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Abstract: It was previously shown that the superdroplet algorithm to model the collision-
coalescence process can faithfully represent mean droplet growth in turbulent
aerosols. But an open question is how accurately the superdroplet algorithm accounts
for fluctuations in the collisional aggregation process. Such fluctuations are particularly
important in dilute suspensions. Even in the absence of turbulence, Poisson
fluctuations of collision times in dilute suspensions may result in substantial variations
in the growth process, resulting in a broad distribution of growth times to reach a
certain droplet size. We quantify the accuracy of the superdroplet algorithm in
describing the fluctuating growth history of a larger droplet that settles under the effect
of gravity in a quiescent fluid and collides with a dilute suspension of smaller droplets
that were initially randomly distributed in space (‘lucky droplet model’). We assess the
effect of fluctuations upon the growth history of the lucky droplet and compute the
distribution of cumulative collision times. The latter is shown to be sensitive enough to
detect the subtle increase of fluctuations associated with collisions between multiple
lucky droplets. The superdroplet algorithm incorporates fluctuations in two distinct
ways: through the random distribution of superdroplets and through the explicit Monte
Carlo algorithm involved when two superdroplets reside within the volume around one
mesh point. Through specifically designed numerical experiments, we show that both
sources of fluctuations on their own give an accurate representation of fluctuations. We
conclude that the superdroplet algorithm can faithfully represent fluctuations in the
coagulation of droplets driven by gravity.
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We thank the reviewers for the help in improving the paper. We have now 

responded to the new comments as detailed below. 

 

> 1) [request] P. 8, ll. 156--161, 

> "It is then assumed that, ..." Now, I understand that you allow the 

> multiplicities to be real numbers in your model. Then, it is not clear 

> to me how you remove superdroplets from the system. In case 

\xi_i=\xi_j=1, 

> do you allow them to become \xi_i=\xi_j=0.5 after coalescence? Or do 

> you keep one of the superdroplets without changing the multiplicity 

> \xi_i=1, and delete the other superdroplet? What if they are \xi_i=1.6 

and 

> \xi_i=1.2? Will they become xi_i=0.4 and \xi_i=1.2 after coalescence? 

Or 

> Do you remove the superdroplet i? This is obviously important for your 

> study, because you are discussing the impact of the "jumps" of lucky 

> superdroplets. Please explain the deletion rule without any ambiguity. 

 

No, we don't have \xi_i=\xi_j=0.5 in that case. Instead, we remove 

the superdroplet with the smaller particles. However, if we had 

\xi_i=\xi_j=1.1, then both would be 0.55. If any of these then collide, 

they would be removed, because xi is less than unity. To clarify this 

further we have now changed "less than one" to "one or less than one". 

 

Regarding \xi_i=1.6 and \xi_i=1.2, yes, we do then get xi_i=0.4 and 

\xi_i=1.2 after coalescence. 

 

The jumps are not related to the value of xi, but just to the number of 

superdroplets containing lucky droplets. This was already explained in 

section 4.b. 

 

> `2) [request] P. 22, l. 432, "..., and that the number of particles is 

> approximately constant." This is what I already asked in my previous 

> review comment (7). It is great that you performed the 1-D simulations 

> with 2L, 8L, and 64L, and confirmed that the results are insensitive to 

> this change. However, I still cannot understand why the number of real 

> droplets is approximately constant in the original setup. 

> For the 1-D simulation with vertical extent 1L, we have 255 background 

> droplets and 1 lucky droplet in the domain. Then, at the time when the 

> lucky droplet grows to 50um, the number of background droplets reduces 

> from 255 to 132. It is almost halved! 

> For 3-D, the setup is more confusing to me. Because the grid is 4x4x4, 

> in the column where the lucky superdroplet is located, you have only 16 

> real droplets (128/(4x4)=8 superdroplets) in it on average. This is not 

at 

> all sufficient for the lucky droplet to grow to , because 16 is much 

less 

> than 123x2 (x2 is for the two lucky droplets). Am I missing something? 

> Please clarify this point. 

 

We agree with the referee regarding our previous statement about the 

number density of background droplets being nearly constant, and have 

decided to investigate this problem as part of our new simulations where 

we have now done a specific experiment where we investigate the effect 
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of removing a significant fraction of droplets during the growth to 50 

microns. We see that the effect is very small; see the orange lines in 

panels (a) and (b) of Fig.8. Instead of our previous phrase about the 

number of background droplets being nearly constant, we have now added 

a paragraph addressing this problem in connection with Figure 7. 

 

We have now also removed the presentation of our 3-D results, although 

we still explain that the variations in droplet number density influences 

the distribution of P(T). 

 

-------------------------------------------------------------------------

---- 

Response to Reviewer 2 

 

> 1. Throughout the manuscript: the phrase "superdroplet algorithm" 

> is unclear. Do the authors mean the general approach in which a single 

> computational particle represents a multitude of similar cloud 

droplets, 

> or a specific way to calculate evolution of the droplet spectrum 

resulting 

> from droplet collisions (as, for instance, in Unterstrasser et al. GMD 

> 2017). This is never explained in the manuscript. 

 

We mean the former, so we have now added the sentence "This is referred 

to 

as ``superdroplet algorithm.''", putting superdroplet algorithm in 

quotes. 

 

> 2. L.27-30. This sentence is unclear: How superdroplet algorithm 

> incorporates "random distribution of superdroplets" (I assume random 

> in space, correct)?  "Monte Carlo algorithm" for what? I assume 

> for collisions. "Within the volume around one mesh point" – why 

> is that relevant? Nature does not know about "mesh points". 

 

We agree with the referee and have now removed the reference to 

mesh points in this sentence. We have now modified it as follows: 

"through the random spatial distribution of superdroplets and 

through the explicit Monte Carlo collision algorithm involved." 

 

> 3. L. 16, 61, and other places. What are "turbulent aerosols"?   

 

We have now changed it to "turbulent clouds". 

 

> 4. Bottom of p. 8. If the superdroplet algorithm used in the code the 

> authors use is different from Shima et al., then the algorithm needs 

> to be explained in detail. The advantage of the Shima's algorithm is 

> that it is linear in the number of particles because each superdroplet 

> is allowed to collide only with a single randomly-selected other 

> superdroplet (in one time step) rather than allowing collisions with 

> all other superdroplets (like in the traditional bin microphysics). 

> I think the authors argue that the N^2 scaling in the latter case (N is 

> the number of superdroplets) is not important because only collisions 

> between superdroplets in one grid volume are allowed and there are 

> only a few superdroplets per grid volume. Is this correct? Perhaps the 



> difference is that the Pencil code considers collisions between real 

> particles, that is, superdroplets with multiplicity of one. 

 

Our approach is what is said in Section 2a, but on top of this, 

Shima et al used the permutation technique that we don't use. 

To clarify this further, we have now added the following: 

"However, this is not used in the Pencil Code. Instead, we allow each 

superdroplet to collide with all other superdroplets within one grid 

cell to ensure the statistical accuracy of the results. This leads to 

a computational cost of O(ns^2(t)), which does not significantly 

increase the computational cost because ns(t) is relatively small 

for cloud-droplet collision simulations." 

 

Another reviewer suggested that "...as sub-stepping is used in Shima et 

al., so each droplet may interact with several others within a single 

model time step" 

 

In the penultimate paragraph of section 7.1 of Shima et al 2009, it says 

that "SDM is using [ns/2] randomly generated, non-overlapping candidate 

pairs, and allows multiple coalescence for each pair." 

 

To clearly explain the algorithm of Shima et al 2009, we revised our 

texts 

as follows: 

"To reduce the computational cost and make it linear in the number of 

superdroplets per mesh point, ns(t), Shima et al. (2009) supposed 

that each superdroplet interacts with only one randomly-selected 

superdroplet per time step rather than allowing collisions with all the 

other superdroplets in a grid cell (Shima et al. (2009) still allows 

multiple coalescence for randomly generated, non-overlapping candidate 

pairs in sub-time step), which is what Shima et al. (2009) referred to 

as random permutation technique." 

 

> 5. L. 176 and in several other places. It is unclear what 

> "one-dimensional" (1D) versus "three-dimensional" (3D) means. 1D 

> is just a column, with random initial positions of superdroplets, 

> correct? What is then 3D? Is there any air flow included? If not, what 

> is a difference between 1D and 3D? 

 

In 3-D, we have many columns, each with a different spatial distribution 

of droplets. This broadens the distributions of P(T), and we quantify 

by how much. However, we have now removed the explicit reference to 3-D 

simulations and just explain the general problem associated with it. This 

is because turbulence is not involved and performing 1000 3-D simulations 

with at least 128*16 superdroplets is not feasible. The sentence in that 

line has now been removed. 

 

> 6. L. 209-214, see 5 above. This discussion is unclear. If a lucky 

> superdroplet falls only in the vertical (i.e., in one column), how 

other 

> columns affect the outcome? How superdroplets (lucky and standard) move 

> in 1D and 3D? For 3D, (1) should include all 3 spatial dimensions to 

make 

> it clear. Is the air turbulence included in the calculations? If it is, 



> the computational domain is miniscule. 

 

Similar to comment 5, 3-D columns invoke the fluctuations of the number 

density between columns as we explained, "In 3-D, however, the number 

density of the 10 um droplets beneath the lucky one is in general not 

the same as the mean number density of the whole domain. This leads 

to yet another element of randomness that we discuss in this study." 

 

We have now added the following below Eq.(2). "Droplets are only subject 

to gravity and no turbulent airflow is simulated." 

