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ABSTRACT: It was previously shown that the superdroplet algorithm for modeling the collision-coalescence process can faithfully
represent mean droplet growth in turbulent clouds. But an open question is how accurately the superdroplet algorithm accounts for
fluctuations in the collisional aggregation process. Such fluctuations are particularly important in dilute suspensions. Even in the absence
of turbulence, Poisson fluctuations of collision times in dilute suspensions may result in substantial variations in the growth process,
resulting in a broad distribution of growth times to reach a certain droplet size. We quantify the accuracy of the superdroplet algorithm
in describing the fluctuating growth history of a larger droplet that settles under the effect of gravity in a quiescent fluid and collides with
a dilute suspension of smaller droplets that were initially randomly distributed in space (‘lucky droplet model’). We assess the effect
of fluctuations upon the growth history of the lucky droplet and compute the distribution of cumulative collision times. The latter is
shown to be sensitive enough to detect the subtle increase of fluctuations associated with collisions between multiple lucky droplets. The
superdroplet algorithm incorporates fluctuations in two distinct ways: through the random spatial distribution of superdroplets and through
the Monte Carlo collision algorithm involved. Using specifically designed numerical experiments, we show that both on their own give an
accurate representation of fluctuations. We conclude that the superdroplet algorithm can faithfully represent fluctuations in the coagulation
of droplets driven by gravity.

1. Introduction

Direct numerical simulations (DNS) have become an
essential tool to investigate collisional growth of droplets
in turbulence (Onishi et al. 2015; Saito and Gotoh 2018).
Here, DNS refers to the realistic modeling of all relevant
processes, which involves not only the use of a realistic vis-
cosity, but also a realistic modeling of collisions of droplet
pairs in phase space. The most natural and physical way
to analyze collisional growth is to track individual droplets
and to record their collisions, one by one. However, DNS
of the collision-coalescence process are very challenging,
not only when a large number of droplets must be tracked,
but also because the flow must be resolved over a large
range of time and length scales.

Over the past few decades, an alternative way of mod-
eling aerosols has gained popularity. Zannetti (1984) in-
troduced the concept of “superparticles, i.e., simulation
particles representing a cloud of physical particles having
similar characteristics.” This concept was also used by
Paoli et al. (2004) in the context of condensation prob-
lems. The application to coagulation problems was pio-
neered by Zsom and Dullemond (2008) and Shima et al.
(2009), who also developed a computationally efficient al-
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gorithm. The idea is to combine physical cloud droplets
into ‘superdroplets’. To gain efficiency, one tracks only
superdroplet collisions and uses a Monte Carlo algorithm
(Sokal 1997) to account for collisions between physical
droplets. This is referred to as “superdroplet algorithm.”
It is used in both the meteorological literature (Shima et al.
2009; Sölch and Kärcher 2010; Riechelmann et al. 2012;
Arabas and Shima 2013; Naumann and Seifert 2015, 2016;
Unterstrasser et al. 2017; Dziekan and Pawlowska 2017;
Li et al. 2017, 2018, 2019, 2020; Sato et al. 2017; Jaruga
and Pawlowska 2018; Brdar and Seifert 2018; Sato et al.
2018; Seifert et al. 2019; Hoffmann et al. 2019; Dziekan
et al. 2019; Grabowski et al. 2019; Shima et al. 2020;
Grabowski 2020; Unterstrasser et al. 2020), as well as in
the astrophysical literature (Zsom and Dullemond 2008;
Ormel et al. 2009; Zsom et al. 2010; Johansen et al. 2012;
Johansen et al. 2015; Ros and Johansen 2013; Drakowska
et al. 2014; Kobayashi et al. 2019; Baehr and Klahr 2019;
Ros et al. 2019; Nesvornỳ et al. 2019; Yang and Zhu 2020;
Poon et al. 2020; Li and Mattsson 2020, 2021). Compared
with DNS, the superdroplet algorithm is distinctly more
efficient. It has been shown to accurately model average
properties of droplet growth in turbulent clouds. Li et al.
(2018) demonstrated, for example, that the mean colli-
sion rate obtained using the superdroplet algorithm agrees
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with the mean turbulent collision rate (Saffman and Turner
1956) when the droplets are small.

Less is known about how the superdroplet algorithm
represents fluctuations in the collisional aggregation pro-
cess. Dziekan and Pawlowska (2017) compared the results
of the superdroplet algorithm with the predictions of the
stochastic coagulation equation of Gillespie (1972) in the
context of coalescence of droplets settling in a quiescent
fluid. Dziekan and Pawlowska (2017) concluded that the
results of the superdroplet algorithm qualitatively agree
with what Kostinski and Shaw (2005) called the lucky
droplet model (LDM). To assess the importance of fluctu-
ations, Dziekan and Pawlowska (2017) computed the time
t10%, after which 10% of the droplets have reached a radius
of 40 µm. In agreement with earlier Lagrangian simula-
tions of Onishi et al. (2015), which did not employ the su-
perdroplet algorithm, they found that the difference in t10%
between their superdroplet simulations and the stochastic
model of (Gillespie 1972) decreases with the square root
of the number of droplets, provided that there are no more
than about nine droplets per superdroplet. The number of
droplets in each superdroplet i is called the multiplicity
ξi (t). When this number is larger than 9, they found that
a residual error remains. We return to this question in the
discussion of the present study, where we tentatively as-
sociate their findings with the occurrence of several large
(lucky) droplets that grew from the finite tail of their initial
droplet distribution.

The role of fluctuations is particularly important in di-
lute systems, where rare extreme events may substantially
broaden the droplet-size distribution. This is well cap-
tured by the LDM, which was first proposed by Telford
(1955) and later numerically addressed by Twomey (1964),
andmore recently quantitatively analyzed by Kostinski and
Shaw (2005). The model describes one droplet of 12.6 µm
radius settling through a dilute suspension of background
droplets with 10 µm radius. The collision times between
the larger (“lucky”) droplet and the smaller ones are expo-
nentially distributed, leading to substantial fluctuations in
the growth history of the lucky droplet. Wilkinson (2016)
derived analytic expressions for the cumulative distribu-
tion times using large-deviation theory. Madival (2018)
extended the theory of Kostinski and Shaw (2005) by con-
sidering a more general form of the droplet-size distribu-
tion than just the Poisson distribution.

The goal of the present study is to investigate how accu-
rately the superdroplet algorithm represents fluctuations in
the collisional growth history of settling droplets in a qui-
escent fluid. Unlike the work of Dziekan and Pawlowska
(2017), who focused on the calculation of t10%, we compare
here with the distribution of cumulative collision times,
which is the key diagnostics of the LDM.We record growth
histories of the larger droplet in an ensemble of different
realizations of identical smaller droplets that were initially
randomly distributed in a quiescent fluid. We show that

the superdroplet algorithm accurately describes the fluctu-
ations of growth histories of the lucky droplet in an ensem-
ble of simulations. In its simplest form, the LDM assumes
that the lucky droplet is large compared to the background
droplets, so that the radius of those smaller droplets can
be neglected in the geometrical collision cross section and
velocities of colliding droplets; see Eqs. (3) and (4) of
Kostinski and Shaw (2005), for example. Since fluctu-
ations early on in the growth history are most important
(Kostinski and Shaw 2005;Wilkinson 2016), this canmake
a certain difference in the distribution of the time T it takes
for the lucky droplet to grow to a certain size. As the small
droplets are initially randomly distributed, their local num-
ber density fluctuates. Consequently, lucky droplets can
growmost quickly where the local number density of small
droplets happens to be large.

