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Summary. A Green’s function formalism for isothermal atmos-
pheres is employed to solve an initial value problem in the linear
and adiabatic approximation taking compressible effects fully
into account. This method is applied to Brunt-Viisidld oscil-
lations of axisymmetric bubbles. The solution for the velocity,
entropy and pressure field is given as a double integral, which
may be evaluated either approximately or rigorously by quadra-
ture. A localized initial disturbance (e.g. in entropy) can excite
different kinds of gravity waves, depending on the size of the
disturbance and on the strength of coupling between gravity and
pressure modes. Comparison is made with the anelastic approxi-
mation, which turns out to give correct results only if the size of
the initial disturbance is small enough (smaller than about ten
pressure scale heights), or if the ratio of the specific heats y is close
to unity, i.e. if the atmosphere is close to marginal convective
stability. The anelastic approximation becomes invalid, if the
group velocity of gravity waves gets close to the speed of sound.

Key words: analytical methods: Green’s functions — hydrodynam-
ics — anelastic approximation — oscillations of the Sun, g-modes

1. Introduction

The theory of linearized flows with initial and boundary condit-
ions modeling a bubble has been of interest in different circum-
stances. Meyer and Schmidt (1967) and Stix (1970) calculated
wave generation due to granulation assuming a rising and falling
bubble as the lower boundary condition. They expanded the
solution in terms of eigenfunctions and found several properties
observed in the solar granulation, e.g. the variation with height of
amplitude, frequency, power-spectrum and phase between tem-
perature and velocity fluctuations.

Another application of bubble-like flow has been the possibil-
ity of testing hydrodynamic computer codes starting from an
undisturbed state. Stefanik et al. (1984), Gigas and Steffen (1984)
and Schmitz (1986) considered the motion of a hot bubble in an
isothermal atmosphere and computed Brunt-Viisila oscillations
with a hydro-code based on the method of characteristics
(Stefanik et al., 1984). They compared period and maximum
velocity with the quantities obtained from the theory of harmonic
oscillations. However, damping and a type of variation of the
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velocity field was also found, which is not predicted by simple
theory. Apart from analytic solutions of standing waves in a
cylinder (Stefanik et al., 1984) no other solutions are available for
quantitative comparison.

The goal of the present paper is to study in more detail a
laminar flow resulting from a bubble, undergoing Brunt-Viiséla
oscillations. In particular we shall consider effects due to large-
scale disturbances, which have not been considered in the papers
mentioned above. Furthermore we shall discuss the anelastic
approximation (Gough, 1969), which has been widely used in
astrophysics to model convection (e.g. Toomre et al., 1976;
Nordlund, 1982).

We make use of the method of Green’s functions to compute
the response of an atmosphere to arbitrary disturbances in
velocity, entropy and pressure. This method can be regarded as a
generalisation of the modal analysis treated by Meyer and
Schmidt (1967). In astrophysics the Green’s function formalism
has been employed in several cases. For example the response of a
star’s radius and entropy due to mass and energy transfer
(Hazlehurst et al., 1977) or due to arbitrary spherical disturbances
of the hydrostatic stratification (Ddppen, 1983) can be given by
Green’s functions. Aizenman and Perdang (1976) used Green’s
functions to study the secular stability of a star considering
perturbations in the chemical abundances. Recently Briauer and
Rédler (1986, 1987) reported on Green’s functions for the equa-
tion of induction, which is important in solar dynamo theory.

This paper is arranged as follows: in the second section we
shall derive a hermitian differential operator that describes an
adiabatic flow in a plane-parallel isothermal atmosphere. In Sect.
3 this operator will be inverted by means of Fourier trans-
formation to give a Green’s function tensor. In the following
section the inverse Fourier transformation for an axisymmetric
initial condition (e.g. a bubble) is carried out. In Sect. 5 we discuss
different properties of g-modes and also the range of validity of
the anelastic approximation. An explicit, but approximate sol-
ution for small bubbles is given in Sect. 6 and the results are
discussed in the last section.

