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Efficient quasi-kinematic large-scale dynamo as the small-scale dynamo saturates
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Large-scale magnetic fields in stars and galaxies are thought to arise by mean-field dynamo action
due to the combined influence of both helical turbulence and shear. Those systems are also highly
conducting and the turbulence therein leads to a fluctuation (or small-scale) dynamo which more
rapidly amplifies magnetic field fluctuations on the eddy scales and smaller. Will this then interfere
with and suppress the mean (or large-scale) field growth? Using direct numerical simulations of
helical turbulence (with and without shear), we identify a novel quasi-kinematic large-scale dynamo
which operates as the small-scale dynamo saturates. Thus both dynamos operate efficiently, one
after the other, and lead to the generation of significant large-scale fields.

Magnetic fields coherent on large-scales, larger than
the scales of turbulent motions in the system, are preva-
lent in stars and disk galaxies. Their origin is thought to
lie in mean-field or large-scale dynamo (LSD) action due
to helical turbulence often combined with shear. Turbu-
lence in stars and galaxies also has a very high magnetic
Reynolds number ReM. This generically leads to a fluctu-
ation or small-scale dynamo (SSD) which grows random
and small-scale magnetic fields more rapidly [1, 2]. Here,
small scales correspond to scales smaller than the outer
scale of the turbulence.
In large ReM helical turbulence, previous work has

shown that, while the kinematic phase is dominated by
rapidly growing small-scale fields [3], there are hints of
large-scale field growth [4]. A unified dynamo grows mag-
netic fields in the kinematic regime, of both large and
small scales, with a shape-invariant eigenfunction [4, 5].
The saturation of the unified dynamo occurs first at small
scales, and then at progressively larger scales [5, 6]. Sig-
nificant large-scale fields tend to arise, but on long re-
sistive time scales due to nonlinear growth governed by
the slow resistive decay of small-scale helicity [7]. A
matter of outstanding concern is whether large-
scale fields can be grown unhindered by rapidly
growing small-scale fields via a fast dynamo ac-
tion [8, 9].
In this work, we use helically forced turbulence with

uniform shear (and sometimes without) to identify a
novel intermediate second stage of fast growth (an ex-
ponential one, possibly modulated by some other func-
tion) growing large-scale field, different from that of the
kinematic unified dynamo, due to a quasi-kinematic LSD
(QKLSD). The term ‘quasi-kinematic’ is to signify that
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this LSD action arises as the SSD saturates (indicating
that the system has become nonlinear) while the large-
scale field is possibly still unaffected by the Lorentz force.
This arises in a previously unidentified parameter regime,
but one that is in fact expected to be generic in astro-
physical systems. This result, that a quasi-kinematic
LSD can operate in large ReM systems, alleviates the
long-standing concern that large-scale fields are over-
whelmed by rapidly growing small-scale fields in such
systems. Note that this work is limited to the
‘quasi-kinematic’ regime and does not deal with
the nonlinear issue of catastrophic quenching.

For reasons of computational efficiency, we solve the
equations for a compressible gas; see [10] for a more de-
tailed motivation. We employ a periodic or shearing-
periodic domain of size L3 with L = 2π, so the smallest
wavenumber is k1 = 2π/L = 1. We follow a setup sim-
ilar to that of Ref. [5], except now we also have cases
with uniform linear shear. All simulations (except one)
were performed with the Pencil Code [11], and have
a resolution of 5123 and a magnetic Prandtl number of
PrM = 10. The ability of numerical codes to con-
serve magnetic helicity has been recognized and
was verified on earlier occasions [12]. We have spec-
ified the relevant parameters for each run in Table I. Tur-
bulence is driven at the forcing wave number of kf/k1 = 4
(or 8 in one case). The unit of velocity is the sound speed
cs, and that of time is (csk1)

−1. Also, we have included a
run from the paper [13] (referred to as Run GP600Pm1a).
This simulation was performed using Dedalus [14]. The
runs leading to LSD action – with shear (like Run A) and
without shear (like Run B) – have helical forcing. In the
following, we discuss results from these runs and compare
with two similar runs (C and D) with non-helical forcing
and thus only SSD action.