The remainder of this study is organized as follows. In
section 2 we describe the superdroplet algorithm and high-
light differences between different implementations used
in the literature (Shima et al. 2009; Johansen et al. 2012;
Li et al. 2017). Section 3 summarizes the LDM, the setup
of our superdroplet simulations, and how we measure fluc-
tuations of growth histories. Section 4 summarizes the
results of our superdroplet simulations. We conclude in
section 6.

2. Method

a. Superdroplet algorithm

Superdroplet algorithms represent several physical
droplets by one superdroplet. All droplets in superdroplet
i are assumed to have the same material density ρd, the
same radius ri , the same velocity vi , and reside in a vol-
ume around the same position xi . The index i labeling the
superdroplets ranges from 1 to Ns(t0) (Table 1), where t0
denotes the initial time.

The equation of motion for the position xi and velocity
vi of superdroplet i reads:

dxi

dt
= vi ,

dvi
dt
= −

vi
τi
+g . (1)

Table 1. Definition of variables in superdroplet algorithm.

n number density of droplets in the domain
nluck number density of lucky droplets
Ns (t) number of “superdroplets” in the domain
ξi (t) number of droplets in superdroplet i (multiplicity)
Nd (t) total number of physical droplets in the domain
Nreal number of independent simulations (realizations)
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ξi=10 ξj=6

Mi=10 Mj=2

ξi=4 ξj=6

Mi=10 Mj=12

ξi=6 ξj=10

Mi=10 Mj=2

ξi=6 ξj=4

Mi=12 Mj=2

ξi=8 ξj=8

Mi=10 Mj=2

ξi=4 ξj=4

Mi=12 Mj=12

Fig. 1. Collision outcomes with (a): ξi > ξj , (b): ξi < ξj , and (c): ξi = ξj when two superdroplets collide and droplet collisions occur. Time
increases downward, as indicated by the arrow. Superdroplet i contains ξi large droplets of mass Mi , superdroplet j contains ξj small droplets of
mass Mj < Mi .

Here g is the gravitational acceleration, and the hydrody-
namic force is modeled using Stokes law, so that

τi =
2
9
ρd
ρ

r2
i

ν
(2)

is the droplet response (or Stokes) time attributed to the
superdroplet, ν = 10−5 m2 s−1 is the viscosity of air, and ρ
is the mass density of the airflow. Droplets are only subject
to gravity and no turbulent airflow is simulated.

Droplet collisions are represented by collisions of su-
perdroplets (Shima et al. 2009; Johansen et al. 2012; Li
et al. 2017), as mentioned above. Superdroplets i and j
(collision partners) residing inside a grid cell collide with
probability

pi j = λi jδt , (3)

where δt is the integration time step and λi j is their col-
lision rate. A collision happens when η < pi j , where
0 ≤ η ≤ 1 is a uniformly distributed random number. To
avoid a probability larger than unity, we limit the integra-
tion step through the condition δt � 1/λi j (Johansen et al.
2012; Li et al. 2017). The collision rate is given by

λi j = π
(
ri + r j

)2
|vi −vj | Ei j

ξmax

δx3 , (4)

where Ei j is the collision efficiency, ξmax = max(ξi, ξ j )
is the larger one of the multiplicities ξi and ξ j of super-
droplets i or j (Table 1), and δx3 is the volume of the
grid cell closest to the superdroplet. The number density
of physical droplets in superdroplet i is then ni = ξi/δx3.
Note that Eq. (4) implies that droplets having the same

velocity (vi = vj) never collide. This also implies that no

collisions are possible between physical particles within a
single superdroplet. For the purpose of the present study,
it suffices to limit ourselves to the simplest, albeit un-
realistic assumption of Ei j = 1, but we also consider in
one case a slightly more realistic quadratic dependence on
the radius of the larger droplet. To assess the effects of
this assumption, we compare with results where the effi-
ciency increases with droplet radius (Lamb and Verlinde
2011). Following Kostinski and Shaw (2005) and Wilkin-
son (2016), we adopt a simple power law prescription for
the dependence of the efficiency on the droplet radius.

What happens when two superdroplets collide? The
collision scheme suggested by Shima et al. (2009) amounts
to the following rules; see also Fig. 1 for an illustration.
To ensure mass conservation between superdroplets i and
j, when ξ j > ξi , which is the case illustrated in Fig. 1(b),
droplet numbers and masses are updated such that

ξi → ξi , ξ j → ξ j − ξi , (5)
Mi → Mi +Mj , Mj → Mj ,

where Mi and Mj are the droplet masses. When ξ j < ξi ,
which is the case shown in Fig. 1(a), the update rule is
also given by Eq. (5), but with indices i and j exchanged.
In other words, the number of droplets in the smaller su-
perdroplet remains unchanged (and their masses are in-
creased), while that in the larger one is reduced by the
amount of droplets that have collided with all the droplets
of the smaller superdroplet (and their masses remain un-
changed).

To ensure momentum conservation during the collision,
the momenta of droplets in the two superdroplets are up-
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dated as

viMi → viMi +vj Mj ,

vj Mj → vj Mj , (6)

after a collision of superdroplets.
Finally, when ξi = ξ j , which is the case described in

Fig. 1(c), droplet numbers and masses are updated as

ξi → ξi/2, ξ j → ξ j/2, (7)
Mi → Mi +Mj , Mj → Mi +Mj ,

and it is then assumed that, when two superdroplets, each
with one or less than one physical droplet, collide, the
superdroplet containing the smaller physical droplet is col-
lected by the more massive one; it is thus removed from the
computational domain after the collision, still conserving
mass and momentum. We emphasize that Eq. (5) does
not require ξ to be an integer. Since we usually specify
the initial number density of physical particles, ξ can be
fractional from the beginning. This is different from the
integer treatment of ξ in Shima et al. (2009).

The superdroplet simulations are performed by using the
particle modules of the Pencil Code (Pencil Code Collab-
oration et al. 2021). The fluid dynamics modules of the
code are not utilized here. To reduce the computational
cost and make it linear in the number of superdroplets per
mesh point, ns(t), Shima et al. (2009) supposed that each
superdroplet interacts with only one randomly selected su-
perdroplet per time step rather than allowing collisions
with all the other superdroplets in a grid cell (they still
allow multiple coalescence for randomly generated, non-
overlapping candidate pairs in one time step, which is what
they referred to as random permutation technique. This
technique was also adopted by Dziekan and Pawlowska
(2017) and Unterstrasser et al. (2020). However, this is not
used in the Pencil Code. Instead, we allow each super-
droplet to collide with all other superdroplets within one
grid cell to maximize the statistical accuracy of the results.
This leads to a computational cost of O(n2

s (t)), which does
not significantly increase the computational cost because
ns(t) is relatively small for cloud-droplet collision simu-
lations. In the Pencil Code, collisions between particles
residing within a given grid cell are evaluated by the same
processorwhich is also evaluating the equations of that grid
cell. Due to this, together with the domain decomposition
used in the code, the particle collisions are automatically
efficiently parallelized as long as the particles are more or
less uniformly distributed over the domain.

b. Numerical setup

In our superdroplet simulations, we consider droplets
of radius 10 µm, randomly distributed in space, together
with one droplet of twice the mass, so that the radius is

21/3 × 10 µm = 12.6 µm. The larger droplet has a higher
settling speed than the 10 µm droplets and sweeps them up
through collision and coalescence. For each simulation,
we track the growth history of the larger droplet until it
reaches 50 µm in radius and record the time T it takes to
grow to that size.