 

> 7. L. 281-282: Please better explain the MFT. Perhaps a reference to 

> a paper or textbook would be useful. 

 

What we meant by MFT is that the actual collision times are just 

replaced by the mean collision times that are given by t_k=lambda_k^{-1}. 

To clarify this better, we have now written: "By comparison, if 

fluctuations 

are ignored, the collision times that are given by t_k=lambda_k^{-1}. 

This is what we refer to as mean-field theory (MFT)." 

 

> 8. L. 290 and caption to Fig, 4. "Approach I" - this only becomes 

> obvious later in the paper. 

 

We thank the referee for having noticed it. We have now removed the 

reference to approach I in this location and in the captions of 

Figures 4 and 5. 

 

> 9. Eq. 16, formulation of the collision efficiency is unclear. What 

> is r_star?  Some explanation here is needed. Is that related to the 

Long 

> kernel (Long JAS 1974)? 

 

We do experiments where E is quadratic in r for radii above 30 micron, 

for example, and constant below. We call this radius r_* and consider 

different values between 10 and 40 micron. To clarify this better, we 

have now written "To demonstrate this, we assume E_k ~ r_k^2 when r_k 

exceeds a certain arbitrarily chosen value r_* between 10 and 40 um, 

and E_k=const below r_*." 

 

No, it is not related to the Long kernel. 

 

> 10. Bottom of p. 17. I still do not have a clear picture of various 

> approaches tried in this study. I is obvious. II: randomly distributed 

> in space, correct? What does "solve for the collisions...explicitly" 

> mean? With or without superdroplets (i.e., large multiplicity or 

> multiplicity of 1)? III: explain the Monte Carlo algorithm. IV: 

> section 2a only touches upon the way collisions between superdroplets 

> are considered. Overall, should one consider an approach used in the 

> traditional DNS of particle-laden suspensions, where the key is the 

> collision detection algorithm, that is, considering collisions only 

when 

> the computational particles are close enough? Perhaps comparing I to IV 

> with such a situation would make the discussion clearer. I have to say 



> that the Table 3 provides very little help. 

 

We are here only talking about different approaches to solving the 

LDM, and not about general computational techniques for particle-laden 

suspensions. To help avoiding a wrong impression, we have now inserted 

"to solving the LDM" in the relevant sentence. 

 

Regarding approach II, we have now replaced our phrase "solve for the 

collisions...explicitly" by "and then determine the distance to the 

next droplet within a vertical cylinder of possible collision partners 

to find the collision time". 

 

Regarding the Monte Carlo method, we have now rewritten this more 

explicitly: "A third approach is to use the mean collision rate to 

compute the probability of a collision within a fixed time interval. 

We then use a random number between zero and one (referred to as Monte 

Carlo method) to decide whether ..." 

 

We wish to clarify that these approaches are not meant to be used in DNS, 

but we rather use them to explain that the superdroplet approach is just 

a combination of approaches II and III. This helps to understand that 

the effects of fluctuations in the LDM enter in two separate ways. 

Table 3 lists the basics about the four approaches in a concise way; 

it is not meant to replace the now improved explanations from the text. 

 

The detailed explanations are given in sections 3.d and 3.e, and Section 

3.c was meant to introduce the idea of talking about four different 

approaches to the LDM, and we hope that our changes have now clarified 

this. Comparison between approaches I and IV is shown in Fig. 7 and the 

corresponding discussions were in the last paragraph of section 4. 

 

> 11. L. 421. Are the concentrations considered here realistic? 300 per 

cc 

> certainly is. 3,000 per cc with 10 micron droplets gives around 10 g/m3 

> of cloud water (if my math is correct), high but not unrealistic. 

30,000 

> gives 100 g/m3 of cloud water, unrealistic for cloud physics. 

 

We agree that 10n_0 and 100n_0 are not realistic. This is only 

to test the numerical sensitivities of simulations to the initial 

number density of cloud droplets. 

 

> 12. Fig. 12: The solid line does not look like the average in the right 

> panel. Or maybe the line is the same in all panels. Please explain. 

 

We checked that at 50 micron, the average times are 1.955, 1.943, and 

1.960, which are close to the MFT value of 1.968. To clarify this, we 

have now shown the average in orange and write "The thick solid line 

gives the average collision time and agrees with that of MFT (thick 

black line) within about a percent." One should also remember that 

the average is dominated by contributions from long times, which may 

not have been appreciated. 

 

> 13.  Section 4d, starting in L. 524. Please explain what 3D means, see 



> 5 above. Specifically, what makes droplet number to fluctuate between 

> columns. Just the initial condition? And does the superdroplet initial 

> position change? Or maybe there is nonvanishing airflow in 3D 

simulations? 

 

It is because of different spatial distribution of droplets in different 

columns. In the penultimate paragraph of section 2b, we explained it as 

"The superdroplet algorithm is usually applied to 3-D simulations. If 

there is 

no horizontal mixing, one can consider 1-D simulations. Moreover, we are 

only 

interested in the column in which the lucky droplet resides. In 3-D, 

however, 

the number density of the 10um droplets beneath the lucky one is in 

general not the same as the mean number density of the whole domain. 

This leads to yet another element of randomness that we discuss in 

this study: fluctuations of the number density between columns." 

 

Turbulent airflow is not invoked. We have now added the following at 

the end of the paragraph below Eq.(2): "Droplets are only subject to 

gravity and no turbulent airflow is simulated." 

 

-------------------------------------------------------------------------

---- 

Responds to Reviewer 3 

 

> What has still not been addressed from the points I had raised in 

> previous rounds are: 

> - the discussed "approaches" I, II, III and IV are still referred 

> to (as early as page 14) before being defined (only on page 17); 

 

We agree with the referee that "approach I" was used too early, as was 

also noticed by referee I. We have now removed the reference to this 

before introducing it. 

 

> - the discussion/conclusions sections lack any mention of the fact 

> that the super-droplet simulations described in literature are 

performed 

> for multiplicities several orders of magnitude larger than these 

covered 

> in the paper. 

 

We did discuss this in the third paragraph of section 2.b. In addition, 

we also performed simulations with xi=50 in Fig.A1(b), which is around 

the same order as in other studies. 

 

> To comply with the AMS Software preservation, stewardship, and reuse 

> guidelines1, please provide precise information on the version of 

> PencilCode used for the study and archive this particular version at a 

> persistent location (e.g., zenodo). 

 

As presented in the acknowledgement and data availability section, The 

Pencil Code is publicly available at https://github.com/pencil-code. 

The version used for this study is Version v2021.02.20 of Feb 20, 



2021, with the DOI: 10.5281/zenodo.4553325. We uploaded the simulation 

setup, simulation data, and scripts for post-processing on Zenodo at 

"http://10.5281/zenodo.4742786". 

 

> page 4, line 76: some research groups call it "multiplicity", 

> others "weighting factor" - perhaps worth mentioning? 

 

We have not yet found a suitable reference where a different expression 

was used. The superdroplet algorithm in our study is consistent with 

the one from Shima et al, in which the superdroplet algorithm was 

first presented in the meteorology community. For consistency and the 

readability, we use "multiplicity" instead of other terminologies. 

 

> page 4, line 84: droplets --> droplet 

 

Our sentence may have been badly phrased, but there are many background 

droplets, so we have now written "The model describes one large droplet 

of 12.6um radius settling through a dilute suspension of background 

droplets with 10 um radius. We hope that the current formulation makes 

it clear that we referred here to the background droplets, which all 

have the same radius of 10um." 

 

> page 4, line 85: droplets --> droplet 

 

We hope that the new formulation is now clearer. 

 

> page 4, line 89: in K&S 2005, a bi-disperse size distribution is used, 

> not a Poisson one, right? 

 

No, K&S 2005 assumed a Poisson droplet size distribution.  

 

> page 4, line 92: in D&P 2017, there was also comparison with LDM, 

> please be more specific to support "unlike" 

 

We have now spelled out the specific difference 

"we compare here with the distribution of cumulative 

collision times, which is the key diagnostics of the LDM." 

 

> page 5, line 98: what is a collision velocity 

 

We have now replaced "collision velocity" by 

"velocities of colliding droplets" 

 

> page 5, line 104: first mention of dimensionality? isn't the preceding 

> discussion also relating to 3D? what is a 3D version of LDM? 

 

As we explained in paragraph 4 of Section 2.b, different vertical columns 

are different from each other. This is ignored in the standard LDM. 

We have now removed this statement. 

 

> page 5, table 5: some rows start with capital letter, other no 

 

We have now changed the upper case to the low case. 

 



> page 6, figure 1: explain what (a), (b) and (c) refer to in the caption 

 

We have now explained the caption by writing  "... with (a): xi_i > xi_j, 

(b): xi_i < xi_j, and (c): xi_i = xi_j ..." 

 

> page 6, line 116: not all mentioned models use the same formulation for 

> dx/dt - please clarify that it is part of "local" model formulation 

 

The definition of dx/dt is in the section describing the superdroplet 

algorithm, which is later referred to as approach IV, but all the other 

approaches model the same physics and the same Equations (1) and (2) are 

used. Regarding the sentence in line 116 about the hydrodynamic force, 

we have now moved it to just after Eq.(1) and write "and the hydrodynamic 

force is modeled using Stokes law, so that" 

 

> page 6, line 128: "we limit" - please mention how it is handled in 

> Shima et al. 2009 as the paragraph in a way suggests it is the same, 

> but it is not. 

 

Our time step criterion is indeed similar to that of Shima+09 in that 

the time step times the probability should be much smaller than unity, 

so we have now referred to their paper. There are also differences 

related to the random permutation technique, but this is relate to the 

probability and not the time step as such. 