2. The basic equations

We wish to study gravitational and acoustic waves in an at-
mospheric layer, which may be approximated as being isother-
mal. We neglect rotation and magnetic fields, which would
modify the flow for longer timescales than considered here. For
example, if we assume a magnetic field of 300 Gauss in the solar
atmosphere an Alfvén wave would need about ten Brunt-Viisild
periods to travel one pressure scale height. This is, of course, no
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longer the case in sunspots. Following Stein and Leibacher (1974),
we adopt the inviscid and adiabatic equations, because the
dissipative effects do not introduce any new modes. At the bottom
of the solar photosphere the radiative cooling time is about one
hour, but decreases rapidly towards upper layers (Noyes and
Leighton, 1963). Our analysis can therefore only be applied to
regions not too close to the surface. Denoting now by
D/Dt=3/0t + v.V the advective derivative we have:

Dv
pD—t+Vp—py=0 0
&:0 )
Dt
%+pV.v=0 3)
Dt

where s is the specific entropy, which is related to the other
thermodynamic quantities pressure p and density p by:

Ds Dlogp

Dlogp
—=c, c
Dt

Dt * Dt

@

where ¢, and ¢, are the specific heats at constant density and
pressure, respectively, which we assume as being constant. In-
stead of Eq. (3) we shall use a similar one for the pressure obtained
by combining Egs. (2)(4):

i +ypV 0 %)
— =

Dt P

Here 7 is the ratio c,/c,. Equation (4) is used to eliminate the
density p in Eq. (1). The five unknown quantities are v,, v,, v,, 5,
and p. We now consider motions with sufficiently small ampli-
tudes and shall therefore linearize Egs. (1), (2), (4), and (5) about
their equilibrium values which correspond to a static isothermal
atmosphere:

PO(z) = P (0) exp(—z/H,) 6
yP@(2)/p©@(z) = c? = const. W)
ds®/dz = c,(y —1)/yH, = const. (8)

c denotes the speed of sound and H, = c?/yg the pressure scale
height. The equations for the deviations, denoted by super-
script™®), are derived to be:

F e s®  p 1
(1) —

o "ezg<?p——m>+wvl7 =0 )
(1) (0)

O B (10)
ot dz

opH dp®

—St—+v‘z"s—+vp‘°’V.v‘”=0 (11)

¥4

It is possible to organize these five equations in matrix form such
that the differential operator matrix becomes hermitian. To this
end we now introduce dimensionless quantities, indicated by a
prime, as follows:

x'=x/H, with Hy=yH,/(1-y/2) (12)
t'=t/T, with  T,=H,/c (13)
v'=vWexp(—z/2H,)/(ic) (14)
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s'=sW exp(—z/2H,)/[lic, /7 —11] (15)
p'=pW exp(+z/2H,)/[iyp'” (0)] (16)

The singularities in this transformation at y = 1 and y = 2 are not
physical and could be removed, if necessary. In the following we
shall, however, cgnsider only 1 < y < 2. The imaginary unit i is
introduced for reasons of appearance to obtain a hermitian and
not an antihermitian differential operator later on. We define
hermiticity here using a scalar product with integration over
space and time.

We insert now Egs. (12)(16) into (9)«(11) and order in matrix
form:

Ljq;=0 ij=1,...,5 a7

where g; is a column vector and L;; a hermitian differential
operator. Explicitly Eq. (17) reads:

io, O 0 0 i0, vl
0 i, 0 0 id, v,
0 0 i0, —iwy i+i0, v, |=0 (18)
0 o0 iw, i0, 0 s’
i0, i0, —i+id, 0 i0, p’
, is a dimensionless Brunt-Viisila frequency, defined as:
wo=+/7=1/(1=7/2) (19)

Note that L;; is not any longer hermitian if w, becomes imagin-
ary, i.e. y < 1. This would correspond to a convectively unstable
atmosphere, which will not be considered here.

A hermitian differential operator similar to that in Eq. (18)
was considered by Haken (1983) for the Rayleigh-Bénard con-
vection using the Boussinesq approximation.

