by this freedom of initial
conditions. We find that the final stable solution has the value
P = 1, i.e. the parity is symmetric. Our investigations show that
the final state resulting from any initial field (except from the
unrealistic situation of a pure antisymmetric initial field without
any symmetric part) will always be given by the first S-type
nonlinear solution. This solution can be considered as the non-
linear extension of the first marginal S-mode. We stress that this
result of the clear prevalence of the S-type solution has nothing to
do with the different kinematic growth rates.

6. Nonlinear dynamo models in spherical geometry

Analytical solutions for dynamo models in spherical geometry
with latitudinally dependent « are not available. We shall there-
fore study the stability of such models numerically, restricting
ourselves, however, to the axisymmetric case. We solve the
dynamo equations (7)—(9) on a two-dimensional grid employing
a DuFort—Frankel time advance (see Proctor, 1977). When the
calculation is performed in two quadrants of a meridional plane
of a sphere, the boundary conditions do not select the parity, and
fields of both parities can exist simultaneously.

6.1. Dependence of o on the total energy

We now make a special choice of nonlinearity, where o depends
on the total magnetic energy E = E'S + E) (the “cross term”
vanishes under the integral):

a=a(0)=C,cos0/(1 +E). (39)

C, is the dynamo number and « is independent of r and changes
sign at the equator. The bifurcation of the S- and A-type solu-
tions from the trivial one appears at the critical dynamo numbers
C® =781 and C{» = 7.64. These are in accordance with those
calculated for the same model by Roberts (1972). For C, > C&/*),
| B| and so E grow until the quantity C,/(1 + E) is reduced to the

critical value, C$¥'*), of the currently dominant mode. Then the
steady state is reached. The energies are therefore determined by:

ESI® = C,/CE™ — 1. (40)

The stability behaviour can readily be observed by following the
time evolution of P, defined in Eq. (35). In Fig. 6a we have plotted
the energy versus dynamo number for solutions of each parity.

In Fig. 6b we have plotted P versus time for different ¢ such
that the initial P again covers the range from — 1 to + 1. Clearly
the A-type solution is stable to symmetric disturbances and the
S-type solution unstable to antisymmetric disturbances. This is
further illustrated by an experiment in which the evolution of a
purely S-type initial field was followed over many diffusion times.
The field evolved to the steady S-type solution (P = + 1) in time
t=0(1) with C,/(1+E)=C, and this configuration per-
sisted until ¢ > 1. Finally however this S-type solution changed

0.8

0.6

0.4

0.2

0

7 8 9 10 11 12 18 14

Fig. 6a. Bifurcation diagram for a spherical dynamo model with o
depending on the total energy E only (see Eq. (39)). The energy increases
linearly with C,

0 1 2 3 t 4

Fig. 6b. Evolution of P for the spherical dynamo model of Fig. 6a. For
all different initial ¢ (or P) the solution turns into a pure antisymmetric
one, i.e. P= —1. These result was obtained using C,=10
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into the first A-type solution (P = — 1), as the A-type noise
inevitably present in the computed solution grew and eventually
reduced C,/(1 + E)to C» < C'®. This is in agreement with the
general result of Krause and Meinel (1988, Sect. 5). Note again
that the mechanism is not just that of the solution with the fastest
linear theory growth rate becoming exponentially larger than
any other. The simple nonlinearity introduced quenches the
symmetric solution by reducing an initially supercritical value of
C, to a value at which the symmetric solution decays and the
antisymmetric solution is stable.

The typical time for the parity of the field to change can be
estimated by means of the kinematic growth rates. A small initial
antisymmetric contribution in a nearly symmetric field will in-
crease with the growth rate 1‘4). The effective a corresponds to
the marginal value of the currently dominating parity, which is
here the symmetric one with C$) = 7.81. From linear theory we
obtained for this value C, the growth rate of the antisymmetric
parity

A™ = 4+ 0.55, when C, = CS. 41)

For a given ratio of the initial energy of the antisymmetric
disturbance E§" and the final one E‘A) we expect the typical
timescale to be

1=[2A®]" 1 In[EW/EM]. 42)
From Egs. (35) and (40) we obtain
E® 1+PC/CP -1

_ + a/ a (43)

E® 1-PCJ/CO-1’

Considering now the uppermost curve in Fig. 6b, which starts
from P = 0.9, we find from Egs. (41)-(43) © ~ 2.6, which is indeed
in accordance with Fig. 6b and with the series of snapshots in
Fig. 7.