 

Eq. (25) of Shima et al. 2009 is very similar to our Eqs. (3) and (4). 

But Eq. (25) of Shima et al. 2009 is not used in Shima et al. (2009) 

and is proposed as a future work. 

 

> page 6, line 132: "background droplets" - this is LDM specific, 

> please clarify the text so that a reader is not confused what refers 

> to Shima et al., to presented formulation, and to LDM 

 

It is quite obvious from equation (4) that superdroplets with 

the same velocity do not collide with each other. Therefore, we have 

now omitted this sentence. 

 

> page 6, line 135: which "earlier work"? 

 

Assuming E_ij=1 is a simple assumption we have made, so we have now 

written "For the purpose of the present study, it suffices to limit 

ourselves to the simplest, albeit unrealistic assumption of $E_{ij}=1$, 

but we also consider in one case a slightly more realistic quadratic 

dependence on the radius of the larger droplet." 

 

> page 8, line 165: this is not precise (not true) as sub-stepping is 

> used in Shima et al. so each droplet may interact with several others 

> within a single model time step 

 

Another reviewer suggested that "The advantage of the Shima et al 

algorithm is that it is linear in the number of particles because each 

superdroplet is allowed to collide only with a single randomly-selected 

other superdroplet (in one time step) rather than allowing collisions 

with all other superdroplets (like in the traditional bin microphysics)." 



 

In the penultimate paragraph of section 7.1 of Shima et al 2009, it says 

that "SDM is using [ns/2] randomly generated, non-overlapping candidate 

pairs, and allows multiple coalescence for each pair." 

 

To clearly explain the algorithm of Shima et al 2009, we revised our 

texts 

as follows: 

"To reduce the computational cost and make it linear in the number of 

superdroplets per mesh point, ns(t), Shima et al. (2009) supposed 

that each superdroplet interacts with only one randomly-selected 

superdroplet per time step rather than allowing collisions with all 

the other superdroplets in a grid cell (Shima et al. (2009) still allows 

multiple coalescence for randomly generated, non-overlapping candidate 

pairs in sub-time step), which is what Shima et al. (2009) referred to 

as random permutation technique." 

 

> page 8, line 166: "linear sampling technique" is not mentioned in 

> Shima et al. paper. 

 

We agree that this expression was not used by Shima et al 2009, so we 

have now 

removed that part. 

 

> page 8, line 170: "linear in the total number of superdroplets": 

> this is very misleading, if not incorrect; if focusing on this aspect, 

> please give proper quantitative estimation for such statements 

 

It is indeed not correct, we've now corrected and explained 

the scaling in the last paragraph of section 2.a as the following, 

"To reduce the computational cost and make it linear in the number of 

superdroplets per mesh point, ns(t), Shima et al. (2009) supposed 

that each superdroplet interacts with only one randomly-selected 

superdroplet per time step rather than allowing collisions with all the 

other superdroplets in a grid cell (Shima et al. (2009) still allows 

multiple coalescence for randomly generated, non-overlapping candidate 

pairs in sub-time step), which is what Shima et al. (2009) referred to as 

random permutation technique. This technique was also adopted by Dziekan 

and Pawlowska (2017) and Unterstrasser et al.  (2020). However, this 

is not used in the Pencil Code. Instead, we allow each superdroplet to 

collide with all other superdroplets within one grid cell to maximize the 

statistical accuracy of the results. This leads to a computational cost 

of 

O(ns^2(t)), which does not significantly increase the computational 

cost because ns(t) is relatively small for cloud-droplet collision 

simulations." 

 

> page 8, line 176: it seems that this is the first mention of 

> dimensionality of presented simulations, better to state it when 

> introducing particle attributes (i.e. xi, vi) 

 

We have now moved it down to the last paragraph of section 2.b. 

 

> page 9, line 180: "twice the mass and radius" - please rephrase 



 

We have now corrected it as "twice the mass, so that the radius is". 

 

> page 9, line 190-194: perhaps worth referencing here the discussion 

> on common/rare super-particle sub- population sampling from DeVille et 

> al. 2019, section 6.1 therein 

 

This jumps in our study are due to the superdroplet collision scheme. 

To our knowledge, it is not related to  

rare sub-population sampling of particles in DeVille et al. (2019). 

 

> page 11: line 242-243: change square brackets into normal parenthesis 

 

Changed. 

 

> page 13, line 281: this is the first mention of mean-field theory 

> in the paper, please elaborate, clarify, reference works which provide 

> more details 

 

What we meant by MFT is that the actual collision times are just 

replaced by the mean collision times that are given by t_k=lambda_k^{-1}. 

To clarify this better, we have now written: "By comparison, if 

fluctuations 

are ignored, the collision times that are given by t_k=lambda_k^{-1}. 

This is what we refer to as mean-field theory (MFT)." 

 

> page 13, fig 2: use logarithmic sampling for the curves so that in 

> the left part of the plot the curves are smooth 

 

We have now corrected this. 

 

> page 13, fig 3: ditto 

 

The unsmooth appearance was mainly due to the inclusion of the time 

T_k=0, 

which we have now removed. We recall that this case is slightly different 

from that of Figure 2 in that we talk here about discrete times. 

 

> page 14, line 290: "approach I" mentioned before being defined 

 

We agree with the referee that the word "approach I" has now been used 

too early, This was also noticed by referee I, and we have now removed 

the reference to approach I in the first location and in the captions. 

 

> page 14, lines 291-293: the mention of Pencil Code here (in the 

> "Relaxing the power law approximation" section) seems misplaced 

 

We have now revised it as 

"We refer to appendix A1 for details of performing this many 

realizations." 

 

> page 15, line 319: it is unclear for me what does it mean for a 

> distribution to be "somewhat enhanced" 

 



We have now rephrased it to "..., indicating that the distribution 

broadens".  

 

> page 16, line 322: "is" -> "are" 

 

Corrected. 

 

> page 16, line 328: "Here and below" - unclear 

 

We have now moved this paragraph describing why plotting P(T/<T>) to 

the caption of Fig.4, when P(T/<T>) appears for the first time. 

 

> page 16, line 334: this sentence would be best moved to the first 

> paragraphs of the paper with the aim of clarifying the dimensionality 

> aspect. 

 

This entire paragraph fits better here because it is an extension of LDM. 

The dimensionality aspect is now introduced in section 2.b early in the 

paper. 

 

> page 17, line 342: "at the end of this paper", point precisely to a 

section 

 

We have now specified it as "at section 4.d". 

 

> page 18, line 363: "collision partner" not introduced earlier, 

> if embracing such notion, worth to use it when describing the algorithm 

> in the beginning of the paper 

 

We have now introduced the "collision partner" just above Ea.3, when the 

superdroplet algorithm is first introduced. 

 

> page 19, line 395: "fat" --> "thick" 

 

Changed. 

 

> page 20, line 96: please rephrase "In its simplest form" being 

more precise (same on page 26, line 231) 

 

We have now rephrased it as "The LDM assumes that the ..." and "The LDM 

...". 

 

> page 21, line 402 and 427: there is no green line, green points? 

 

Corrected. 

 

> page 22, line 437: to reduce computational cost? 

 

Rephrased. 

 

> page 23, line 452: unclear if "section 1" here of in D&P 

 

we have now rephrased as "as we discussed in section 1." 

 



> page 23, line 453: please be more specific than "at late times" 

 

We have now made it more specific as the following,  

"... at the last few steps 

of a lucky droplet growing to 50 um (see Figure 9) ..." 

 

> page 24, line 469: 1/255 ~ 0.004 

 

Corrected. 

 

> page 25, line 496: there seem to be no "dotted" line in the plot 

 

We have now corrected it as "thick black line".  

 

> page 27, line 521: "does not contain mean-field elements" is unclear 

 

We have now elaborated on it as 

"... is able to represent fluctuations during collisions and 

does not contain mean-field elements". 

 

> page 27, line 529: "appear to be vastly exaggerated" - be more specific 

 

We have now removed this statement. 

 

> page 29, line 564: rephrase "authors point out", "them having 

> chosen" with non-personal wording 

 

Rephrased. 

 

> page 29, line 571: avoid "believe" wording 

 

We've now rephrased it as "does not hold in this 

investigation". 

 

> page 31, line 610: move code location from Acknowledgements to the 

> "Data availability statement" 

 

Moved. 

 

> page 31, line 612: mention that the archive also contains 

> "plotting/analysis scripts and that the data is stored in a 

> proprietary "sav" format 

 

Added. 

 

> page 31, line 613: missing "doi.org" in the url 

 

Added. 

 

> page 32, line 645: what is "usual LDM"? 

 

We have now removed "usual". 

 

> page 39, line 799: "Journal of Atmospheric Sciences" --> missing "the" 



 

Added. 

 

> page 39, line 806: "Physics Review Letter" --> "Physical Review 

Letters" 

 

Corrected. 
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ABSTRACT: It was previously shown that the superdroplet algorithm for modeling the collision-

coalescence process can faithfully represent mean droplet growth in turbulent clouds. But an open

question is how accurately the superdroplet algorithm accounts for fluctuations in the collisional

aggregation process. Such fluctuations are particularly important in dilute suspensions. Even

in the absence of turbulence, Poisson fluctuations of collision times in dilute suspensions may

result in substantial variations in the growth process, resulting in a broad distribution of growth

times to reach a certain droplet size. We quantify the accuracy of the superdroplet algorithm in

describing the fluctuating growth history of a larger droplet that settles under the effect of gravity

in a quiescent fluid and collides with a dilute suspension of smaller droplets that were initially

randomly distributed in space (‘lucky droplet model’). We assess the effect of fluctuations upon the

growth history of the lucky droplet and compute the distribution of cumulative collision times. The

latter is shown to be sensitive enough to detect the subtle increase of fluctuations associated with

collisions betweenmultiple lucky droplets. The superdroplet algorithm incorporates fluctuations in

two distinct ways: through the random spatial distribution of superdroplets and through the explicit

Monte Carlo collision algorithm involved. Using specifically designed numerical experiments, we

show that both sources of fluctuations on their own give an accurate representation of fluctuations.