In the superdroplet algorithm, one usually takes ξi (t0)�
1, which implies that the actual number of lucky droplets
is also more than one. This was not intended in the origi-
nal formulation of the lucky droplet model (Telford 1955;
Kostinski and Shaw 2005; Wilkinson 2016) and could
allow the number of superdroplets with heavier (lucky)
droplets, N (luck)

s , to become larger than unity. This would
manifest itself in the growth history of the lucky droplets
through an increase bymore than the mass of a background
droplet. We refer to this as “jumps”. Let us therefore
now discuss the conditions under which this would happen
and denote the values of ξ (t0) for the lucky and back-
ground droplets by ξluck and ξback, respectively. First, for
ξluck = ξback, the masses of both lucky and background su-
perdroplets can increase, provided their values of ξ (t0) are
above unity; see Fig. 1(c). Second, even if ξluck < ξback ini-
tially, new lucky superdroplets could in principle emerge
when the same two superdroplets collide with each other
multiple times. This can happen for two reasons. First, the
use of periodic boundary conditions for the superdroplets
(i.e., in the vertical direction in our laminar model with
gravity). Second, two superdroplets can remain at the
same location (corresponding to the same mesh point of
the Eulerian grid for the fluid) during subsequent time
steps. The simulation time step must be less than both the
time for a superdroplet to cross one grid spacing and the
mean collision time, i.e., the inverse collision rate given by
Eq. (4). Looking at Fig. 1, we see that ξback can then de-
crease after each collision and potentially become equal to
or drop below the value of ξluck. This becomes exceedingly
unlikely if initially ξback � ξluck, but it is not completely
impossible, unless ξluck is chosen initially to be unity.

The initial value of ξback can in principle also be chosen
to be unity. Although such a case will indeed be consid-
ered here, it would defeat the purpose and computational
advantage of the superdroplet algorithm. Therefore, we
also consider the case ξback� ξluck. As alreadymentioned,
jumps are impossible if ξluck is unity. For orientation, we
note that the speed of the lucky droplet prior to the first
collision is about 3.5cms−1, the average time to the first
collision is 490s, and thus, it falls over a distance of about
17m before it collides.

The superdroplet algorithm is usually applied to three-
dimensional (3-D) simulations. If there is no horizontal
mixing, one can consider one-dimensional (1-D) simula-
tions. Moreover, we are only interested in the column in
which the lucky droplet resides. In 3-D, however, the num-
ber density of the 10 µm droplets beneath the lucky one is
in general not the same as the mean number density of
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the whole domain. This leads to yet another element of
randomness: fluctuations of the number density between
columns.

Equation (1) is solved with periodic boundary condi-
tions using the Pencil Code (Pencil Code Collaboration
et al. 2021), which employs a third-order Runge-Kutta time
stepping scheme. The superdroplet algorithm is imple-
mented in the Pencil Code, which is used to solve equa-
tions (3)–(7). For the 1-D superdroplet simulations, we
employ an initial number density of background droplets
of n0 ≈ 3×108 m−3 within a volume V = Lx ×Ly ×Lz with
Lx = Ly = 0.002m, Lz = 0.214m, and Ns(t0) = 256 such
that the multiplicity is ξluck(t0) = ξback(t0) = 1. For each
simulation, 7,686,000 time steps are integrated with an
adaptive time step with amean value of δt = 2.942×10−4 s.
For a superdroplet with an initial radius of 12.6 µm to grow
to 50 µm, 123 collisions are required. For the purpose of
the present study, we designed a parallel technique to run
thousands of 1-D superdroplet simulations simultaneously
(see details in appendix A1).

3. Lucky-droplet models

a. Basic idea

The LDM describes the collisional growth of a larger
droplet that settles through a quiescent fluid and collides
with smaller monodisperse droplets, that were initially ran-
domly distributed in space. This corresponds to the setup
described in the previous section. Webegin by recalling the
main conclusions of Kostinski and Shaw (2005). Initially,
the lucky droplet has a radius corresponding to a volume
twice that of the background droplets, whose radius was
assumed to be r1 = 10 µm. Therefore, its initial radius is
r2 = 21/3r1 = 12.6 µm. After the (k − 1)th collision step
with smaller droplets, it increases as

rk ∼ r1k1/3. (8)

Fluctuations in the length of the time intervals tk between
collision k−1 and k give rise to fluctuating growth histories
of the larger droplet. These fluctuations are quantified by
the distribution of the cumulative time

T =
124∑
k=2

tk, (9)

corresponding to 123 collisions needed for the lucky
droplet to grow from 12.6 µm to 50.0 µm (note that Kostin-
ski and Shaw (2005) used one more collision, so their fi-
nal radius was actually 50.1 µm). The time intervals tk
between successive collisions are drawn from an exponen-
tial distribution with a probability pk (tk ) = λk exp(−λk tk ).
The rates λk depend on the differential settling velocity
|vk −v1 | between the colliding droplets through Eqs. (3)

and (4). Here, however, the background droplets have al-
ways the radius r1, so the collision rate at the (k − 1)th
collision of the lucky droplet with radius rk obeys

λk = π (rk + r1)2 |vk −v1 | Ek n, (10)

where Ek = E(rk,r1), and vk and v1 are approximated by
their terminal velocities.

While the LDM is well suited for addressing theoreti-
cal questions regarding the significance of rare events, it
should be emphasized that it is at the same time highly ide-
alized. Furthermore, while it is well known that Ek � 1
(Pruppacher and Klett 1997), it is instructive to assume,
as an idealization, Ek = 1 for all k, so the collision rate
(10) can be approximated as λk ∼ r4

k
(Kostinski and Shaw

2005), which is permissible when rk � r1. It follows that,
in terms of the collision index k, the collision frequency is

λk = λ∗k4/3, (11)

where λ∗ = (2π/9)(ρd/ρ)(gn/ν)r4
1 , and n is the number

density of the 10 µm background droplets. This is essen-
tially the model of Kostinski and Shaw (2005) and Wilkin-
son (2016), except that they also assumed Ek , 1. They
pointed out that, early on, i.e., for small k, λk is small and
therefore the mean collision time λ−1

k
is long. We note that

the variance of the mean collision time is λ−2
k
, which is

large for small k. The actual time until the first collision
can be very long, but it can also be very short, depending
on fluctuations. Therefore, at early times, fluctuations have
a large impact on the cumulative collision time. Note that
for droplets with r ≥ 30 µm, the linear Stokes drag is not
valid (Pruppacher and Klett 1997).

b. Relaxing the power law approximation

We now discuss the significance of the various approx-
imations being employed in the mathematical formulation
of the LDM of Kostinski and Shaw (2005). To relax the
approximations made in Eq. (11), we now write it in the
form

λk = λ∗Ekr2
A(rk )r2

B(rk )/r4
1 (k ≥ 2), (12)

where
r2

A = (rk + r1)2, r2
B = r2

k − r2
1 (13)

would correspond to the expression Eq. (10) used in the su-
perdroplet algorithm. In Eq. (11), however, it was assumed
that rA = rB = rk . To distinguish this approximation from
the form used in Eq. (12), we denote that case by writing
symbolically “rA , rk , rB”; see Fig. 2.