6.2. Dependence of o on the local energy density

The back-reaction of the magnetic field on the turbulence will in
general reduce the a-effect depending on the local strength of the
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Fig. 7. Series of snapshots showing the
change of symmetry for a nonlinear
dynamo, where « depends only on the total
energy. (Field lines of the poloidal field
above and lines of constant field strength
of the toroidal field below) The initial field
consist of a symmetric field with the energy
E® =0.28 disturbed by a small antisym-
metric field with the energy ¢éEA=0.015,
so that P=09 for the initial condition.
This state is unstable and evolves then to a
pure antisymmetric configuration

field, rather than on the global energy, as assumed in the previous
section. In order to keep « positive, we adopt here the frequently
used expression

o = a(r, 0) = C,cos0/[1 + B(r, 0)]. (44)

We have computed solutions for different dynamo numbers (see
the bifurcation diagram in Fig. 8a) and have tested their stability
in the same manner as described in the previous section. The
evolution of the parity after disturbances with different ¢ is
plotted in Fig. 8b for C, = 10. We see that, in contrast to the
previous case, there are now two stable solutions, one symmetric
(P =1) and the other antisymmetric (P = —1). Which of the
possible solutions is realized depends on the initial condition.
Similar results have been already obtained by Réidler (1984).
From Fig. 8b it can be estimated that the “watershed” lies at

0.8 T T T = T T
E
0.6 L
0.4 -
0.2 L
0 | | 1 n ]
7 8 9 10 11 12 18 14

Fig. 8a. Bifurcation diagram for a spherical dynamo model with «
depending on the local energy density 1/2 B (see Eq. (44)). The energy of
the S-type solution remains below that of the A-type solution
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Fig. 8b. Evolution of P for the spherical dynamo model of Fig. 8a with
C,=10. For an initial condition with dominating symmetric parity P>0
the solution reverted to a pure symmetric mode with P= +1, and vice
versa

0.95

0.9

0.85

0.8 1 1 | | 1
0 5 10 15 20 25 30

Fig. 8c. Same as Fig. 8a, but C,=7.89. Only for initial conditions close
to P=1 the solution tends to the symmetric field

P =~ + 0.05. This result is surprising, since the marginal dynamo
numbers of both symmetries are well separated.

At first this result seems to be in contradiction to the general
statement of Krause and Meinel (1988) that the second nonlinear
solution, bifurcating from C® is in any case unstable. In their
denotation C{* has to be identified with C; and C® with C,.
However, according to their statement the unstable behaviour
necessarily appears in a certain neighbourhood of C® only, i.e.
there may exist a certain value C* > C® with the property that
the symmetric solution is unstable for C, < C¥, but stable for
C,> C¥.

In order to confirm this statement we calculated the stability
for values of C, closer to C®. It is found that the “watershed”
tends, indeed, to P =1 if C, tends to C®. For C, = 7.89 the
“watershed” is very close to P = 1 (Fig. 8c) and for C, = 7.88 no
stable symmetric solution was found (Fig. 8d). Hence, the results

0.85

0.8 | 1 | |
0 5 10 15 20 25 30

Fig. 8d. Same as Fig. 8a, but C,=7.88. For all initial conditions the final
solution is the antisymmetric one (P= —1)
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Fig. 8e. A sketch illustrating the time behaviour of the magnetic fields
starting from asymmetric initial conditions (—1<P< +1). C¥ is the
critical dynamo number. First an antisymmetric solution (P=—1) is
attractor. Beyond C® also a symmetric solution (P = + 1) exists but is
first unstable, the antisymmetric one is still attractor. From C} onwards
this symmetric solution is also stable with, as indicated by the “water-
shed” (dot-dash line), an increasing region of attraction

can be expressed by an inequality:

781 = C® < 7.88 < C* < 7.89. 45)

The situation is illustrated in Fig. 8e.