We shall now discuss the boundary conditions. We shall here
restrict ourselves to the case of closed boundaries, i.e.

v,=0atz=+1L, (20)

at an upper and lower boundary + L,. This boundary condition
is also consistent with hermiticity. We wish to study the initial
value problem, starting from an undisturbed state, and note that a
disturbance always needs some time to arrive at the boundaries.
We shall therefore take the attitude of assuming the boundaries so
far away from the center of the disturbance that its behaviour is
independent of the particular choice of the boundary conditions,
ie.

L,>» Jod+1t (21)

The presence of the boundaries, however, is necessary to keep the
velocity and pressure disturbances finite and small enough for
longer times.

3. The Green’s-function tensor
The differential equations (17) may be solved in terms of Green’s
functions G;(t, x):

qi(t, x) = Jw d*x' Gij(t, x —x")qo;(x") (22)

—

where g, ;(x) is the initial condition. The Green’s functions have
to satisfy the boundary conditions (see discussion in the previous
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section) and:
Lij(t’ x) ij(t’ x)=0;6(t) 53(x) (23)

Even in the case of finite boundary conditions the range of
integration in Eq. (22) may be taken over the entire space,
provided that G;(t, x) vanish outside the domain.

As shown by Brauer and Rédler (1986) such Green’s functions

solve at the same time also the related inhomogeneous equations:

Uq) Qz l,]=1,,5 (24)
via:
q;(t,x) = J dx G j(t, x —x')qo;(x)

+J dt’J Bx'Gt—t, x—x")Q;(t', x) (25)
Fourier transformation is now introduced for ¢; and G,;:
giw,k) = J dt ‘[ d3x e~ itke=o) g.(¢, x) (26)
© d3

(t, x)= i(kx~wt) ; (D,k 27

4:(t, x) J_w j o7 ° qgi(w, k) (7)

Corresponding formulae hold also for G, ;. Equation (23) can be
solved by substituting 0/0x — ik, etc. and inverting the resulting

algebraic matrix:
Gijw,k) = Li;' (w,k) (28)

In Fourier space the convolution integral in Eq. (22) is replaced
by a common product:

qi(w, k) = Gij(w: k) qu(k) (29)
where q, ;(k) is the Fourier transformation of the initial condition
9o j(x)~

It is convenient to split the hermitian Green’s tensor into two
parts as follows:

Gij(w, k)= m[wG“’(w , k) + GO (w, k)] (30)
The determinant of L;; entering into this equation reads:
detL = o[(0? —k?)(@? — w3) — 0?(k2 + 1)]

= o[w* — 0?(k* + wi + 1)+ w3 k2] (31)
with:
k?=kZ+k? and k?=kZ+kZ+k2 (32)

The zeros of Eq. (31) are the dimensionless solutions of the well
known dispersion relation for isothermal atmospheres (e.g.
Moore and Spiegel, 1964). In physical dimensions w,/ T, is the
Brunt-Viisild frequency and \/ (w3 + 1)/ T, is the Lamb cutoff
frequency.

Employing some simple algebra, we find from Eqgs. (28) and
(30) the following two matrices G and G

(@ — k2)(1 — 0} jw?) — k2 — 1 ok, (1— w3 /a?) k,(k, + i) 0 0
kok,(1 — w03/ 0?) (@ — k)1 — wdjw?) — k2 =1 k,(k,+1) 0 0
G (@, k) = k,(k, — i) k,(k, — i) w? —k? 0 0
0 0 0 0?—k?—1 —iwglk,—1i)
0 0 0 iwg(k; + 1) w? — wi (33)
and:
0 0 0 inkx(kz + l) kx(wz - Cl)g)
0 0 0 iwgk,(k, +1i) k(0*— wd)
G¥) (0, k) = 0 0 0 iwg(@? —k2)  (k, — )w?
—iwgky(k, —i) —iwok,k,—i) —iwg(w?—k}?) 0 0
k. (w? — w3) k,(0? — w}) (k, + i)w? 0 0 (34)

4. The inverse Fourier transformation

The problem of finding the solution of Eq. (17) has been replaced
by the one of evaluating the Fourier integrals in Eq. (27). The
w-integral may easily be found using the law of residuals (e.g.
Schldgl, 1956), because G;;(w, k) has singularities w, (k) and w, (k)
at the zeros of det L;;:

02, =3k + of + 1){1 £ [1 —4wik?/(k* + ©0f +1)*]'?} (35)

We are interested in the retarded Green’s functions and
therefore we have to shift the singularities into the lower half of

the complex w-plane:
- w+i0 (36)

Physically this corresponds to introducing a small positive
damping into the basic equations.