In Eq. (13), we have introduced rA and rB to study
the effect of relaxing the assumption rA = rB = rk , made in
simplifying implementations of the LDM.Both of these as-
sumptions are justified at late times when the lucky droplet
has become large compared to the smaller ones, but not
early on, when the size difference is moderate.
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Fig. 2. Contributions to the two correction factors r2/r2
A (red) and

r2/r2
B (blue), as well as their product. The dashed-dotted parts of the

lines apply to radii smaller than 12.6µm. The discrete radii rk for k ≥ 2
are shown in a horizontal line of dots. The vertical dash-triple-dotted
line denote the radius r = 50µm.

Fig. 3. Cumulative mean collision times, TMFT
k

, for rA , rk , rB
(solid black line), compared with the approximations rA = rB = rk (red
dashed line) and only rB = rk (blue dash-dotted line).

By comparison, if fluctuations are ignored, the collision
times are given by tk = λ−1

k
. This is what we refer to as

mean-field theory (MFT). In Fig. 3 we demonstrate the
effect of the contributions from rA and rB on the mean
cumulative collision time in the corresponding MFT,

TMFT
k =

k∑
k′=2

tMFT
k′ , (14)

where
tMFT
k = λ−1

k (15)

are the inverse of the mean collision rates. We see that,
while the contribution from rA shortens the mean collision
time, that of rB enhances it. In Fig. 2, we also see that the

Fig. 4. Comparison of P(T ) in a double-logarithmic representation
for the LDMappropriate to our benchmark (black solid line) with various
approximations where rA = rB = rk (red dashed line) along with a case
where only rB = rk is assumed (blue dash-dotted line). Here we used
1010 realizations. Note that we plot the distribution of the cumulative
times versus the normalized time, T/〈T 〉, as was done in the work of
Kostinski and Shaw (2005). Normalizing by 〈T 〉 allows us to see changes
in the shape of P(T/〈T 〉), thus allows a more direct comparison of the
subtle differences in the shapes of the different curves and ensures that
the peaks of all curves are at approximately the same position.

contributions to the two correction factors r2/r2
A and r2/r2

B
have opposite trends, which leads to partial cancelation in
their product.

In Fig. 4 we show a comparison of the distribution of
cumulative collision times for various representations of
rk . Those are computed numerically using 1010 realiza-
tions of sequences of random collision times tk . We refer
to appendix A1 for details of performing this many real-
izations.

The physically correct model is where rA , rk , rB
(black line in Fig. 4). To demonstrate the sensitivity of
P(T ) to changes in the representation of rk , we show the
result for the approximations rA = rk = rB (red line) and
rA , rk = rB (blue line). The P(T ) curve is also sensitive
to changes in the collision efficiency late in the evolution.
To demonstrate this, we assume Ek ∝ r2

k
when rk exceeds a

certain arbitrarily chosen value r∗ between 10 and 40 µm,
and Ek = const below r∗ (Lamb and Verlinde 2011). To
ensure that Ek ≤ 1, we take

Ek = E∗ max
(
1, (rk/r∗)2

)
, (16)

with E∗ = (r∗/50 µm)2. However, the normalized P(T )
curves are independent of the choice of the value of E∗. In
Fig. 5, we show the results for rA , rk , rB using r∗ = 40 µm
and 30 µm (red and blue lines, respectively) and compare
with the case Ek = const. The more extreme cases with
r∗ = 20 µm and 10 µm are shown as gray lines. The latter
is similar to the case λk ∼ r6

k
considered by Kostinski and

Shaw (2005) and Wilkinson (2016).
When rA = rk = rB, or only rk = rB, the P(T ) curves

exhibit smaller widths. By contrast, when the collision ef-
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Fig. 5. Comparison of P(T ) in a double-logarithmic representation
for the LDM for r∗ = 40µm and 30µm using rA , rk , rB. The black
line agrees with that in Fig. 4, and the two gray lines refer to the cases
with r∗ = 20µm and 10µm. Here we used 1010 realizations.

Table 2. Moments of X = ln(T/〈T 〉) computed from 1010 realiza-
tions for different values of r∗ (in µm), and different prescriptions of
rA and rB. The corresponding values of TMFT

123 are also given and are
normalized to unity for rA , rk , rB with r∗ ≥ 50µm.

r∗ rA rB TMFT
123 〈X〉 σ(X) skew X kurt X

— — rk 0.67 −0.020 0.21 0.22 0.08
— rk rk 1.49 −0.033 0.25 0.25 0.05
— — — 1 −0.040 0.28 0.34 0.10
40 — — 0.99 −0.041 0.28 0.33 0.09
30 — — 0.93 −0.046 0.30 0.28 0.05
20 — — 0.79 −0.063 0.35 0.18 −0.04
10 — — 0.34 −0.111 0.47 0.16 −0.17

ficiency becomes quadratic later on (when r > r∗ ≡ 30 µm
or 40 µm), the P(T ) curves have larger widths; see Fig. 5.
To quantify the shape of P(T ), we give in Table 2 the av-
erage of X ≡ ln(T/〈T〉), its standard deviation σ = 〈x2〉1/2,
where x ≡ X − 〈X〉, its skewness skew X = 〈x3〉/σ3, and
its kurtosis kurt X = 〈x4〉/σ4−3. We recall that, for a per-
fectly lognormal distribution, skew X = kurt X = 0. The
largest departure from zero is seen in the skewness, which
is positive, indicating that the distribution broadens for
large T . The kurtosis is rather small, however.

The main conclusion that can be drawn form the inves-
tigation mentioned above is that, as far as the shapes of
the different curves are concerned, it does not result in any
significant error to assume rk � r1. The value of σ is only
about 10% smaller if rA = rk = rB is used (compare the red
dashed and black solid lines in Fig. 4). This is because the
two inaccuracies introduced by rA and rB almost cancel
each other. When r∗ = 40 µm or 30 µm, for example, the
values of σ increase by 3% and 15%, respectively; see Ta-
ble 3, where we also list the corresponding values ofTMFT

124 .
On the other hand, the actual averages such as 〈T〉 ≈ TMFT

124
vary by almost 50%.

Table 3. Summary of the four approaches.