We will now discuss how far we can understand the stability
behaviour. If B = BS/A 4 p is substituted in the governing equa-
tion we find by linearising with respect to the perturbation b the
equation:

ob/ot = curl{a[r, 0,(BS)21b} + (o) ' Ab

oo,
+ curl {6_83 (46)

e [2BS/A) ] BSIA) }
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Where it not for the last term, the stability could be discussed in
terms of the growth rates derived from the kinematic dynamo
equation with modified «. Then stability of the symmetric sol-
ution B® would be plausible if the maximal growth rate of
antisymmetric modes were still negative:

A™ <0, when a = a® = afr, 0, BS?). 47)

In the example considered above this was, however, not the case.
For instance, we found for C, = 10:

AW =0.62, when a=a® (48)

which would be large enough for the antisymmetric solution to
become important within the timespan plotted in Fig. 8b.
Obviously, the influence of the last term of the righthand side of
Eq. (46) provides an additional mechanism to stabilize the sym-
metric parity solution. The sequence of snapshots in Fig. 7 (where
o is given by Eq. (39)) gives some insight into the process of
partity reversal. There is a stage with very little magnetic induc-
tion in one hemisphere. Now, if the a-feedback is 0-dependent,
the local « in this hemisphere will be close to the maximal
possible value o,. This leads again to a field amplification in this
region. The direction of this field is still the same as before. The 0-
dependent feedback is thus acting against a reversal of parity and
is stabilizing the symmetric solution.

The stability of the antisymmetric solution could simply be
explained by a condition similar to Eq. (47)

A <0, when o =a®, (49)

In the example considered above (C, = 10) we indeed found:
A® = —0.70, when a = a®. (50)

That means, the last term in Eq. (46) does not qualitatively
change the stability behaviour of the antisymmetric solution.

6.3. Feedback on the mean velocity field

In the former sections we considered the back-reaction of the
magnetic field on the turbulent motions, which reduces the o-
effect. There may be, however, also a considerable feedback on
the mean velocity field u, which can limit the magnetic energy.
Such dynamos have been investigated by Proctor (1977), who
computed strictly antisymmetric dynamos. We shall study here
the stability of both symmetric and antisymmetric solutions. We
restrict ourselves again to the axisymmetric case and assume
density p, kinematic viscosity v and magnetic diffusivity # to be
constant in a sphere of radius R.

The governing equations are now the induction and
momentum equations, which we solve simultaneously including
the mean motion in the induction equation:
0B/0t = curl[u x B+ aB—ncurl B]
divB = 0. (51)
The momentum and continuity equations are:
pDu/Dt = —Vp—2pQ2 % u+ pg.c — B x curl B/u + pvV?u,
diva = 0, (52)

where u is the motion induced by the Lorentz force, p is pressure,
€2 the (constant) angular velocity, and g, the effective gravity.
We eliminate pressure and gravity by taking the curl of the
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meridional part of the momentum equation. The obtained equa-
tions were solved using step by step integration in time on a two-
dimensional grid with the same finite-difference representation
for the nonlinear terms as Proctor. We keep the Ekman number
v/QR? and the magnetic Prandtl number v/ equal to unity and
take a = C,cosf, with C, constant. For the velocity we employed
a stress-free boundary condition at the surface of the sphere.

In Fig. 9a we have plotted a bifurcation diagram for the
magnetic energies of both parities. The critical values for C, are,
of course, the same as in Sect. 6.1. We compared the energy of the
A-type solution with the values given by Proctor and found good
agreement.

We again studied the stability of these solutions by following
the evolution of P for different disturbances. The results, which

700
600 |
500 L
400 L
300 L
200 L
100 L -
C.
0 | | 1 1 L

7 8 9 10 11 12 18

Fig. 9a. Bifurcation diagram for the spherical magneto-hydrodynamic
dynamo model of Sect. 6.3, where the equations for the mean velocity are
solved simultaneously with the induction equations. Note that the energy
of the S-type solution exceeds that of the A-type solution for C,>8.2.
Such a crossing of energies was not found for the dynamo models in
which the nonlinearity came only via «

14

]
) & T
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Fig. 9b. Evolution of P for the spherical magneto-hydrodynamic
dynamo model of Fig. 9a. Similarly to the former case (Fig. 8b), the initial
condition determines the final symmetry. C,=10.0
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are presented in Fig. 9b, are.similar to the case where the a-effect
depends on the local energy density (Sect. 6.2), i.e. symmetric and
antisymmetric solutions are each possible stable solutions.
According to Lenz’s rule we would also expect similar results to
those obtained previously, since the main effect of this feedback is
a local braking of the initially rigid rotation, creating thereby
differential rotation, which gives rise to magnetic induction act-
ing against the original field. This is inevitably a more or less
dramatic simplification of a complicated physical system, whose
complexity is likely to increase towards the highly nonlinear low
viscosity regime.