Carrying out this w-integration we end up with a new matrix
G;(t, k), which we split again.into two parts, a p-mode and a
g-mode response:

G(t, k) =GP (t, k) + G¥ (1, k) 37
Both components can be written by means of the matrices G*©

and G® (Eqgs. 33 and 34) using as w-argument the frequencies w,
and w,, which are functions of k (Eq. 35):

0(t)
_—[COS( p/gt)G ( p/g’k)

p )

GEO(t, k)=

4 5in (@) GE (0,4, k)] (38)

Here 0(t) denotes the Heaviside step function. From Eq. (38)
we see that the components of the tensor G*© and G differ in
phase by n/2. This leads to the property that the entropy and
pressure advance the velocity by a quarter of a period in an

plg
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oscillatory adiabatic and inviscid flow (Meyer and Schmidt,
1967). In the following we shall study some properties of the
Green’s functions using special initial conditions.

Stefanik et al. (1984) computed numerically the response of an
isothermal atmosphere to an enhanced temperature at gridpoints
around the centre of their computational domain. This resembles
the liberation of a hot bubble undergoing subsequently Brunt-
Viisild oscillations. We take a similar approach and choose as an
initial condition an axisymmetric distribution of the entropy as
follows:

40;(r, z) = 8;4 exp(—r*/R} — 2*/R}) (39)
with
r2=x%+y? (40)

and r the distance from the vertical z-axis. This gaussian distribu-
tion of entropy corresponds to a bubble-like disturbance with an
unsharp boundary and an elliptical cross-section. The Fourier
transformation of this initial condition reads:

qoj(k,, k;)=0;4m*? RZ R, exp(—k? R?/4 —k}RZ/4) @1

The Fourier integrals for the solution of g;(t,7,z) may now be
written in cylindrical co-ordinates and the integration with
respect to the azimuthal angle can be replaced by the integral
representation of the Bessel functions. The remaining double
integral reads:

Ur

’ RZR, ©  exp(—k2R%/4 —k2R2/4
Uf _ zj dk,-[ dkz p( . / ; / ) x
s 2\/; 0 0 Wy — Wy
pl

1 1
—k2J, (k,r)(cos k,z + k,sin k,z)I:—sin w,t ——sin wgt]wo
wl’ wﬂ

1. .
kJo(k,r)cos k z[(w2 — k?)—sin w,t — (wf — k?)—sin w,t]w,
o o

p 9

k,Jo(k,r)cosk,z[(w2 — k* — 1)cos w,t — (0 — k* — 1)cos w,t]

"k, Jo(k,r)(cos k,z + k,sin k, z) [ cos w,t — cos ,t]wq
42)
This result could also have been obtained directly by means of
Hankel transformation (see e.g. Sneddon, 1955).
Let us now return to the question of the boundary conditions.

The closed boundary conditions Eq. (20) can be fulfilled, if the
k,-integral in Eq. (42) is repfaced by a sum over discrete k,-values:

K =n(n+1/2)/L, n=1,2,... 43)

This procedure is the usual expansion in terms of eigenfunctions
with the eigenvalues w,, (k) (see Meyer and Schmidt, 1967). The
initial condition has, of course, also to be modified such that
Eq. (39) is replaced by a Fourier sequence over Eq. (41) with the
discrete k -values given in Eq. (43). This is because the closed
boundary condition requires automatically that the entropy
disturbance s’ vanish at z= + L, (see Eq. 18).