Approach Description
I time interval tk drawn from distribution
II primitive Lagrangian particles collide
III probabilistic, just a pair of superdroplets
IV superdroplet model (combination of II & III)

A straightforward extension of the LDM is to take hori-
zontal variations in the local column density into account.
Those are always present for any random initial conditions,
but could be larger for turbulent systems, regardless of the
droplet speeds. In 3-D superdroplet simulations, large
droplets can fall in different vertical columns that con-
tain different numbers of small droplets, a consequence
of the fact that the small droplets are initially randomly
distributed. To quantify the effect of varying droplet num-
ber densities in space, it is necessary to solve for an en-
semble of columns with different number densities of the
10 µm background droplets and compute the distribution
of cumulative collision times. These variations lead to a
broadening of P(T ), but it is a priori not evident how im-
portant this effect is. A quantitative analysis is given in
appendix A3.

c. Relation to the superdroplet algorithm

To understand the nature of the superdroplet algorithm,
and why it captures the lucky droplet problem accurately, it
is important to realize that the superdroplet algorithm is ac-
tually a combination of two separate approaches to solving
the LDM, each of which turns out to be able to reproduce
the lucky droplet problem to high precision. In principle,
we can distinguish four different approaches (Table 3) to
obtaining the collision time interval tk . In approach I, tk
was taken from an exponential distribution of randomnum-
bers. Another approach is to use a randomly distributed set
of 10 µm background droplets in space and then determine
the distance to the next droplet within a vertical cylinder
of possible collision partners to find the collision time (ap-
proach II). A third approach is to use themean collision rate
to compute the probability of a collision within a fixed time
interval. We then use a random number between zero and
one (referred to as Monte Carlo method; see, e.g., Sokal
1997) to decide whether at any time there is a collision
or not (approach III). This is actually what is done within
each grid cell in the superdroplet algorithm; see Eqs. (3)
and (4). The fourth approach is the superdroplet algo-
rithm discussed extensively in section 2.a (approach IV).
It is essentially a combination of approaches II and III. We
have compared all four approaches and found that they all
give very similar results. In the following, we describe
approaches II and III in more detail, before focussing on
approach IV in section 4.
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d. Solving for the collisions explicitly

A more realistic method (approach II; see Table 3) is to
compute random realizations of droplet positions in a tall
box of size L2

h × Lz , where Lh and Lz are the horizontal
and vertical extents, respectively. We position the lucky
droplet in the middle of the top plane of the box. Collisions
are only possible within a vertical cylinder of radius rk +r1
below the lucky droplet. Next, we calculate the distance∆z
to the first collision partner within the cylinder. We assume
that both droplets reach their terminal velocity well before
the collision. This is an excellent approximation for dilute
systems such as clouds, because the droplet response time
τk of Eq. (2) is much shorter than the mean collision time.
Here we use the subscript k to represent the time until the
(k − 1)th collision, which is equivalent to the ith droplet.
We can then assume the relative velocity between the two
as given by the difference of their terminal velocities as

∆vk = (τk − τ1) g. (17)

The time until the first collision is then given by t2 =
∆z/∆v2. This collision results in the lucky droplet having
increased its volume by that of the 10 µm droplet. Corre-
spondingly, the radius of the vertical cylinder of collision
partners is also increased. We then search for the next
collision partner beneath the position of the first collision,
using still the original realization of 10 µm droplets. We
continue this procedure until the lucky droplet reaches a ra-
dius of 50 µm. Approach II is an explicit method compared
to other approaches listed in Table 3.

e. The Monte Carlo method to compute tk

In the Monte Carlo method (approach III; see Table 3)
we choose a time step δt and step forward in time. As in
the superdroplet algorithm, the probability of a collision is
given by pk = λkδt; see Eq. (3). We continue until a radius
of 50 µm is reached. We note that in this approach, n is
kept constant, i.e., no background droplet is being removed
after a collision.

Approach III also allows us to study the effects of jumps
in the droplet size by allowing for several lucky droplets
at the same time and specifying their collision probability
appropriately. These will then be able to interact not only
with the 10 µm background droplets, but they can also
collide among themselves, which causes the jumps. We
will include this effect in solutions of the LDM using ap-
proach III and compare with the results of the superdroplet
algorithm.

4. Results

a. Accuracy of the superdroplet algorithm

We now want to determine to what extent the fluctua-
tions are correctly represented by the superdroplet algo-
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Fig. 6. 98 growth histories of lucky droplets obtained from 98 in-
dependent 1-D superdroplet simulations (approach IV), as described in
the text. All superdroplets have initially the same number of droplets,
ξi (t0) = 1 with Ns (t0) = 256. The mean number density of droplets is
n0 = 3×108 m−3. The thick solid line shows the average time for each
radius.
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Fig. 7. Corresponding P(T ) of Fig. 6 obtained with the superdroplet
algorithm (blue dots) and the LDM using approach I with rA , rk , rB
(red solid line).

rithm. For this purpose, we now demonstrate the degree
of quantitative agreement between approaches I–III and
the corresponding solutionwith the superdroplet algorithm
(approach IV; see Table 3). This is done by tracking the
growth history of each lucky droplet. As the first few
collisions determine the course of the formation of larger
droplets, we also use the distribution P(T ) of cumulative
collision times T . We perform Nreal superdroplet simula-
tions with different random seeds using ξi (t0) = 1.

We begin by looking at growth histories for many indi-
vidual realizations obtained from the superdroplet simula-
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Fig. 8. (a): P(T ) for n0 (red), 10n0 (blue), and 100n0 (black)
with n0 = 3× 108 m−3 and L = 0.214m. In the last case, 0.5% of the
background droplets were removed; the orange symbols denote a case
with 100 times larger value of nluck, where 50% of the background
droplets were removed. The gray symbols denote the case of Fig. 7 with
ten times more physical lucky droplets (10nluck,0). (b): P(T/〈T 〉)
for n = n0 (red), 2n0 (green), 10n0 (blue), 100n0 with 10nluck (black),
1000nluck (orange), and n0 with 10nluck,0 (gray). (c): P(T/〈T 〉)
for L, 2L, 8L, and 64L with 100n0, obtained using the superdroplet
algorithm (approach IV). The red dash-dotted line in (b) represents the
LDM (approach I) with rA , rk , rB and n0 = 3×108 m−3, which is the
same simulation as the one in Fig. 7. The green dots in (b) is for 8192
realizations, while all the other simulations are for 1024 realizations.

tion. Fig. 6 shows an ensemble of growth histories (thin
gray lines) obtained from Nreal ≈ 103 independent simula-
tions, as described above. The times between collisions
are random, leading to a distribution of cumulative growth
times to reach 50 µm. Also shown is the mean growth
curve (thick black line), obtained by averaging the time at
fixed radii r . This figure demonstrates that the fluctuations
are substantial. We also see that large fluctuations relative
to the average time are rare.

To quantify the effect of fluctuations from all realiza-
tions, we now consider the corresponding P(T ) in Fig. 7.
We recall that ξi (t0) = 1 for our superdroplet simulation
in Fig. 7. However, a simulation with ξi (t0) = 50 yields
almost the same result; see appendix A2.

The comparison of the results for the LDM using ap-
proach I and the superdroplet algorithm shows small dif-
ferences. The width of the P(T ) curve is slightly larger
for approach I than for the superdroplet simulations. This
suggests that the fluctuations, which are at the heart of the
LDM, are slightly underrepresented in the superdroplet
algorithm. However, this shortcoming may also be a
consequence of our choice of having used only 256 su-
perdroplets, i.e., one lucky and 255 background super-
droplets. Given that the multiplicities of lucky and back-
ground droplets was unity, each collision removed one
background droplet. Thus, after 123 collisions, almost
50% of the background droplets were removed by the time
the lucky droplet reached 50 µm. Nevertheless, as we will
see below, this has only a small effect.