6.4. Nonlinear oscillatory dynamos

In the last two sections we have considered two different non-
linear dynamo problems and found in each case conditions under
which two solutions exists. This result is in contrast to those in
Sects. 5 and 6.1, where only one solution was found to be stable.
We argued then that the 6-dependent feedback of the a-effect
may stabilize the SO-mode. This possible explanation could break
down, however, if the magnetic field is oscillating, since the
feedback (together with the local energy density) can become
rather small during the cycle. This is also the case in the one-
dimensional «?-model of Sect. 5, for which only one stable
solution was found. In this section we follow this point in more
detail.

Oscillatory solutions of the dynamo equations in spherical
geometry are known, if differential rotation is present (xw-
dynamo). We have studied the simple nonlinear model defined by
Eq. (4)) with an angular velocity Q varying linearily with radius:

Q(r) = C,/(usR?)-r/R. (53)

Keeping C, = —10* = const, we found Hopf bifurcations from
the trivial solution at the values C{» = 0.549 and C® = 0.728
with the frequencies Q¥ = +54.1 and Q = +67.5. These eigen-
values are again in accordance with those calculated by Roberts
(1972) for the same model.

The stability of these two solutions of the nonlinear problem
is examined by following the evolution of P for different initial

1
P
0.5 L
0 |
-0.5 |
4
_"7 1 | .
0 0.5 1 1.5 2 2.5

Fig. 10a. Evolution of P for the oscillatory aw-dynamo model of Sect 6.4
for C,=0.75. The symmetric solution (P = +1), which already exists, is
unstable. Hence the stable antisymmetric one represents the final state

conditions and values of C,. A surprising new situation in
comparison with the foregoing models appears: For C, = 0.75
the antisymmetric solution proves to be stable (Fig. 10a). How-
ever, for C, = 0.9 our calculations reveal that neither of the two
nonlinear solutions is stable (Fig. 10b, ¢). The time behaviour of P
exhibits a long period, which is about ten times the basic mag-
netic period. Within this long period, obviously, the magnetic field
switches from a dominant symmetric state (P > 0) to a state
where the antisymmetric part is dominating (P < 0) and vice
versa. The trajectory in phase space of the system lies on a torus
(Brandenburg et al., 1989). Then, for C, = 1.0 the symmetric

P
0.5 L
0 |
-0.5 |
L
L

- 7 1 1 1 1
0 1 2 3 4 5 6

Fig. 10b. Same as Fig. 10a, but with C,=0.9. Now the antisymmetric
solution is also unstable. The attractor is more complex: it shows in the
extreme cases either dominant symmetry or antisymmetry. The long
period of this parity variation is about ten times the basic magnetic
period. Note that the high frequency wiggles are due to the energy, which
oscillates with half the magnetic period

|

3 4

Fig. 10c. As Fig. 10b, but starting from P= —0.9. The same solution is
reached from this initial condition too. The length of the bar in the upper
part of the diagram is 2r/(QS —QW), where Q8™ are the nonlinear
frequencies for the pure solutions. This time coincides with the long term
period
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Fig. 10d. Same as Fig. 10a, but with C,= 1.0. Although the initial field is
predominantly antisymmetric it evolves into the symmetric solution, thus
showing its stability for this dynamo number
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Fig. 10e. A sketch of the attractor scenario of the oscillatory aw-dynamo
model of Sect. 6.4. In contrast to the model discussed in Fig. 8¢ the
antisymmetric solution loses stability before the symmetric one becomes
stable. Hence there is a region C¥ < C, < C** where no stable solution of
pure parity exists. The solution varies between states of predominantly
symmetric and antisymmetric appearance (see Fig. 10b)

solution is stable and obviously the final state for arbitrary initial
conditions (Fig. 10d).

From these calculations we may conclude that there is a value
C¥ with the property that the antisymmetric solution is stable for
C, < C¥ and unstable for C, > C¥. Furthermore there is a value
C¥* > C¥ such that the symmetric solution is unstable for
C, < C¥* but stable for C, > C¥*. For C¥ < C, < C** no stable
nonlinear solution of pure parity exists (Fig. 10b, c).