We conclude that the superdroplet algorithm can faithfully represent fluctuations in the coagulation

of droplets driven by gravity.
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1. Introduction34

Direct numerical simulations (DNS) have become an essential tool to investigate collisional35

growth of droplets in turbulence (Onishi et al. 2015; Saito and Gotoh 2018). Here, DNS refers36

to the realistic modeling of all relevant processes, which involves not only the use of a realistic37

viscosity, but also a realisticmodeling of collisions of droplet pairs in phase space. Themost natural38

and physical way to analyze collisional growth is to track individual droplets and to record their39

collisions, one by one. However, DNS of the collision-coalescence process are very challenging,40

not only when a large number of droplets must be tracked, but also because the flow must be41

resolved over a large range of time and length scales.42

Over the past few decades, an alternative way of modeling aerosols has gained popularity.43

Zannetti (1984) introduced the concept of “superparticles, i.e., simulation particles representing44

a cloud of physical particles having similar characteristics.” This concept was also used by45

Paoli et al. (2004) in the context of condensation problems. The application to coagulation46

problems was pioneered by Zsom and Dullemond (2008) and Shima et al. (2009), who also47

developed a computationally efficient algorithm. The idea is to combine physical cloud droplets48

into ‘superdroplets’. To gain efficiency, one tracks only superdroplet collisions and uses a Monte49

Carlo algorithm (Sokal 1997) to account for collisions between physical droplets. This is referred50

to as “superdroplet algorithm.” It is used in both the meteorological literature (Shima et al. 2009;51

Sölch and Kärcher 2010; Riechelmann et al. 2012; Arabas and Shima 2013; Naumann and Seifert52

2015, 2016; Unterstrasser et al. 2017; Dziekan and Pawlowska 2017; Li et al. 2017, 2018, 2019,53

2020; Sato et al. 2017; Jaruga and Pawlowska 2018; Brdar and Seifert 2018; Sato et al. 2018; Seifert54

et al. 2019; Hoffmann et al. 2019; Dziekan et al. 2019; Grabowski et al. 2019; Shima et al. 2020;55

Grabowski 2020; Unterstrasser et al. 2020), as well as in the astrophysical literature (Zsom and56

Dullemond 2008; Ormel et al. 2009; Zsom et al. 2010; Johansen et al. 2012; Johansen et al. 2015;57

Ros and Johansen 2013; Drakowska et al. 2014; Kobayashi et al. 2019; Baehr and Klahr 2019; Ros58

et al. 2019; Nesvornỳ et al. 2019; Yang and Zhu 2020; Poon et al. 2020; Li and Mattsson 2020,59

2021). Compared with DNS, the superdroplet algorithm is distinctly more efficient. It has been60

shown to accurately model average properties of droplet growth in turbulent clouds. Li et al. (2018)61

demonstrated, for example, that the mean collision rate obtained using the superdroplet algorithm62
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agrees with the mean turbulent collision rate (Saffman and Turner 1956) when the droplets are63

small.64

Less is known about how the superdroplet algorithm represents fluctuations in the collisional65

aggregation process. Dziekan and Pawlowska (2017) compared the results of the superdroplet66

algorithm with the predictions of the stochastic coagulation equation of Gillespie (1972) in the67

context of coalescence of droplets settling in a quiescent fluid. Dziekan and Pawlowska (2017)68

concluded that the results of the superdroplet algorithm qualitatively agree with what Kostinski69

and Shaw (2005) called the lucky droplet model (LDM). To assess the importance of fluctuations,70

Dziekan and Pawlowska (2017) computed the time C10%, after which 10% of the droplets have71

reached a radius of 40`m. In agreement with earlier Lagrangian simulations of Onishi et al.72

(2015), which did not employ the superdroplet algorithm, they found that the difference in C10%73

between their superdroplet simulations and the stochastic model of (Gillespie 1972) decreases with74

the square root of the number of droplets, provided that there are no more than about nine droplets75

per superdroplet. The number of droplets in each superdroplet is called the multiplicity. When this76

number is larger than 9, they found that a residual error remains. We return to this question in the77

discussion of the present study, where we tentatively associate their findings with the occurrence78

of several large (lucky) droplets that grew from the finite tail of their initial droplet distribution.79

The role of fluctuations is particularly important in dilute systems, where rare extreme events80

may substantially broaden the droplet-size distribution. This is well captured by the LDM, which81

was first proposed by Telford (1955) and later numerically addressed by Twomey (1964), and more82

recently quantitatively analyzed by Kostinski and Shaw (2005). The model describes one droplet83

of 12.6`m radius settling through a dilute suspension of background droplets with 10`m radius.84

The collision times between the larger (“lucky”) droplet and the smaller ones are exponentially85

distributed, leading to substantial fluctuations in the growth history of the lucky droplet. Wilkinson86

(2016) derived analytic expressions for the cumulative distribution times using large-deviation87

theory. Madival (2018) extended the theory of Kostinski and Shaw (2005) by considering a more88

general form of the droplet-size distribution than just the Poisson distribution.89

The goal of the present study is to investigate howaccurately the superdroplet algorithm represents90

fluctuations in the collisional growth history of settling droplets in a quiescent fluid. Unlike the91

work of Dziekan and Pawlowska (2017), who focused on the calculation of C10%, we compare here92
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with the distribution of cumulative collision times, which is the key diagnostics of the LDM. We93

record growth histories of the larger droplet in an ensemble of different realizations of identical94

smaller droplets that were initially randomly distributed in a quiescent fluid. We show that the95

superdroplet algorithm accurately describes the fluctuations of growth histories of the lucky droplet96

in an ensemble of simulations. The LDM assumes that the lucky droplet is large compared to the97

background droplets, so that the radius of those smaller droplets can be neglected in the geometrical98

collision cross section and velocities of colliding droplets. Since fluctuations early on in the growth99

history are most important (Kostinski and Shaw 2005; Wilkinson 2016), this can make a certain100

difference in the distribution of the time ) it takes for the lucky droplet to grow to a certain size.101

As the small droplets are initially randomly distributed, their local number density fluctuates.102

Consequently, lucky droplets can grow most quickly where the local number density of small103

droplets happens to be large.104

The remainder of this study is organized as follows. In section 2 we describe the superdroplet105

algorithm and highlight differences between different implementations used in the literature (Shima106

et al. 2009; Johansen et al. 2012; Li et al. 2017). Section 3 summarizes the LDM, the setup of107

our superdroplet simulations, and how we measure fluctuations of growth histories. Section 4108

summarizes the results of our superdroplet simulations. We conclude in section 6.109

2. Method110

a. Superdroplet algorithm111

Superdroplet algorithms represent several physical droplets by one superdroplet. All droplets112

in superdroplet 8 are assumed to have the same material density dd, the same radius A8, the113

Table 1. Definition of variables in superdroplet algorithm.

= number density of droplets in the domain

=luck number density of lucky droplets

#s (C) number of “superdroplets” in the domain

b8 (C) number of droplets in superdroplet 8 (multiplicity)

#d (C) total number of physical droplets in the domain

#real number of independent simulations (realizations)
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yC

(a) (b) (c)

b8=10 b 9=6

"8=10 " 9=2

b8=4 b 9=6

"8=10 " 9=12

b8=6 b 9=10

"8=10 " 9=2

b8=6 b 9=4

"8=12 " 9=2

b8=8 b 9=8

"8=10 " 9=2

b8=4 b 9=4

"8=12 " 9=12

Fig. 1. Collision outcomes with (a): b8 > b 9 , (b): b8 < b 9 , and (c): b8 = b 9 when two superdroplets collide and

droplet collisions occur. Time increases downward, as indicated by the arrow. Superdroplet 8 contains b8 large

droplets of mass "8 , superdroplet 9 contains b 9 small droplets of mass " 9 < "8 .