An important question is to what extent our results de-
pend on the number density of background droplets and the
size of the computational domain. To examine this with the
superdroplet algorithm (approach IV), we consider three
values of the initial number density: n0 = 3× 108 m−3,
10 n0, and 100 n0, while the initial number density of the
lucky droplet is nluck,0 ≡ 1.2×105 m−3, 10 nluck,0, and again
10 nluck,0, respectively; see Table 4 for a summary. Thus,
even though the lucky droplet has to collide 123 times to
reach 50 µm, it only removes 123 nluck/n0 = 5%, 5%, and
0.5% of the droplets, respectively. Fig. 8 shows P(T )
for these three cases using first the cumulative time T
[Fig. 8(a)] and then the normalized time T/〈T〉 [Fig. 8(b)].
We see that the positions of the peaks in P(T ) change lin-
early with the initial number density n0, but P(T/〈T〉) are
very similar to each other. This is related to the fact that,
after normalization, n0 drops out from the expression for
tk/〈T〉 in the LDM (approach I); see Eq. (9). At small
values of T/〈T〉, however, all curves show a similar slight
underrepresentation of the fluctuations as already seen in

Table 4. Runs of Fig. 8(a), where ni and ni, luck are in units of
ni0 = 7.5×107 m−3, n is in units of n0 = 3×108 m−3, nluck,0 is in units
of 1.2×105 m−3, using δx3 = 2.6×10−8 m3 for all runs, except for the
last one (gray), where it is a factor 2 smaller.

color in Fig. 8(a) red blue black orange gray

ni/ni0 1 10 100 100 1
ni, luck/ni0 0.1 1 1 100 1
n/n0 1 10 100 100 1
nluck/nluck,0 1 10 10 1000 10
ξback = δx

3 ni 2 20 200 200 1
ξluck = δx

3 ni, luck 0.2 2 2 200 1
removed fraction 5% 5% 0.5% 50% 50%
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Fig. 7. In all these simulations, we used 1024 realizations,
except possibly for one case where we used 8192 realiza-
tions; see the green symbols in Fig. 8(b). The distribution
of cumulative growth times is obviously much smoother in
the latter case, but the overall shape is rather similar.

In the above, the number density of the lucky droplets
has been much smaller than the number density of the
background droplets. This means that for each collision
the physical number of background droplets changed by
only a small amount (5% or 0.5%). To see how sensitive
our results for P(T ) are to this number, we now perform an
extra experiment where 50% of the background droplets
are removed by the time the lucky droplet reaches 50 µm.
This is also shown in Fig. 8(a) and (b); see the orange
symbols, where ξluck = ξback = 200. We see that even for
50% removal the results are essentially unchanged.

In our superdroplet simulations (approach IV; see Ta-
ble 3), the vertical extent of the simulation domain is only
L = 0.214m. This is permissible given that we use peri-
odic boundary conditions for the particles. Nevertheless,
the accuracy of our results may suffer from poor statistics.
To investigate this in more detail, we now perform 1-D
simulations with 2L, 8L, and 64L. At the same time, we
increased the number of mesh points and the number of su-
perdroplets by the same factors. Since the shape of P(T/T̄ )
is almost independent of n0, as shown in Fig. 8(b), we use
n0 = 3×1010 m−3 instead of n0 = 3×108 m−3 to reduce the
computational cost. As shown in Fig. 8(c), P(T/T̄ ) is in-
sensitive to the domain size. Therefore, our results with
L = 0.214m can be considered as accurate with respect to
P(T/T̄ ).
In the following, we discuss how our conclusions relate

to those of earlier work. We then discuss a number of addi-
tional factors that can modify the results. Those additional
factors can also be taken into account in the LDM. Even
in those cases, it turns out that the differences between the
LDM and the superdroplet algorithm are small.

b. The occurrence of jumps

One of the pronounced features in our superdroplet sim-
ulations with ξi (t0) > 1 is the possibility of jumps. We see
examples in Fig. 9 where ξluck = ξback = 2 and the jumps
are visualized by the red vertical lines. Those jumps are
caused by the coagulation of the lucky droplet with droplets
of radii larger than 10 µm that were the result of other
lucky droplets in the simulations. What is the effect of
these jumps? Could they be responsible for the behavior
found by Dziekan and Pawlowska (2017) that the differ-
ence in their t10% between the numerical and theoretical
calculation decreases with the square root of the number
of physical droplets, as we discussed in section 1?

It is clear that those jumps occur mainly during the
last few steps of a lucky droplet growing to 50 µm (see
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Fig. 9. Same as Fig. 6 but with initial condition ξi (t0) = 2 using
Ns (t0) = 128, corresponding to the same number of physical droplets as
in Fig. 6, where ξi (t0) = 1. Note the occurrence of jumps, indicated in
red.

Fig. 9) when there has been enough time to grow sev-
eral more lucky droplets. Because the collision times are
so short at late times, the jumps are expected to be al-
most insignificant. To quantify this, it is convenient to use
approach III, where we choose N (luck)

s = 3 superdroplets si-
multaneously. (As always in approach III, the background
particles are still represented by only one superdroplet, and
n is kept constant.) We also choose ξluck = 1, and therefore
N (luck)

d = 3. The lucky droplets can grow through collisions
with the 10 µm background droplets and through mutual
collisions between lucky droplets. The collision rate be-
tween lucky droplets i and j is, analogously to Eq. (12),
given by

λ (luck)
i j = π

(
ri + r j

)2
|vi − v j | nluck, (18)

where nluck is the number density of physical droplets in
the superdroplet representing the lucky droplet. To obtain
an expression for nluck in terms of the volume of a grid cell
δx3, we write nluck = ξluck/δx3. The ratio of the physical
number of lucky droplets, N (luck)

d , to the physical number
of background droplets, N (back)

d is given by

ε =
N (luck)

d

N (back)
d

=
ξluck N (luck)

s

ξback N (back)
s

. (19)

To investigate the effect of jumps on P(T ) in the full
superdroplet model studied above (see Figs. 6 and 9),
we first consider the case depicted in Fig. 6, where
ξluck = ξback ≡ ξi (t0) = 1. Here, we used Ns = 256 su-
perdroplets, of which one contained the lucky droplet, so
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Fig. 10. Comparison of models with ε = 0 (no jumps), 0.004 (the
value expected for the simulations), 0.02, and 0.05 using approach III;
see Table 3.

N (luck)
s = 1, and the other 255 superdroplets contained a

10 µm background droplet each. In our superdroplet solu-
tion, the ratio (19) was therefore ε ≈ 1/255 = 0.004. Using
approach III, ε enters simply as an extra factor in the col-
lision probability between different lucky droplets. (In
approach III, all quantities in Eq. (19) are kept constant.)
The effect on P(T ) is shown in Fig. 10, where we present
the cumulative collision times for models with three values
of ε using approach III. We see that for small values of ε ,
the cumulative distribution function is independent of ε ,
and the effect of jumps is therefore negligible (compare the
black solid and the red dashed lines of Fig. 10). More sig-
nificant departures due to jumps can be seen when ε = 0.02
and larger.