In the top panel of Fig. 1, we show the evolution of the
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FIG. 1. Evolution of Mk(t) for k = 1, 4, 10, 50, and 100 for
Run A. The bottom panel shows γ, the growth rate of M1.
The curve in dashed red is from the toy model. The inset
compares γ between Runs A and C.

magnetic energy spectrum Mk at certain wave numbers
k. We characterize large- and small-scale fields through
the magnetic energy at k < kf and k > kf , respectively.
The quantity M1 is seen to grow exponentially at the
same kinematic rate as others until about t = 100. How-
ever, there is a novel second phase between t = 100 to
t ∼ 250–270, where M1 grows fast (exponentially, pos-
sibly modulated by another function) at a different, al-
beit slower rate compared to the first stage. Meanwhile
all modes with k ≥ kf have slowed down towards sat-
uration. The third phase, after t ∼ 300, involves the
well-known resistively limited nonlinear growth of M1

[7, 15]. For Run A, we have also calculated the large-
scale field Brms from horizontal or xy averaging and find
that its energy density closely follows the M1 curve. In
the top panel of Fig. 2, we show the evolution of B2

rms

from Run GP600Pm1a with a completely different code
using a different forcing function based on the Galloway-
Proctor flow with no large-scale shear. We find that the
second phase also shows up in this Dedalus run [13], as
well as a Pencil Code run, Run B where there is no
shear.

The bottom panels of Figs. 1 and 2 show the growth
rate of the large-scale magnetic energy, defined as γ =
d lnM1/dt or γ = d lnB2

rms/dt. Two successive stages of
fast growth can clearly be identified. The inset in Fig. 1
compares the growth rate of M1 between the helical and
nonhelical cases to illustrate that in the latter, where no
LSD action occurs, the curve in the second phase sim-
ply fluctuates around γ = 0, as opposed to the (noisy)
plateau in the former case.

In both Figs. 1 and 2 we show, as red-dashed lines,

FIG. 2. Evolution of energy in xz averaged field B
2
rms and γ

for Run GP600Pm1a using a different code, Dedalus [13].

solutions from the following toy model:

dEM/dt =

[

γ1 − γ2
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2
1

+
γ2

1 + EM
2/EM

2
2

]

EM. (1)

When EM ≪ EM1 < EM2), the growth rate of the curve
EM asymptotes to γ1. Later, when EM1 < EM ≪ EM2,
the growth rate asymptotes to γ2. The overlay from this
toy model is found to match quite well both the evolution
and growth where the parameters γ1, γ2 are the same as
the γ calculated from the data.
We propose that the LSD action in the second distinc-

tive phase of growth of the large-scale field is similar to
a standard LSD as predicted by mean-field dynamo the-
ory. In the first stage, which is entirely kinematic, the
faster SSD is the main driver and thus governs the growth
rate of magnetic energy over all scales. Once the growth
at smaller scales has slowed down, LSD action becomes
prominent. Note that the the magnetic evolution curve
in the second stage (QKLSD regime) is not a clean expo-
nential but has a certain concavity. This is attributed to
the fact that it is influenced by the transition to or from
the other two regimes.
For the following discussion, it is helpful to refer to the

standard mean-field equations obtained by splitting the
induction equation into one for the mean or large-scale
field B and the fluctuating or small-scale field b [16],

∂B

∂t
= ∇×

(

U ×B + E − η∇×B
)

, (2)

∂b

∂t
= ∇×

(

U × b+ u×B − η∇× b+G
)

. (3)

Here E = u× b and G = u × b − E is a term nonlinear
in the fluctuations. The mean velocity accounts for the
linear shear, U = (0, Sx, 0), where S = const. We also
find that helical forcing combined with shear induces a
large-scale flow U = (Ux(z), Uy(z), 0) on xy averaging
but this does not appear to affect the LSD (see below).
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This phenomenon is the vorticity dynamo [17, 18], which
is known to be suppressed by the magnetic field [19, 20].
During the kinematic stage, the small-scale field is

mainly driven by ∇×(u× b), which leads to SSD action.
All the terms that depend on averaged or mean quanti-
ties are not significant initially. In our simulations, the
shearing timescale is much larger than the eddy turn over
timescale and thus, its effect on SSD growth is unimpor-
tant [21]. The small-scale field then grows exponentially
as b = b0 exp (γSSDt), where γSSD is the SSD growth rate.
In Eq. (2), the time evolution of E , which drives B, is
then controlled by the exponentially growing low wave
number tail of the small-scale field, given that the veloc-
ity field u is in a statistical steady state. The shear term
∇×