116

117

118

same velocity v8, and reside in a volume around the same position x8. The index 8 labeling the114

superdroplets ranges from 1 to #s(C0) (Table 1), where C0 denotes the initial time.115

The equation of motion for the position x8 and velocity v8 of superdroplet 8 reads:119

dx8
dC

= v8 ,
dv8
dC

= −v8
g8
+g . (1)

Here g is the gravitational acceleration, and the hydrodynamic force is modeled using Stokes law,120

so that121

g8 =
2
9
dd
d

A2
8

a
(2)

is the droplet response (or Stokes) time attributed to the superdroplet, a = 10−5 m2 s−1 is the viscosity122

of air, and d is the mass density of the airflow. Droplets are only subject to gravity and no turbulent123

airflow is simulated.124

Droplet collisions are represented by collisions of superdroplets (Shima et al. 2009; Johansen125

et al. 2012; Li et al. 2017), as mentioned above. Superdroplets 8 and 9 (collision partners) residing126

inside a grid cell collide with probability127

?8 9 = _8 9XC , (3)
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where XC is the integration time step. A collision happens when [ < ?8 9 , where 0 ≤ [ ≤ 1 is128

a uniformly distributed random number. To avoid a probability larger than unity, we limit the129

integration step through the condition XC � 1/_8 9 (Shima et al. 2009). The collision rate is130

_8 9 = c
(
A8 + A 9

)2 |v8 −v 9 |�8 9
bmax

XG3 , (4)

where �8 9 is the collision efficiency, bmax = max(b8, b 9 ) is the larger one of the two b values for131

superdroplets 8 or 9 (Table 1), and XG3 is the volume of the grid cell closest to the superdroplet.132

Note that equation (4) implies that droplets having the same velocity (v8 = v 9 ) never collide. This133

also implies that no collisions are possible between physical particles within a single superdroplet.134

For the purpose of the present study, it suffices to limit ourselves to the simplest, albeit unrealistic135

assumption of �8 9 = 1, but we also consider in one case a slightly more realistic quadratic depen-136

dence on the radius of the larger droplet. To assess the effects of this assumption, we compare with137

results where the efficiency increases with droplet radius (Lamb and Verlinde 2011). Following138

Kostinski and Shaw (2005) and Wilkinson (2016), we adopt a simple power law prescription for139

the dependence of the efficiency on the droplet radius.140

What happens when two superdroplets collide? To write down the rules, we denote the number141

of droplets in superdroplet 8 by b8, while b 9 is the number of droplets in superdroplet 9 . "8 and142

" 9 are the corresponding droplet masses. The collision scheme suggested by Shima et al. (2009)143

amounts to the following rules; see also Figure 1 for an illustration. To ensure mass conservation144

between superdroplets 8 and 9 , when b 9 > b8, which is the case illustrated in Figure 1(b), droplet145

numbers and masses are updated such that146

b8→ b8 , b 9 → b 9 − b8 , (5)

"8→ "8 +" 9 , " 9 → " 9 .

When b 9 < b8, which is the case shown in Figure 1(a), the update rule is also given by equation (5),147

but with indices 8 and 9 exchanged. In other words, the number of droplets in the smaller148

superdroplet remains unchanged (and their masses are increased), while that in the larger one is149

reduced by the amount of droplets that have collidedwith all the droplets of the smaller superdroplet150

(and their masses remain unchanged).151
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To ensure momentum conservation during the collision, the momenta of droplets in the two152

superdroplets are updated as153

v8"8→ v8"8 +v 9" 9 ,

v 9" 9 → v 9" 9 , (6)

after a collision of superdroplets.154

Finally, when b8 = b 9 , which is the case described in Figure 1(c), droplet numbers and masses155

are updated as156

b8→ b8/2 , b 9 → b 9/2 , (7)

"8→ "8 +" 9 , " 9 → "8 +" 9 .

It is then assumed that, when two superdroplets, each with one or less than one physical droplet,157

collide, the superdroplet containing the smaller physical droplet is collected by the more massive158

one; it is thus removed from the computational domain after the collision. We emphasize that159

equation (5) does not require b to be an integer. Since we usually specify the initial number density160

of physical particles, b can be fractional from the beginning. This is different from the integer161

treatment of b in Shima et al. (2009).162

The superdroplet simulations are performed by using the particle modules of the Pencil Code163

(Pencil Code Collaboration et al. 2021). The fluid dynamics modules of the code are not utilized164

here. To reduce the computational cost and make it linear in the number of superdroplets per mesh165

point, =s(C), Shima et al. (2009) supposed that each superdroplet interacts with only one randomly166

selected superdroplet per time step rather than allowing collisions with all the other superdroplets167

in a grid cell (they still allow multiple coalescence for randomly generated, non-overlapping168

candidate pairs in sub-time step), which is what they referred to as random permutation technique.169

This technique was also adopted by Dziekan and Pawlowska (2017) and Unterstrasser et al. (2020).170

However, this is not used in the Pencil Code. Instead, we allow each superdroplet to collide with171

all other superdroplets within one grid cell to maximize the statistical accuracy of the results. This172

leads to a computational cost of O(=2
s (C)), which does not significantly increase the computational173

cost because =s(C) is relatively small for cloud-droplet collision simulations. In the Pencil Code,174
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collisions between particles residing within a given grid cell are evaluated by the same processor175

which is also evaluating the equations of that grid cell. Due to this, together with the domain176

decomposition used in the code, the particle collisions are automatically efficiently parallelized as177

long as the particles are more or less uniformly distributed over the domain.178

b. Numerical setup179

In our superdroplet simulations, we consider droplets of radius 10`m, randomly distributed in180

space, together with one droplet of twice the mass, so that the radius is 21/3 × 10`m = 12.6`m.181

The larger droplet has a higher settling speed than the 10`m droplets and sweeps them up through182

collision and coalescence. For each simulation, we track the growth history of the larger droplet183

until it reaches 50`m in radius and record the time ) it takes to grow to that size.184

In the superdroplet algorithm, one usually takes b8 (C0) � 1, which implies that the actual number185

of lucky droplets is also more than one. This was not intended in the original formulation of the186

lucky droplet model (Telford 1955; Kostinski and Shaw 2005; Wilkinson 2016) and could allow187

the number of superdroplets with heavier (lucky) droplets, # (luck)
s , to become larger than unity.188

This would manifest itself in the growth history of the lucky droplets through an increase by more189

than the mass of a background droplet. We refer to this as “jumps”. Let us therefore now discuss190

the conditions under which this would happen and denote the values of b (C0) for the lucky and191

background droplets by bluck and bback, respectively. First, for bluck = bback, the masses of both192

lucky and background superdroplets can increase, provided their values of b (C0) are above unity;193

see Figure 1(c). Second, even if bluck < bback initially, new lucky superdroplets could in principle194

emerge when the same two superdroplets collide with each other multiple times. This can happen195

for two reasons. First, the use of periodic boundary conditions for the superdroplets (i.e., in the196

vertical direction in our laminar model with gravity). Second, two superdroplets can remain at197

the same location (corresponding to the same mesh point of the Eulerian grid for the fluid) during198

subsequent time steps. The simulation time step must be less than both the time for a superdroplet199

to cross one grid spacing and the mean collision time, i.e., the inverse collision rate given by200

equation (4). Looking at Figure 1, we see that bback can then decrease after each collision and201

potentially become equal to or drop below the value of bluck. This becomes exceedingly unlikely if202

initially bback� bluck, but it is not completely impossible, unless bluck is chosen initially to be unity.203
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The initial value of bback can in principle also be chosen to be unity. Although such a case204

will indeed be considered here, it would defeat the purpose and computational advantage of the205

superdroplet algorithm. Therefore, we also consider the case bback� bluck. As already mentioned,206

jumps are impossible if bluck is unity. For orientation, we note that the speed of the lucky droplet207

prior to the first collision is about 3.5cms−1, the average time to the first collision is 490s, and208

thus, it falls over a distance of about 17m before it collides.209

The superdroplet algorithm is usually applied to three-dimensional (3-D) simulations. If there is210

no horizontal mixing, one can consider one-dimensional (1-D) simulations. Moreover, we are only211

interested in the column in which the lucky droplet resides. In 3-D, however, the number density212

of the 10`m droplets beneath the lucky one is in general not the same as the mean number density213

of the whole domain. This leads to yet another element of randomness: fluctuations of the number214

density between columns.215

Equation (1) is solved with periodic boundary conditions using the Pencil Code (Pencil Code216

Collaboration et al. 2021), which employs a third-order Runge-Kutta time stepping scheme. The217

superdroplet algorithm is implemented in the Pencil Code, which is used to solve equations (3)–218

(7). For the 1-D superdroplet simulations, we employ an initial number density of background219

droplets of =0 ≈ 3×108 m−3 within a volume+ = !G×!H×!I with !G = !H = 0.002m, !I = 0.214m,220

and #s(C0) = 256 such that the multiplicity is bluck(C0) = bback(C0) = 1. For each simulation,221

7,686,000 time steps are integrated with an adaptive time step with a mean value of XC = 2.942×222

10−4 s. For a superdroplet with an initial radius of 12.6`m to grow to 50`m, 123 collisions are223

required. For the purpose of the present study, we designed a parallel technique to run thousands224

of 1-D superdroplet simulations simultaneously.225

3. Lucky-droplet models226

a. Basic idea227

The LDM describes the collisional growth of a larger droplet that settles through a quiescent fluid228

and collides with smaller monodisperse droplets, that were initially randomly distributed in space.229

This corresponds to the setup described in the previous section. We begin by recalling the main230

conclusions of Kostinski and Shaw (2005). Initially, the lucky droplet has a radius corresponding231

to a volume twice that of the background droplets, whose radius was assumed to be A1 = 10`m.232
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Therefore, its initial radius is A2 = 21/3A1 = 12.6`m. After the (: −1)th collision step with smaller233

droplets, it increases as234

A: ∼ A1:
1/3. (8)

Fluctuations in the length of the time intervals C: between collision :−1 and : give rise to fluctuating235

growth histories of the larger droplet. These fluctuations are quantified by the distribution of the236

cumulative time237

) =

124∑
:=2

C: , (9)

corresponding to 123 collisions needed for the lucky droplet to grow from 12.6`m to 50.0`m238

(note that Kostinski and Shaw (2005) used one more collision, so their final radius was actually239

50.1`m). The time intervals C: between successive collisions are drawn from an exponential240

distribution with a probability ?: (C: ) = _: exp(−_: C: ). The rates _: depend on the differential241

settling velocity |v: − v1 | between the colliding droplets through equations (3) and (4). Here,242

however, the background droplets have always the radius A1, so the collision rate at the (: − 1)th243

collision of the lucky droplet with radius A: obeys244

_: = c (A: + A1)2 |v: −v1 |�: =back, (10)

where �: = � (A: , A1), and v: and v1 are approximated by their terminal velocities.245