Let us now compare with the case in which we found
jumps using the full superdroplet approach (approach IV).
The jumps in the growth histories cause the droplets to
grow faster than without jumps. However, jumps do not
have a noticeable effect upon P(T ) in the superdroplet
simulations we conducted; see Fig. 11. By comparing
P(T ) for ξback = 40 (blue crosses in Fig. 11) with that for
ξback = 2 (black circles), while keeping ξluck = 2 in both
cases, hardly any jumps occur and the lucky droplet result
remains equally accurate.

For larger values of ε , jumps occur much earlier, as can
be seen from Fig. 12, where we show 30 growth curves for
the cases ε = 0.004, which is relevant to the simulations
of Fig. 7, as well as ε = 0.02, and 0.05. We also see that
for large values of ε , the width in the distribution of arrival
times is broader and that both shorter and longer times
are possible. This suggests that the reason for the finite
residual error in the values of t10% found by Dziekan and
Pawlowska (2017) for ξi (t0) > 9 could indeed be due to
jumps. In our superdroplet simulations, by contrast, jumps
cannot occur when ξi (t0) = 1 or ξback � ξluck.
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Fig. 11. P(T/〈T 〉) of simulations in Fig. 9 (black circles) and the
ones with initially ξback = 40 (blue crosses). ξluck = 2 in both cases. The
red line denotes the LDM (approach I) with rA , rk , rB, which is the
same simulation as the one in Fig. 7.

Table 5. Comparison of the moments of X = ln(T/〈T 〉) for approaches
I–III.

Approach 〈X〉 σ(X) skew X kurt X
I −0.040 0.279 0.34 0.10
II −0.039 0.275 0.35 0.11
III −0.040 0.279 0.34 0.11

c. The two aspects of randomness

Let us now quantify the departure that is caused by
the use of the Monte Carlo collision scheme. To do this,
we need to assess the effects of randomness introduced
through Eqs. (3) and (4) on the one hand and the random
distribution of the 10 µm background droplets on the other.
Both aspects enter in the superdroplet algorithm.

We recall that in approach II, fluctuations originate
solely from the random distribution of the 10 µm back-
ground droplets. In approach III, on the other hand, fluc-
tuations originate solely from the Monte Carlo collision
scheme. By contrast, approach I is different from either of
the two, because it just uses the exponential distribution of
the collision time intervals, which is indirectly reproduced
by the random initial droplet distribution in approach II
and by the Monte Carlo scheme in approach III.

In Fig. 13, we compare approaches I, II, and III. For our
solution using approach II, we use a nonperiodic domain of
size 10−4×10−4×700m3, thus containing on average 2100
droplets. This was tall enough for the lucky droplet to reach
50 µm for all the 107 realizations in this experiment. The
differences between them are very minor, and also the first
fewmoments are essentially the same; see Table 5. We thus
see good agreement between the different approaches. This
suggests that the fluctuations introduced through random
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Fig. 12. Growth histories from approach III for ε = 0.004 (very few jumps, relevant to the simulations of Fig. 7), as well as ε = 0.02, and 0.05,
where jumps are more frequent. The orange thick solid line gives the average collision time and agrees with that of MFT (thick black dashed line)
within about a percent.

Fig. 13. Comparison of P(T ) for approaches I, II, and III.

droplet positions is not crucial and that it can be substituted
by the fluctuations of the Monte Carlo scheme alone.

It is worth noting that we were able to perform 107 and
106 realizations with approaches II and III, respectively,
and 1010 realizations with approach I, while in the super-
droplet algorithm (approach IV), we could only run 103–
104 realizations due to the limitation of the computational
power. This may be the reason why fluctuations appear to
be slightly underrepresented in the superdroplet algorithm;
see Fig. 7 and the discussion in section 4.a. Nevertheless,
the agreement between the LDM and the superdroplet sim-
ulations demonstrates that the superdroplet algorithm is
able to represent fluctuations during collisions and does
not contain mean-field elements. This can be further ev-
idenced by the fact that the results of approaches II and
III agree perfectly with those of approach I, and the super-

droplet algorithm is just the combination of approaches II
and III.

5. Discussion

Fluctuations play a central role in the LDM. We have
therefore used it as a benchmark for our simulation. It turns
out that the superdroplet algorithm is able to reproduce
the growth histories qualitatively and the distribution of
cumulative collision times quantitatively. The role of fluc-
tuations was also investigated by Dziekan and Pawlowska
(2017), whose approach to assessing the fluctuations is
different from ours. Instead of analyzing the distribution
of cumulative collision times, as we do here, their primary
diagnostics is the time t10%, after which 10% of the mass of
cloud droplets has reached a radius of 40 µm. In the LDM,
such a time would be infinite, because there is only one
droplet that is allowed to grow. They then determined the
accuracy with which the value of t10% is determined. The
accuracy increases with the square root of the number of
physical droplets, provided that the ratio ξi (t0) is kept be-
low a limiting value of about 9. For ξi (t0) > 9, they found
that there is always a residual error in the value of t10% that
no longer diminishes as they increase the number of phys-
ical droplets. We have demonstrated that, when ξi (t0) > 1,
jumps in the growth history tend to occur. Those jumps
can lead to shorter cumulative collision times, which could
be the source of the residual error they find.

For a given fraction of droplets that first reach a size
of 40 µm, they also determined their average cumulative
collision time. They found a significant dependence on
the number of physical droplets. This is very different in
our case where we just have to make sure that the number
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of superdroplets is large enough to keep finding collision
partners in the simulations. However, as the authors point
out, this is a consequence of choosing an initial distribution
of droplet sizes that has a finite width. This implies that
for a larger number of droplets, there is a larger chance that
there could be a droplet that is more lucky than for a model
with a smaller number of droplets. In our case, by contrast,
we always have a well-known number of superdroplets
of exactly 12.6 µm, which avoids the sensitivity on the
number of droplets.

The ξi (t0) = 9 limit of Dziekan and Pawlowska (2017)
does not hold in this investigation. In this context we
need to recall that their criterion for acceptable quality
concerned the relative error of the time in which 10% of
the total water has been converted to 40 µm droplets. In
our case, we have focussed on the shape of the P(T ) curve,
especially for small T .

6. Conclusions

We investigated the growth histories of droplets settling
in quiescent air using superdroplet simulations. The goal
was to determine how accurately these simulations repre-
sent the fluctuations of the growth histories. This is impor-
tant because the observed formation time of drizzle-sized
droplets is much shorter than the one predicted based on
the mean collisional cross section. The works of Telford
(1955), Kostinski and Shaw (2005), and Wilkinson (2016)
have shown that this discrepancy can be explained by the
presence of stochastic fluctuations in the time intervals be-
tween droplet collisions. By comparing with the lucky
droplet model (LDM) quantitatively, we have shown that
the superdroplet simulations capture the effect of fluctua-
tions.