5. Size of disturbances and anelastic approximation

We discuss now three kinds of g-mode oscillations, which result
from either large-scale or small-scale initial disturbances and
from different w, controlling the coupling between p- and
g-modes. In Fig. 1 we have plotted w,,,(k,) for k, = 0 and different
w, (ie. different y). We compare at the same time with the
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y = 1.67 y = 1.90
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0 I | / | | I 1
0 1 2 ¢} 1 2 ¢} 1 2

k./w, k./w, k./w,

Fig. 1. The dispersion relation w = w(k,) for three different y and k, = 0.
Both axes are normalized to w, (= 0.7, 4.9 and 19 for the three cases). The
solid curves are the p-mode (uppermost) and the g-mode branch from Eq.
(35). The dashed line refers to the anelastic approximation (Eq. 45). Note
the different behaviour of the curvature between w, and w,,, for o < k,.
The anelastic approximation is useful if y is close to unity (close to
marginal convective stability), but breaks down for larger values of y and
small k, (large wavelength)

corresponding dispersion relation for the anelastic approxima-
tion w, ., (k,) (Gough, 1969), which can be obtained by dropping
the time derivative in Egs. (3), (5), and (11). Instead of Eq. (35) we
have:

w:nel = (03 kf/(kZ + 1) (44)

From Fig. 1 we may find the following properties of w, and w,,:

i) w,(k,) increases linearly if k, < w, and w, is large (see right
panel)

(ii) strong deviations from the linear increase of

o, for k, < w, but small w, (left panel) and of

Waneilk,) for k, < w, and arbitrary w,

iii) w, & const for k, > w, and arbitrary w, (all three panels)
We thus expect also three different types of g-mode oscillations.
For disturbances with a size larger than:

lerie ® 2ng ' Ho = (2ny//y— 1) H, 45)

(in physical units) there can be horizontal wave propagation
either with or without dispersion (case i and ii respectively).
Smaller disturbances lead to Brunt-Viisild oscillations without,
however, producing propagating waves (case iii). In Fig. 2a—4a we
give examples of the velocity fields for the three cases ii, 1, and iii.
Comparison is made with the anelastic approximation
(Fig. 2b—4b), for which we obtained the following solution:

RZR, (= [*
dk, | dk,exp(—k?R2/4—k2R2/4) x
2\/; 0 0

S S

v,
v
N

,u\

k2J,(k,r)(cosk,z+ k,sin k,z)(1 + k%)™ (Wanet/ @)~ SINW, eyt
k,Jo(k,r)COS k, 2 (@ane1/ o) SIN Wyper
k,Jo(k,r)cos k,zCOS Wyqert
k,Jo(k,¥)(cos k,z + k,sin k,z)(1 + k%)™ 0o COSWyne

(46)
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Fig. 2a. A snapshot of the velocity field at the time when the bubble has
completed three Brunt-Viisili oscillations, i.e. wyt = 6.4 7 (t = 28.6). The
radius of the bubbleis R, = R, = 2.0 and y = 1.1, which corresponds to the
case (ii) in Sect. 5

anel. approx.
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Fig. 3b. Same as Fig. 3a, but using the anelastic approximation. The flow
pattern is similar to the case y=1.1 (see Fig. 2a,b). However, the
discrepancy with respect to the fully compressible case is quite remarkable

p—mode part
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Fig. 2b. Same as Fig. 2a, but using the anelastic approximation. The
differences between the anelastic and the fully compressible computation
are only minor
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10 1 T T
5 ]
.l;lli ..........
[ te oL
0 L ,41%1«. -
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-5 ’ |
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Fig. 3a. Same as Fig. 2a, but for y=15/3. The time corresponding to
ot = 6.47 is much shorter in this case (t =4.1)

Fig. 3c. Same as Fig. 3a, but only the p-mode part is plotted. The flow is
now dominated by acoustic oscillations at the Lamb cutoff frequency
\/ (wZ + 1). The p-modes cannot propagate, since there is no group
velocity for small wave numbers (large bubble), see also Fig. 1, right and
middle panel