While the LDM is well suited for addressing theoretical questions regarding the significance of246

rare events, it should be emphasized that it is at the same time highly idealized. Furthermore,247

while it is well known that �: � 1 (Pruppacher and Klett 1997), it is instructive to assume, as an248

idealization, �: = 1 for all : , so the collision rate (10) can be approximated as _: ∼ A4
:
(Kostinski249

and Shaw 2005), which is permissible when A: � A1. It follows that, in terms of the collision index250

: , the collision frequency is251

_: = _∗:
4/3, (11)

where _∗ = (2c/9) (dd/d) (6=/a)A4
1 , and = is the number density of the 10`m background droplets.252

This is essentially the model of Kostinski and Shaw (2005) and Wilkinson (2016), except that they253

also assumed �: ≠ 1. They pointed out that, early on, i.e., for small : , _: is small and therefore the254

mean collision time _−1
:

is long. We note that the variance of the mean collision time is _−2
:
, which255

11



is large for small : . The actual time until the first collision can be very long, but it can also be very256

short, depending on fluctuations. Therefore, at early times, fluctuations have a large impact on the257

cumulative collision time. Note that for droplets with A ≥ 30`m, the linear Stokes drag is not valid258

(Pruppacher and Klett 1997).259

b. Relaxing the power law approximation260

We now discuss the significance of the various approximations being employed in the mathe-261

matical formulation of the LDM of Kostinski and Shaw (2005). To relax the approximations made262

in equation (11), we now write it in the form263

_: = _∗�:A
2
A(A: )A

2
B(A: )/A

4
1 (: ≥ 2), (12)

where264

A2
A = (A: + A1)2, A2

B = A
2
: − A

2
1 (13)

would correspond to the expression equation (10) used in the superdroplet algorithm. In equa-265

tion (11), however, it was assumed that AA = AB = A: . To distinguish this approximation from266

the form used in equation (12), we denote that case by writing symbolically “AA ≠ A: ≠ AB”; see267

Figure 2.268

In equation (13), we have introduced AA and AB to study the effect of relaxing the assumption272

AA = AB = A: , made in simplifying implementations of the LDM. Both of these assumptions are273

justified at late times when the lucky droplet has become large compared to the smaller ones, but274

not early on, when the size difference is moderate.275

By comparison, if fluctuations are ignored, the collision times that are given by C: = _−1
:
. This278

is what we refer to as mean-field theory (MFT). In Figure 3 we demonstrate the effect of the279

contributions from AA and AB on the mean cumulative collision time in the corresponding MFT,280

)MFT
: =

:∑
: ′=2

CMFT
: ′ , (14)

where281

CMFT
: = _−1

: (15)
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Fig. 2. Contributions to the two correction factors A2/A2
A (red) and A2/A2

B (blue), as well as their product. The

dashed-dotted parts of the lines apply to radii smaller than 12.6`m. The discrete radii A: for : ≥ 2 are shown in

a horizontal line of dots. The vertical dash-triple-dotted line denote the radius A = 50`m.

269

270

271

are the inverse of the mean collision rates. We see that, while the contribution from AA shortens282

the mean collision time, that of AB enhances it. In Figure 2, we also see that the contributions to283

the two correction factors A2/A2
A and A2/A2

B have opposite trends, which leads to partial cancelation284

in their product.285

In Figure 4 we show a comparison of the distribution of cumulative collision times for various286

representations of A: . Those are computed numerically using 1010 realizations of sequences of287

random collision times C: . We refer to appendix A1 for details of performing this many realizations.288

The physically correct model is where AA ≠ A: ≠ AB (black line in Figure 4). To demonstrate the289

sensitivity of %()) to changes in the representation of A: , we show the result for the approximations290

AA = A: = AB (red line) and AA ≠ A: = AB (blue line). The %()) curve is also sensitive to changes291

in the collision efficiency late in the evolution. To demonstrate this, we assume �: ∝ A2
:
when A:292

13



Fig. 3. Cumulative mean collision times, )MFT
:

, for AA ≠ A: ≠ AB (solid black line), compared with the

approximations AA = AB = A: (red dashed line) and only AB = A: (blue dash-dotted line).

276

277

exceeds a certain arbitrarily chosen value A∗ between 10 and 40`m, and �: = const below A∗ (Lamb293

and Verlinde 2011). To ensure that �: ≤ 1, we take294

�: = �∗ max
(
1, (A:/A∗)2

)
, (16)

with �∗ = (A∗/50`m)2. However, the normalized %()) curves are independent of the choice of295

the value of �∗. In Figure 5, we show the results for AA ≠ A: ≠ AB using A∗ = 40`m and 30`m (red296

and blue lines, respectively) and compare with the case �: = const. The more extreme cases with297

A∗ = 20`m and 10`m are shown as gray lines. The latter is similar to the case _: ∼ A6
:
considered298

by Kostinski and Shaw (2005) and Wilkinson (2016).299

When AA = A: = AB, or only A: = AB, the %()) curves exhibit smaller widths. By contrast, when313

the collision efficiency becomes quadratic later on (when A > A∗ ≡ 30`m or 40`m), the %())314
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Fig. 4. Comparison of %()) in a double-logarithmic representation for the LDM appropriate to our benchmark

(black solid line) with various approximations where AA = AB = A: (red dashed line) along with a case where only

AB = A: is assumed (blue dash-dotted line). Here we used 1010 realizations. Note that we plot the distribution of

the cumulative times versus the normalized time, )/〈)〉, as was done in the work of Kostinski and Shaw (2005).

Normalizing by 〈)〉 allows us to see changes in the shape of %()/〈)〉), thus allows a more direct comparison

of the subtle differences in the shapes of the different curves and ensures that the peaks of all curves are at

approximately the same position.

300

301

302

303

304

305

306

Fig. 5. Comparison of %()) in a double-logarithmic representation for the LDM for A∗ = 40`m and 30`m

using AA ≠ A: ≠ AB. The black line agrees with that in Figure 4, and the two gray lines refer to the cases with

A∗ = 20`m and 10`m. Here we used 1010 realizations.

307

308

309

curves have larger widths; see Figure 5. To quantify the shape of %()), we give in Table 2 the315

average of - ≡ ln()/〈)〉), its standard deviation f = 〈G2〉1/2, where G ≡ - − 〈-〉, its skewness316

skew - = 〈G3〉/f3, and its kurtosis kurt - = 〈G4〉/f4−3. We recall that, for a perfectly lognormal317

distribution, skew - = kurt - = 0. The largest departure from zero is seen in the skewness, which is318

positive, indicating that the distribution broadens for large ) . The kurtosis is rather small, however.319

15



Table 2. Moments of - = ln()/〈)〉) computed from 1010 realizations for different values of A∗ (in `m), and

different prescriptions of AA and AB. The corresponding values of )MFT
123 are also given and are normalized to

unity for AA ≠ A: ≠ AB with A∗ ≥ 50`m.

310

311

312

A∗ AA AB ) MFT
123 〈- 〉 f (- ) skew - kurt -

— — A: 0.67 −0.020 0.21 0.22 0.08

— A: A: 1.49 −0.033 0.25 0.25 0.05

— — — 1 −0.040 0.28 0.34 0.10

40 — — 0.99 −0.041 0.28 0.33 0.09

30 — — 0.93 −0.046 0.30 0.28 0.05

20 — — 0.79 −0.063 0.35 0.18 −0.04

10 — — 0.34 −0.111 0.47 0.16 −0.17

The main conclusion that can be drawn form the investigation mentioned above is that, as far as320

the shapes of the different curves are concerned, it does not result in any significant error to assume321

A: � A1. The value of f is only about 10% smaller if AA = A: = AB is used (compare the red dashed322

and black solid lines in Figure 4). This is because the two inaccuracies introduced by AA and AB323

almost cancel each other. When A∗ = 40`m or 30`m, for example, the values of f increase by 3%324

and 15%, respectively; see Table 3, where we also list the corresponding values of )MFT
124 . On the325

other hand, the actual averages such as 〈)〉 ≈ )MFT
124 vary by almost 50%.326

A straightforward extension of the LDM is to take horizontal variations in the local column327

density into account. Those are always present for any random initial conditions, but could be328

larger for turbulent systems, regardless of the droplet speeds. In 3-D superdroplet simulations,329

large droplets can fall in different vertical columns that contain different numbers of small droplets,330

a consequence of the fact that the small droplets are initially randomly distributed. To quantify331

the effect of varying droplet number densities in space, it is necessary to solve for an ensemble332

of columns with different number densities of the 10`m background droplets and compute the333

distribution of cumulative collision times. These variations lead to a broadening of %()), but it is334

a priori not evident how important this effect is. A quantitative analysis is given in appendix A3.335

c. Relation to the superdroplet algorithm336

To understand the nature of the superdroplet algorithm, and why it captures the lucky droplet337

problem accurately, it is important to realize that the superdroplet algorithm is actually a combina-338

tion of two separate approaches to solving the LDM, each of which turns out to be able to reproduce339
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Table 3. Summary of the four approaches.