A tool to quantify the significance of fluctuations on the
growth history of droplets is the distribution of cumula-
tive collision times. Our results show that the superdroplet
algorithm reproduces the distribution of cumulative col-
lision times that is theoretically expected based on the
LDM. However, the approximation of representing the de-
pendence of the mean collision rate on the droplet radius
by a power law is not accurate and must be relaxed for a
useful benchmark experiment.

In summary, the superdroplet algorithm appears to take
fluctuations fully into account, at least for the problem
of coagulation due to gravitational settling in quiescent air.
Computing the distribution of cumulative collision times in
the context of turbulent coagulation would be rather expen-
sive, because one would need to perform many hundreds
of fully resolved 3-D simulations. Our study suggests that
fluctuations are correctly described for collisions between
droplets settling in quiescent fluid, but we do not know
whether this conclusion carries over to the turbulent case.
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APPENDIX

A1. Numerical treatment of approach I

In section b, we noted that solutions to approach I have
been obtained with the Pencil Code (Pencil Code Collab-
oration et al. 2021). Thismight seem somewhat surprising,
given that this code is primarily designed for solving par-
tial differential equations. It should be realized, however,
that this code also provides a flexible framework for us-
ing the message passing interface, data analysis such as
the computation of probability density distributions, and
input/output.

To compute the probability distribution of T with
approach I, we need to sum up sequences of ran-
dom numbers for many independent realizations of tk
drawn from an exponential distribution. We use the
special/lucky_droplet module provided with the
code. Each point in the computational domain corresponds
to an independent realization, so each point is initialized
with a different random seed. The domain is divided into
1024 smaller domains, allowing the computational tasks to
be performed simultaneously on 1024 processors, which
takes about 4min on a Cray XC40.

A2. Dependence on initial Ns/Ngrid and Nd/Ns

In this appendix, we first test the statistical convergence
of P(T ) for the initial number of superdroplets per grid
cell, Ns(t0)/Ngrid. As discussed in section 2.b, we set
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Fig. A1. Comparison of P(T ) for (a) different Ns/Ngrid with fixed ξi (t0) = 1 and (b) for different ξi (t0) with fixed Ns/Ngrid = 4. The blue
dots represent P(T/〈T 〉) from the simulation as in Fig. 7. The red curve shows the result for the LDM (approach I) with rA , rB , rk , which is the
same simulation as the one in Fig. 7.

Ns(t0)/Ngrid = 4 for 1-D simulations. Using the same nu-
merical setup, we examine the statistical convergence of
P(T ) for different values of Ns(t0)/Ngrid. As shown in
Fig. A1(a), P(T ) converges even at Ns(t0)/Ngrid = 1. This
is important because one can use as few superdroplets as
possible once Ngrid is fixed, without suffering from the
statistical fluctuations.

The most practical application of the superdroplet algo-
rithm is the case when ξi ≥ 1. Thus, we investigate how
ξ affects fluctuations by performing the same 1-D simu-
lation as described in section 2.b with different values of
ξi (t0). Fig. A1(b) shows that P(T ) is insensitive to ξi (t0),
which suggests that the superdroplet algorithm can capture
the effects of fluctuations regardless of the value of ξi (t0).
This is different fromDziekan and Pawlowska (2017), who
found that the approach can represent fluctuations only if
Nd(t0)/Ns(t0) ≤ 9.

A3. Horizontal variations of droplet densities

In this appendix, we analyze in more detail the effect
of horizontal variations of droplet densities discussed sec-
tion b. This is relevant for computing the 3-D distribution
function from a 1-D distribution function. The LDM ap-
plies to a given value of the number density. Other columns
have somewhat different number densities and therefore
also different mean cumulative collision times. The LDM
with approaches I–III can be extended to include this ef-
fect by computing cases with different number densities
and then combining P(T ) and normalizing by the 〈T〉 for
the combined P(T ). This can be formulated by introducing

the column density as

Σ(x, y) =
∫ z2

z1

n(x, y, z) dz, (A1)

where z1 and z2 denote the vertical slab in which the first
collision occurs, and using thisΣ(x, y) as aweighting factor
for the 1-D distribution functions P1D(T ) to compute the
3-D distribution functions as

P3D(T ) =
∫
Σ(x, y)P1D(T ) dx dy

/∫
Σ(x, y) dx dy.

(A2)
Since the first collision matters the most, we choose z2 =
zmax (where the lucky droplet is released) and z1 = zmax −
v2/λ2 (where it has its first collision).

Our reference model had a number density of n0 =
108 m−3. We now consider compositions of models with
different values, where we include the densities (i) 0.9×
108 m−3 and 1.1× 108 m−3, as well as (ii) 0.8× 108 m−3

and 1.2× 108 m−3, and finally also (iii) 0.7× 108 m−3 and
1.3×108 m−3. All these compositions have the same mean
droplet number density but different distributions around
the mean. We first average the distribution function and
then normalize with respect to the mean collision time for
the ensemble over all columns. The parameters of the
resulting distributions are listed in Table A1 for three com-
positions with different density dispersions. We see that,
as we move from composition (i) to compositions (ii) and
(iii), the dispersion (δnrms/n0) increases from 0.08 to 0.14
and 0.20, the distribution P(T ) extends further to both the
left and right. The reference model is listed as (o). Here
we give the rms value of the column-averaged densities,
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Table A1. Results for approach II using 30,000 realization showing the effects of horizontal density fluctuations in 3-D, and comparison with MFT.

Composition δnrms/n0 δnmax/n0 Tmin [s] TMFT [s] 〈T (nmax)〉 [s] 〈T 〉 [s] Tmin/〈T 〉 TP=0.01/〈T 〉

(0) 0 0 782 1969 2117 2117 0.37 0.44
(i) 0.08 0.10 795 1790 1923 2126 0.37 0.42
(ii) 0.14 0.20 767 1641 1758 2155 0.36 0.40
(iii) 0.20 0.30 631 1515 1628 2203 0.29 0.36

〈n〉i , as

δnrms =



Ni∑
i=0

(
〈n〉2i − n2

0

)
1/2

, (A3)

where i denotes the column and Ni is the number of
columns. We also give the maximum difference from the
average density,

δnmax =max
i

(〈n〉i − n0) , (A4)

for families (i) with Ni = 2, (ii) with Ni = 4, and (iii) with
Ni = 6. We also list in Table A1 several characteristic times
in seconds. The quantity Tmin is the shortest time in which
the lucky droplet reaches 50 µm, TMFT denotes the value
based on MFT, 〈T (nmax)〉 is the mean value based on the
column with maximum droplet density and 〈T〉 is the mean
based on all columns. It turns out that for the models of all
three families, the value of Tmin agrees with that obtained
solely from the model with the highest density, which is
1.3×108 m−3 for composition (ii), for example.

The quantity 〈T (nmax)〉, i.e., the average time for all of
the columns with the largest density, is shorter than the
〈T〉 for all the columns, especially for composition (iii)
where the largest densities occur. For the model (o), there
is only one column, so 〈T (nmax)〉 is the same as 〈T〉. The
valueTMFT based onMFT is always somewhat shorter than
〈T (nmax)〉. Finally, we give in Table A1 the ratios Tmin/〈T〉
and TP=0.01/〈T〉, where the subscript P = 0.01 indicates
the argument of P(T ) where the function value is 0.01.
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