- g—mode part

10 R =20,y |= 1.67, t =| 4.1, Vpoo =| 5.19E-02
S . .
Lo {:.?E: : ::::::.:5 ............ ]
B ]
-10 1 | |
-20 -10 0 10 20

Fig. 3d. Same as Fig. 3a, but only the g-mode part is plotted. This picture
has now nothing in common with the flows in the figures above. The
initial disturbance propagates sideways without any dispersion. This is
because the curvature in the dispersion relation (see Fig. 1, right and
middle panel) is very small in contrast to the curvature for the anelastic
approximation
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Fig. 4a. Same as Fig. 3a, but starting with a small bubble (R, = R, =0.2)
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Fig. 4b. Same as Fig. 4a, but using the anelastic approximation. The
differences between the anelastic and the fully compressible case are again
only minor ones, as in the case y = 1.1 (see Fig. 2a, b)
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Fig. 4c. Same as Fig. 4b, but the solution is computed using the
stationary phase (Sect. 6)

The integrals (42) and (46) have been calculated by quadrature.
From Fig. 3a and 3b we see that the anelastic approximation
breaks down, if y is not any longer close to unity, i.e. if w, large.
The physical reason for this is that the group velocity of the
gravity waves is close to the speed of sound. Fig. 5a, b give an
example for an intermediate radius.

Fig. 5a. Same as Fig. 3a and 4a, but starting with a bubble of inter-
mediate radius close to [, (R, = R, = 0.8). Note that the vertical exten-
sion of the velocity pattern is about half way between the case 3a and 4a
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Fig. 5b. Same as Fig. 5a, but using the anelastic approximation

6. An approximate solution for small bubbles

Some properties of a bubble undergoing Brunt-Viisilid oscil-
lations can be obtained from the theory of harmonic oscillations
(acceleration x mass = restoring force). Quantities such as period
and maximum velocity have been sometimes considered to test
hydrodynamic computer codes (Stefanik et al., 1984; Gigas and
Steffen, 1984; Schmitz, 1986). However, there are other basic
features of the flow, for example the stirring up of the atmosphere,
found by Stefanik et al. (1984). The intention of this section is,
therefore, to provide some explicit results describing the vertical
growth of the velocity field (see Fig. 4a) and the phase relations.

We consider the flow due to a disturbance by a small bubble
(R, < 1and R, < 1) after a time sufficiently long for the acoustic
waves to propagate out of the region of interest. We may therefore
neglect the pressure response G® in Eq. (37). Moreover, we shall
make use of the anelastic approximation, which proved to be
useful, if the size of the disturbance is small (see Sect. 5). We shall
demonstrate the procedure for the entropy integral in Eq. (46),
which is the simplest one and reduces with the anelastic approxi-
mation to:

0 0

dk, dk, .
5 Jotkr)k, exp(i®) qoq (k)
n _w 2T

s(t,r,z)=Re j

0

(47)
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with a phase ®:

O =k,z—wotk, (k2 + k2 +1)"1/2 48)

Consider first the k,-integral. If the time is large, the term exp(i®)
becomes very oscillatory with respect to k, and k.. thus leading
partly to destructive interference. The function ., (k) is at the
same time only slowly varying. The integral has its main contri-
bution for k,=k,, where the phase becomes stationary i.e.
0®/0k,=0.

The method of stationary phase, often used in optics and

hydrodynamics (see e.g. Sommerfeld, 1945), may be applied to the

k,-integral in Eq. (46). It consists of a Taylor expansion of the
phase up to terms of second order. The k. -integral then becomes
approximately:

o

dk
k,-integr. ~ j 5y ~expi[®(k.o) +3(k, — k.0)* @ 1qo4 (k.0)
e 2W

=[—2i®"(k,0)]™'/* expi®(k.0)qoa (ko) 49)
The k,-derivatives of the phase @, denoted by a prime, are found
to be:

@' =2+ wgtkk (k2 + k2 + 1) 32 (50)

O = —awotk, (k2 —2k? + 1) (k? + k2 + 1)~ 5/ (51)