Approach Description

I time interval C: drawn from distribution

II primitive Lagrangian particles collide

III probabilistic, just a pair of superdroplets

IV superdroplet model (combination of II & III)

the lucky droplet problem to high precision. In principle, we can distinguish four different ap-340

proaches (Table 3) to obtaining the collision time interval C: . In approach I, C: was taken from an341

exponential distribution of random numbers. Another approach is to use a randomly distributed342

set of 10`m background droplets in space and then determine the distance to the next droplet343

within a vertical cylinder of possible collision partners to find the collision time (approach II). A344

third approach is to use the mean collision rate to compute the probability of a collision within a345

fixed time interval. We then use a random number between zero and one (referred to as Monte346

Carlo method; see, e.g., Sokal 1997) to decide whether at any time there is a collision or not347

(approach III). This is actually what is done within each grid cell in the superdroplet algorithm;348

see equations (3) and (4). The fourth approach is the superdroplet algorithm discussed extensively349

in section 2.a (approach IV). It is essentially a combination of approaches II and III. We have350

compared all four approaches and found that they all give very similar results. In the following, we351

describe approaches II and III in more detail, before focussing on approach IV in section 4.352

d. Solving for the collisions explicitly353

A more realistic method (approach II; see Table 3) is to compute random realizations of droplet354

positions in a tall box of size !2
h × !I, where !h and !I are the horizontal and vertical extents,355

respectively. We position the lucky droplet in the middle of the top plane of the box. Collisions356

are only possible within a vertical cylinder of radius A: + A1 below the lucky droplet. Next, we357

calculate the distance ΔI to the first collision partner within the cylinder. We assume that both358

droplets reach their terminal velocity well before the collision. This is an excellent approximation359

for dilute systems such as clouds, because the droplet response time g: of equation (2) is much360

shorter than the mean collision time. Here we use the subscript : to represent the time until the361

(: −1)th collision, which is equivalent to the 8th droplet. We can then assume the relative velocity362
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between the two as given by the difference of their terminal velocities as363

ΔE: = (g: − g1) 6. (17)

The time until the first collision is then given by C2 = ΔI/ΔE2. This collision results in the lucky364

droplet having increased its volume by that of the 10`m droplet. Correspondingly, the radius of the365

vertical cylinder of collision partners is also increased. We then search for the next collision partner366

beneath the position of the first collision, using still the original realization of 10`m droplets. We367

continue this procedure until the lucky droplet reaches a radius of 50`m.368

e. The Monte Carlo method to compute C:369

In the Monte Carlo method (approach III; see Table 3) we choose a time step XC and step forward370

in time. As in the superdroplet algorithm, the probability of a collision is given by ?: = _:XC; see371

equation (3). We continue until a radius of 50`m is reached. We note that in this approach, = is372

kept constant, i.e., no background droplet is being removed after a collision.373

Approach III also allows us to study the effects of jumps in the droplet size by allowing for several374

lucky droplets at the same time and specifying their collision probability appropriately. These will375

then be able to interact not only with the 10`m background droplets, but they can also collide376

among themselves, which causes the jumps. We will include this effect in solutions of the LDM377

using approach III and compare with the results of the superdroplet algorithm.378

4. Results379

a. Accuracy of the superdroplet algorithm380

We now want to determine to what extent the fluctuations are correctly represented by the su-381

perdroplet algorithm. For this purpose, we now demonstrate the degree of quantitative agreement382

between approaches I–III and the corresponding solution with the superdroplet algorithm (ap-383

proach IV; see Table 3). This is done by tracking the growth history of each lucky droplet. As384

the first few collisions determine the course of the formation of larger droplets, we also use the385

distribution %()) of cumulative collision times ) . We perform #real superdroplet simulations with386

different random seeds using b8 (C0) = 1.387
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Fig. 6. 98 growth histories of lucky droplets obtained from 98 independent 1-D superdroplet simulations

(approach IV), as described in the text. All superdroplets have initially the same number of droplets, b8 (C0) = 1

with #s(C0) = 256. The mean number density of droplets is =0 = 3× 108 m−3. The thick solid line shows the

average time for each radius.
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Fig. 7. Corresponding %()) of Figure 6 obtained with the superdroplet algorithm (blue dots) and the LDM

using approach I with AA ≠ A: ≠ AB (red solid line).

392

393

We begin by looking at growth histories for many individual realizations obtained from the401

superdroplet simulation. Figure 6 shows an ensemble of growth histories (thin gray lines) obtained402

from #real ≈ 103 independent simulations, as described above. The times between collisions are403

random, leading to a distribution of cumulative growth times to reach 50`m. Also shown is the404
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Fig. 8. (a): %()) for =0 (red), 10=0 (blue), and 100=0 (black) with =0 = 3×108 m−3 and ! = 0.214m. In the

last case, 0.5% of the background droplets were removed; the orange symbols denote a case with 100 times larger

value of =luck, where 50% of the background droplets were removed. (b): %()/〈)〉) for = = =0 (red), 2=0 (green),

10=0 (blue), and 100=0 with 10=luck (black) and 1000=luck (orange). (c): %()/〈)〉) for !, 2!, 8!, and 64! with

100=0, obtained using the superdroplet algorithm (approach IV). The red dash-dotted line in (b) represents the

LDM (approach I) with AA ≠ A: ≠ AB and =0 = 3×108 m−3, which is the same simulation as the one in Figure 7.

The green dots in (b) is for 8192 realizations, while all the other simulations are for 1024 realizations.

394

395

396

397

398

399

400

mean growth curve (thick black line), obtained by averaging the time at fixed radii A. This figure405

demonstrates that the fluctuations are substantial. We also see that large fluctuations relative to the406

average time are rare.407

To quantify the effect of fluctuations from all realizations, we now consider the corresponding408

%()) in Figure 7. We recall that b8 (C0) = 1 for our superdroplet simulation in Figure 7. However, a409

simulation with b8 (C0) = 50 yields almost the same result; see appendix A2.410

The comparison of the results for the LDM using approach I and the superdroplet algorithm411

shows small differences. The width of the %()) curve is slightly larger for approach I than for the412
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superdroplet simulations. This suggests that the fluctuations, which are at the heart of the LDM,413

are slightly underrepresented in the superdroplet algorithm. However, this shortcoming may also414

be a consequence of our choice of having used only 256 superdroplets, i.e., one lucky and 255415

background superdroplets. Given that the multiplicities of lucky and background droplets was416

unity, each collision removed one background droplet. Thus, after 123 collisions, almost 50% of417

the background droplets were removed by the time the lucky droplet reached 50`m. Nevertheless,418

as we will see below, this has only a small effect.419

An important question is to what extent our results depend on the number density of background420

droplets and the size of the computational domain. To examine this with the superdroplet algorithm421

(approach IV), we consider three values of the initial number density: =0 = 3×108 m−3, 10=0, and422

100=0, while the initial number density of the lucky droplet is =luck,0 = 1.2× 105 m−3, 10=luck,0,423

and again 10=luck,0, respectively. Thus, even though the lucky droplet has to collide 123 times424

to reach 50`m, it only removes 123=luck/=0 = 5%, 5%, and 0.5% of the droplets, respectively.425

Figure 8 shows %()) for these three cases using first the cumulative time ) [Figure 8(a)] and then426

the normalized time )/〈)〉 [Figure 8(b)]. We see that the positions of the peaks in %()) change427

linearly with the initial number density =0, but %()/〈)〉) are very similar to each other. This is428

related to the fact that, after normalization, =0 drops out from the expression for C:/〈)〉 in the LDM429

(approach I); see equation (9). At small values of )/〈)〉, however, all curves show a similar slight430

underrepresentation of the fluctuations as already seen in Figure 7. In all these simulations, we431

used 1024 realizations, except for one case where we used 8192 realizations; see the green symbols432

in Figure 8(b). The distribution of cumulative growth times is obviously much smoother in the433

latter case, but the overall shape is rather similar.434

In the above, the number density of the lucky droplets has been much smaller than the number435

density of the background droplets. This means that for each collision the physical number of436

background droplets changed by only a small amount (5% or 0.5%). To see how sensitive our437

results for %()) are to this number, we now perform an extra experiment where 50% of the438

background droplets are removed by the time the lucky droplet reaches 50`m. This is also shown439

in Figure 8(a) and (b); see the orange symbols. We see that even for 50% removal the results are440

essentially unchanged.441
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Fig. 9. Same as Figure 6 but with initial condition b8 (C0) = 2 using #s(C0) = 128, corresponding to the same

number of physical droplets as in Figure 6, where b8 (C0) = 1. Note the occurrence of jumps, indicated in red.