(

U ×B
)

is subdominant as B is at this stage much

smaller than b. The rate of change of B is therefore ex-
pected to be nearly the same as γSSD. This can be seen
also in Fig. 3, where in the left panel we show that the
time evolution of M1 in both the helical shear dynamo
simulations (Run A) and non-helical shear dynamo (Run
C) coincide in the kinematic stage. Similarly, in the right
panel of Fig. 3, the M1 curves from the helical dynamo
(Run B) and the non-helical dynamo (Run D) coincide.
Thus, the kinematic stage is primarily driven by the SSD
with B being enslaved by b.
Eventually, the growth of the small-scale field slows

down from an exponential to a more linear form as the
SSD begins to saturate. We find this coincides with the
QKLSD regime. As seen in the upper panel of Fig. 1,
the evolution of M4 slows down at around t = 100, when
M1 switches to a different rate of exponential growth.
Figure 4 shows explicitly the exponentially growing M1

versus linearly growing M4, from Run A.
We can understand the QKLSD regime in the follow-

ing manner. In Eq. (3), besides the shear and SSD terms,
now there are contributions due to those containing mean
quantities. In particular, the term ∇ × (u × B), in-
terpreted as the tangling of the large-scale field, is ex-
pected to be responsible for additional growth of small-
scale fields over and above that when there is no LSD.
We show that this is indeed the case in Fig. 4, where the
linear growth rate of M4 in the helical dynamo in Run
A is larger than that of the non-helical dynamo (Run C)
by a factor of about 8.
At this stage, as the tangling of large-scale field by the

turbulent velocity u becomes the more dominant mech-
anism for growth of small-scale fields b, this leads to a
correlation between b and u, proportional to B. The emf
E = u× b, which then depends on B, can be estimated
in the usual fashion as E = αB − ηt∇×B [16]. Here α
and ηt are the turbulent transport coefficients determin-
ing the effect of small-scale turbulence on the large-scale
magnetic field. Thus, Eq. (2) for the large-scale field
transforms to,

∂B

∂t
= ∇×

(

U ×B + αB
)

+ ηT∇
2
B, ∇ ·B = 0, (4)

with ηT = η + ηt. This is the standard mean-field dy-

FIG. 3. Comparison of M1 curves between Runs A and C in
the panel (a) and between Runs B and D in the panel (b).

FIG. 4. Comparison of M4(t) shown for Run A and Run C.
Also comparison of curves from Run A – M1 growing expo-
nentially while M4 grows linearly.

namo equation, which has solutions in a periodic box

of the form B(x, t) = Re
[

B̂(k) exp(ik · x+ λt)
]

at the

kinematic stage. For simplicity, assume that the large-
scale field varies only along z, so ky = kx = 0. Then the
eigenvalue λ is given by [22],

λ± = −ηTk
2
z ± (α2k2z − iαSkz)

1/2. (5)

We note that the U from the vorticity dynamo does not
affect the dispersion relation as ∇× (U ×B) = 0 when

TABLE I. Summary of all the runs.

Run kf urms Sτ forcing ReM γtheo γmeas

A 4 0.13 0.38 helical 812 0.11 0.036
B 4 0.18 0 helical 1062 0.12 0.032
C 4 0.13 0.38 non-hel 812 – –
D 4 0.19 0 non-hel 1187 – –
E 4 0.10 0.25 helical 1000 0.066 0.026
F 4 0.09 0.11 helical 812 0.034 0.013
G 8 0.09 0.27 helical 281 0.1 0.032
H 4 0.18 0 helical 531 0.12 0.034
GP600Pm1a 8 1.0 0 helical 600 0.22 0.045
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FIG. 5. Comparison between theoretical γtheo = −2ηTk
2 ±

2| 1
2
αSkz|

1/2 and measured γmeas = d lnM1/dt, for Runs A, E
and F (with varying shear, S).

Bz = Uz = 0 and the fields depend only on z. For
Run A, the vorticity dynamo becomes suppressed as the
magnetic field continues to saturate [23].
For the case without shear (α2 dynamo), the grow-

ing mode has λ = |α|kz − ηTk
2
z . When shear dominates

(standard αΩ dynamo), such that αkz/S ≪ 1,

λ± ≈ −ηTk
2
z ± | 1

2
αSkz|

1/2(1− i), (6)

We now ask, can the QKLSD growth in Fig. 1, be un-
derstood in terms of the above standard mean-field dy-
namo properties? For homogeneous, isotropic and fully
helical turbulence forced at a wave number kf , we esti-
mate α ∼ urms/3 and ηt ∼ urms/(3kf) [24]. The real part
of the second term (with shear) in Eq. (6) governs the
growth rate, while the first term would be smaller in the
supercritical case. The magnetic energy density growth
rate γtheo = 2Reλ+. In our Run A, urms ∼ 0.13, kf = 4
and Sτ ∼ 0.38, which leads to γtheo = 2Reλ+ ∼ 0.11,
which is larger than the measured value of γmeas ∼ 0.036.
This yields an ‘efficiency factor’ ceff ∼ 0.32. Note that in
the runs with shear, we estimate the urms after subtract-
ing out U .