In Egs. (48), (50) and (51) we now assume k, > 1, because in the
k,-integral also destructive interference appears at small k, (note
the slope for small k, in Fig. 1). We find the extremum to be then
approximately at:

ko & —zk2/w,t (52)
and Egs. (48) and (51) give at this point:
®(k,o) & — 22k2 /oot — ot (53)
@ (ko) x —k; 2w (54
For sufficiently small z-values, satisfying
zk,/2~ z/R, € wyt (59)

the influence of k,, in the source term may be neglected. Inserting
now Eq. (49), (53) and (54) into (47), the resulting k,-integral may
be solved in terms of the confluent hypergeometric function M
(see Abramowitz and Stegun, Eq. 11.4.28, 1970):

2mi \ 112 R,
st r,2)= Re%(ﬂ) exp(—iwgt)—a* M@, 1, —a?r?/R2)
Wt R
(56)

r

with a complex function
a=a(t, z) =[1+4i(z/R,)* [(wot)]~'? (57)

The real part of Eq. (56) can be evaluated by using some
elementary algebra. Properties of this solution are summarized
below:

i) The bubble oscillates with the frequency w,, but a phase
shift of m/4 appears (note: i'/2 = expin/4).

ii) The amplitude decreases algebraically oct™'/? and is
proportional to the ratio R,/R,.

iii) The phase of the flow along the axis above and below the
plane z = 0 advances the flow in the equatorial plane, because of
same sign of ¢ and af(t, z) in the exponent of s’, which can be
written in the form: s’ oc Re exp —i[wqt + 3/2 arctg Im(a™2)].

iv) The vertical extension of the oscillating regions increases
with time oct™ /2, because the solution depends only on the
combination z2/t.

In the same manner we also obtain the other components of
the vector as follows:

v,

v, 2mi \'/? R

? | =Rei{ — | exp(—iwgt)—2a® x
s Wyt R,

p/

[ 1 /3 5
ir|:§M<§, 2, fz) + 6iz/(w0t)d2M(5, 2, fz)]
3
iM(—, 1,f2>
2

(58)
3
M <—, 1, f2>
2
ld‘zM ! 1,7 )+ 2iz/(wo )M 3 1,7?
() ~ YRt 1zZ/\W PR
°L2 2 2
We have used here the following abreviations:
2= —a?r*/R? @*=a*/R? (59)

An example of this solution is plotted in Fig. 4c and 6a, b. The
hypergeometric function M with complex argument was calcu-
lated using a series expansion (Abramowitz and Stegun,
Eq. 13.1.2, 1970).

7. Conclusions

A Green’s function tensor is derived giving the response of an
isothermal atmosphere to small disturbances representing devi-
ations from a state of static stratification. Studying the effect of
different sizes of the initial disturbance, we find that horizontally
propagating gravity waves can be excited only by large scale
disturbances (size of the supergranulation in the case of the Sun).
The question whether such long waves could be important or

vert. veloc. at the centre
1 R =102 v =167

v,

wot/2m

Fig. 6a. The vertical velocity at the centre (r = z = 0) versus time for the
case of Fig. 4a (solid line). The dashed line refers to the anelastic
approximation and the dashed-dotted one to the method of stationary
phase which satisfies a t~'/2 law (see Sect. 6, ii)
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Fig. 6b. Same as Fig. 6a, but with a smaller radius R, = R, = 0.1 instead
of 0.2. The anelastic approximation agrees in this case also quantitatively
with the fully compressible computation

observable in the Sun remains open. Since the radiative cooling
time is very short in the upper photosphere, they may perhaps be
hard to maintain there. In the solar interior or the overshoot
region below the bottom of the convection zone gravity waves
can be excited, as numerical simulations by Hurlburt et al. (1986)
suggest. However, effects of the spherical geometry become
important, because the critical length (ten pressure scale heights)
is already of the order of the radius of the Sun. In the case of small
scale disturbances the anelastic approximation gives correct
results and the method of stationary phase appears then to be a
useful tool for understanding the properties of the flow. The
damping rate and the variation of the velocity field, observed by
Stefanik et al. (1984), can be confirmed quantitatively by this
method.
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