One is tempted to apply the main result of these investigtions
to the Sun. It is well known that the poloidal field is not purely
antisymmetric, e.g. it was observed that the polar caps reverse
polarity at different times (e.g. Babcock, 1959), thus indicating a
superposed symmetric (quadrupole) field. The field geometry
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Fig. 10f. Butterfly diagram showing the toroidal field component at the
level r=0.95 in the ¢ — @ plane for the model of Fig. 10b. The time interval,
starting at t=1 (see Fig. 10b), is a bit longer than a full period of parity
variation. The nearly symmetric field on the left with B,#0 at the
equator evolves into a antisymmetric one in the middle of the figure with
B, ~0 at the equator

calculated for C,=0.9 shows similar features, the relative
magnitude of antisymmetric and symmetric part slowly changing
over the long period. However, in the case of the Sun, one must
take into account that the butterfly diagram, which represents
the toroidal field and so the strong part of the solar magnetic
field, does not show significant deviations from antisymmetry. In
addition, Stenflo and Vogel (1986) have not found even parity
field parts of the poloidal field with a definite period.

The process of change of symmetry lasts for many periods, as
can be seen from Fig. 10e showing the toroidal field at the depth
r =095 in the t — 0 plane (butterfly diagram). One clearly sees
that the mean magnetic field near the equator grows from
(nearly) zero to a maximum, when the preferred symmetric
configuration is reached.

7. Conclusions

We have shown that, for all considered dynamo models, the
kinematic growth rates of fields of different parities are asymp-
totically equal as the dynamo numbers increase. Hence it is clear
that a selection of a field with a certain parity cannot in general
be explained by consideration of kinematic growth rates.

We then considered the behaviour of some models taking into
account a nonlinear back-reaction of the magnetic field of vari-
ous forms. In general we confirm the finding of Krause and
Meinel (1988) that the stability of the nonlinear solutions pro-
vides the parity selection, although here, because more com-
plicated models are considered, the phenomena are more com-
plex. We confirmed that the first excited solution (in the order of
growing dynamo number) is, for a certain range, the only stable
one and that the higher solutions are at first unstable. However,
in two cases it was found that there is a certain value C* of the
dynamo number, beyond which the second nonlinear solution
becomes also stable (see Fig. 8¢). The final state proves to be
dependent on the initial conditions being, however, always of one
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symmetry. No mixture of fields with different symmetries
appeared.

The higher bifurcation points are of less physical interest
since the solutions will not be found or the corresponding fields
observed because they are unstale. In contrast C¥ is a quantity of
interest since it characterizes the beginning of the range of the
dynamo number where more than one stable nonlinear solution
exists.

A new situation appears in our last example, where an
oscillatory aw-dynamo has been considered. For a constant C,
and with increasing C, the antisymmetric solution is at first
stable. However, when C, is increased more, it loses its stability,
whilst the symmetric solution remains still unstable. No stable
oscillating solution of a definite parity exists. Any initial field is
attracted by a field with two periods: a long term oscillation
between the unstable solutions of genuine symmetries super-
posed over the normal magnetic cycle. For even larger C, the
symmetric solution becomes stable. Obviously this model is
worthy of further investigation.

The basic mechanism stabilizing or destabilizing different
solutions is not well understood. To clarify this it therefore seems
necessary to enlarge the sample of dynamo models with different
stability behaviour. For example it would be important for
application to the Sun to know under which conditions the
oscillatory A0 mode is stable. Furthermore, the stability analysis
of spherical dynamos has so far been restricted to axisymmetric
analysis. So we do not know whether a solution, which is here
proved to be stable, will respond similarly for non-axisymmetric
disturbances. Results of Riadler and Wiedemann (1989) suggest
that some of our solutions may possibly be unstable to non-
axisymmetric perturbations.

Observations of the magnetic fields show more or less sig-
nificant deviations from the basic symmetry, e.g. the inclination
of the Earth’s dipole or the sectorial structure of the Sun. Pro-
bably these deviations from symmetry have to be explained by
models where the condition of exact symmetry of the internal
structure and motions is relaxed from the beginning. This is,
however, beyond the scope of this paper.
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