From Eq. (6), we observe that the growth rate is not
expected to change much as we change kf . We have run
a case with kf = 8, where urms ∼ 0.09 and Sτ ∼ 0.27,
yielding γtheo ∼ 0.1. This theoretical estimate is simi-
lar to the γtheo of Run A. This is also confirmed by the
measurement of the growth rate of ∼ 0.032 (similar to
the measured value of 0.036 in Run A). In the no-shear
case, the theoretical estimate of the growth rate for the
large scale magnetic energy is given by urmskf/6 [4]. For
Run B, where urms ∼ 0.18 this leads to γtheo ∼ 0.12.
Here, with γmeas ∼ 0.032, we have ceff ≈ 0.26. For the
run from Dedalus, GP600Pm1a, urms ∼ 1. and kf ∼ 8.5.
We have to account for a factor of 2π considering the
the non-dimensionalization of the equations in Dedalus.
Thus we find γtheo ∼ 0.22. And with γmeas ∼ 0.045, we
have ceff ≈ 0.20, which is similar to that in runs from
Pencil Code, assuring us that the QKLSD regime is

FIG. 6. Space-time diagram where the field components have
been xy averaged.

robust.

We have varied the shear parameter Sτ to see its effect
on the QKLSD growth rate. In Fig. 5, we compare the
theoretical estimate of the growth rate for Runs A, E and
F (with different values of the shear parameter) against
the measured value. We find that ceff is roughly the same
in all three cases, thus leading to the points in Fig. 5
falling nearly on a straight line.

Next we examine the oscillatory behavior of the LSD
in the runs with shear. In Fig. 6, we show xy averaged
field By in a zt space-time diagram. As in earlier work
at lower ReM [19], the oscillations begin only during the
QKLSD regime. To make an estimate of the time period
of this cycle from the mean-field theory, we take Reλ+ in
Eq. (6) to be 0 (which approximately holds as the LSD
saturates), and obtain ωcyc = ηTk

2
z . Thus, the period is

T = 2π/ωcyc = 6π(kf/k1)
2. For Run A, such an estimate

yields T ∼ 300 and from the simulation shown in Fig. 6,
this is the period of the oscillations in the large-scale field.
It appears that the mean-field theory is satisfactorily ap-
plicable to understand these features of the QKLSD.

A caveat is that we are applying kinematic mean-
field theory to a system which is already affected by the
Lorentz force. The zeroth order agreement between the
measured growth rate and that estimated from the simple
αΩ dynamo theory is possibly because the nonlinearity
has not affected the large scales at this stage yet [8]. Note
that the quasi-kinematic LSD here arises upon saturation
of the SSD and seems to be in alignment with the ‘sup-
pression principle’ put forward by Tobias and Cattaneo
[25].

An important question is regarding the effects of ReM
on the QKLSD regime. To check this we have lowered
in Run H the ReM by a factor of 2 compared to that
of Run B, and we find that the growth rate remains
the same; see Supplemental Material for details of the
third stage governed by helicity evolution and also a
fourth phase of nonlinear mode switching. Our simu-
lations are in a parameter regime (manifest in astrophys-
ical systems) which allows for separation in large-scale
field growth time scales between the three stages. This
makes it possible to identify the QKLSD stage distinc-
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tively. An intermediate stage of LSD growth was seen in
earlier works; see Fig. 8 of Ref. [26] and Fig. 2 of Ref. [27],
but was not investigated in detail.
In conclusion, we have demonstrated via direct nu-

merical simulations the presence of a novel second stage
growth of large-scale field (QKLSD regime), one that oc-
curs between the kinematic stage driven by the SSD and
the saturation stage driven by magnetic helicity decay.
Interestingly, we find that the QKLSD growth sets in
when the SSD slows down. Our detailed analysis suggests
that the classical mean-field theory applies reasonably
well to understanding the large-scale field characteristics
such as growth rate and frequency of oscillations. More-
over, the growth of the large-scale field in the QKLSD
regime seems to be independent of ReM. Our work thus
gives the first detailed evidence for how an LSD operates
quasi-kinematically once the small-scale field has satu-
rated and develops an identity even amidst strong small-

scale fields.
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