455

456

In our superdroplet simulations (approach IV; see Table 3), the vertical extent of the simulation442

domain is only ! = 0.214m. This is permissible given that we use periodic boundary conditions443

for the particles. Nevertheless, the accuracy of our results may suffer from poor statistics. To444

investigate this in more detail, we now perform 1-D simulations with 2!, 8!, and 64!. At the445

same time, we increased the number of mesh points and the number of superdroplets by the same446

factors. Since the shape of %()/)̄) is almost independent of =0, as shown in Figure 8(b), we447

use =0 = 3× 1010 m−3 instead of =0 = 3× 108 m−3 to reduce the computational cost. As shown in448

Figure 8(c), %()/)̄) is insensitive to the domain size. Therefore, our results with ! = 0.214m can449

be considered as accurate with respect to %()/)̄).450

In the following, we discuss how our conclusions relate to those of earlier work. We then discuss451

a number of additional factors that can modify the results. Those additional factors can also be452

taken into account in the LDM. Even in those cases, it turns out that the differences between the453

LDM and the superdroplet algorithm are small.454

b. The occurrence of jumps457

One of the pronounced features in our superdroplet simulations with b8 (C0) > 1 is the possibility458

of jumps. We see examples in Figure 9 where bluck = bback = 2 and the jumps are visualized by the459

red vertical lines. Those jumps are caused by the coagulation of the lucky droplet with droplets of460
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radii larger than 10`m that were the result of other lucky droplets in the simulations. What is the461

effect of these jumps? Could they be responsible for the behavior found by Dziekan and Pawlowska462

(2017) that the difference in their C10% between the numerical and theoretical calculation decreases463

with the square root of the number of physical droplets, as we discussed in section 1?464

It is clear that those jumps occur mainly during the last few steps of a lucky droplet growing to465

50`m (see Figure 9)when there has been enough time to grow severalmore lucky droplets. Because466

the collision times are so short at late times, the jumps are expected to be almost insignificant.467

To quantify this, it is convenient to use approach III, where we choose # (luck)
s = 3 superdroplets468

simultaneously. (As always in approach III, the background particles are still represented by only469

one superdroplet, and = is kept constant.) We also choose bluck = 1, and therefore # (luck)
d = 3.470

The lucky droplets can grow through collisions with the 10`m background droplets and through471

mutual collisions between lucky droplets. The collision rate between lucky droplets 8 and 9 is,472

analogously to equation (12), given by473

_
(luck)
8 9

= c
(
A8 + A 9

)2 |v8 − v 9 | =luck, (18)

where =luck is the number density of physical droplets in the superdroplet representing the lucky474

droplet. To obtain an expression for =luck in terms of the volume of a grid cell XG3, we write475

=luck = bluck/XG3. The ratio of the physical number of lucky droplets, # (luck)
d , to the physical476

number of background droplets, # (back)
d is given by477

n =
#
(luck)
d

#
(back)
d

=
bluck#

(luck)
s

bback#
(back)
s

. (19)

To investigate the effect of jumps on %()) in the full superdroplet model studied above (see478

Figures 6 and 9), we first consider the case depicted in Figure 6, where bluck = bback ≡ b8 (C0) = 1.479

Here, we used #s = 256 superdroplets, of which one contained the lucky droplet, so # (luck)
s = 1,480

and the other 255 superdroplets contained a 10`m background droplet each. In our superdroplet481

solution, the ratio (19) was therefore n≈1/255 = 0.004. Using approach III, n enters simply as482

an extra factor in the collision probability between different lucky droplets. (In approach III, all483

quantities in equation (19) are kept constant.) The effect on %()) is shown in Figure 10, where we484
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Fig. 10. Comparison of models with n = 0 (no jumps), 0.004 (the value expected for the simulations), 0.02,

and 0.05 using approach III; see Table 3.

489

490

present the cumulative collision times for models with three values of n using approach III. We see485

that for small values of n , the cumulative distribution function is independent of n , and the effect486

of jumps is therefore negligible (compare the black solid and the red dashed lines of Figure 10).487

More significant departures due to jumps can be seen when n = 0.02 and larger.488

Let us now compare with the case in which we found jumps using the full superdroplet approach491

(approach IV). The jumps in the growth histories cause the droplets to grow faster than without492

jumps. However, jumps do not have a noticeable effect upon %()) in the superdroplet simulations493

we conducted; see Figure 11. By comparing %()) for bback = 40 (blue crosses in Figure 11) with494

that for bback = 2 (black circles), while keeping bluck = 2 in both cases, hardly any jumps occur and495

the lucky droplet result remains equally accurate.496

For larger values of n , jumps occur much earlier, as can be seen from Figure 12, where we500

show 30 growth curves for the cases n = 0.004, which is relevant to the simulations of Figure 7, as501

well as n = 0.02, and 0.05. We also see that for large values of n , the width in the distribution of502

arrival times is broader and that both shorter and longer times are possible. This suggests that the503

reason for the finite residual error in the values of C10% found by Dziekan and Pawlowska (2017)504

for b8 (C0) > 9 could indeed be due to jumps. In our superdroplet simulations, by contrast, jumps505

cannot occur when b8 (C0) = 1 or bback � bluck.506
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Fig. 11. %()/〈)〉) of simulations in Figure 9 (black circles) and the ones with initially bback = 40 (blue

crosses). bluck = 2 in both cases. The red line denotes the LDM (approach I) with AA ≠ A: ≠ AB, which is the

same simulation as the one in Figure 7.
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499

Fig. 12. Growth histories from approach III for n = 0.004 (very few jumps, relevant to the simulations of

Figure 7), as well as n = 0.02, and 0.05, where jumps are more frequent. The orange thick solid line gives the

average collision time and agrees with that of MFT (thick black line) within about a percent.
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c. The two aspects of randomness510

Let us now quantify the departure that is caused by the use of the Monte Carlo collision scheme.511

To do this, we need to assess the effects of randomness introduced through equations (3) and (4)512
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Fig. 13. Comparison of %()) for approaches I, II, and III.

Table 4. Comparison of the moments of - = ln()/〈)〉) for approaches I–III.

Approach 〈- 〉 f (- ) skew - kurt -

I −0.040 0.279 0.34 0.10

II −0.039 0.275 0.35 0.11

III −0.040 0.279 0.34 0.11

on the one hand and the random distribution of the 10`m background droplets on the other. Both513

aspects enter in the superdroplet algorithm.514

We recall that in approach II, fluctuations originate solely from the random distribution of the515

10`m background droplets. In approach III, on the other hand, fluctuations originate solely from516

the Monte Carlo collision scheme. By contrast, approach I is different from either of the two,517

because it just uses the exponential distribution of the collision time intervals, which is indirectly518

reproduced by the random initial droplet distribution in approach II and by theMonte Carlo scheme519

in approach III.520

In Figure 13, we compare approaches I, II, and III. For our solution using approach II, we use a521

nonperiodic domain of size 10−4×10−4×700m3, thus containing on average 2100 droplets. This522

was tall enough for the lucky droplet to reach 50`m for all the 107 realizations in this experiment.523

The differences between them are very minor, and also the first few moments are essentially the524

same; see Table 4. We thus see good agreement between the different approaches. This suggests525

that the fluctuations introduced through random droplet positions is not crucial and that it can be526

substituted by the fluctuations of the Monte Carlo scheme alone.527

26



It is worth noting that we were able to perform 107 and 106 realizations with approaches II528

and III, respectively, and 1010 realizations with approach I, while in the superdroplet algorithm529

(approach IV), we could only run 103–104 realizations due to the limitation of the computational530

power. This may be the reason why fluctuations appear to be slightly underrepresented in the531

superdroplet algorithm; see Figure 7 and the discussion in section 4.a. Nevertheless, the agreement532

between the LDM and the superdroplet simulations demonstrates that the superdroplet algorithm533

is able to represent fluctuations during collisions and does not contain mean-field elements. This534

can be further evidenced by the fact that the results of approaches II and III agree perfectly with535

those of approach I, and the superdroplet algorithm is just the combination of approaches II and536

III.537

5. Discussion538

Fluctuations play a central role in the LDM. We have therefore used it as a benchmark for539

our simulation. It turns out that the superdroplet algorithm is able to reproduce the growth540

histories qualitatively and the distribution of cumulative collision times quantitatively. The role of541

fluctuations was also investigated by Dziekan and Pawlowska (2017), whose approach to assessing542

the fluctuations is different from ours. Instead of analyzing the distribution of cumulative collision543

times, as we do here, their primary diagnostics is the time C10%, after which 10% of the mass of544

cloud droplets has reached a radius of 40`m. In the LDM, such a time would be infinite, because545

there is only one droplet that is allowed to grow. They then determined the accuracy with which the546

value of C10% is determined. The accuracy increases with the square root of the number of physical547

droplets, provided that the ratio b8 (C0) is kept below a limiting value of about 9. For b8 (C0) > 9,548

they found that there is always a residual error in the value of C10% that no longer diminishes as549

they increase the number of physical droplets. We have demonstrated that, when b8 (C0) > 1, jumps550

in the growth history tend to occur. Those jumps can lead to shorter cumulative collision times,551

which could be the source of the residual error they find.552

For a given fraction of droplets that first reach a size of 40`m, they also determined their average553

cumulative collision time. They found a significant dependence on the number of physical droplets.554

This is very different in our case where we just have to make sure that the number of superdroplets555

is large enough to keep finding collision partners in the simulations. However, as the authors point556
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out, this is a consequence of choosing an initial distribution of droplet sizes that has a finite width.557

This implies that for a larger number of droplets, there is a larger chance that there could be a558

droplet that is more lucky than for a model with a smaller number of droplets. In our case, by559

contrast, we always have a well-known number of superdroplets of exactly 12.6`m, which avoids560

the sensitivity on the number of droplets.561

The b8 (C0) = 9 limit of Dziekan and Pawlowska (2017) does not hold in this investigation. In this562

context we need to recall that their criterion for acceptable quality concerned the relative error of563

the time in which 10% of the total water has been converted to 40`m droplets. In our case, we564

have focussed on the shape of the %()) curve, especially for small ) .565

6. Conclusions566

We investigated the growth histories of droplets settling in quiescent air using superdroplet567

simulations. The goal was to determine how accurately these simulations represent the fluctuations568

of the growth histories. This is important because the observed formation time of drizzle-sized569

droplets is much shorter than the one predicted based on the mean collisional cross section. The570

works of Telford (1955), Kostinski and Shaw (2005), and Wilkinson (2016) have shown that571

this discrepancy can be explained by the presence of stochastic fluctuations in the time intervals572

between droplet collisions. By comparing with the lucky droplet model (LDM) quantitatively, we573

have shown that the superdroplet simulations capture the effect of fluctuations.574

A tool to quantify the significance of fluctuations on the growth history of droplets is the575

distribution of cumulative collision times. Our results show that the superdroplet algorithm576

reproduces the distribution of cumulative collision times that is theoretically expected based on577

the LDM. However, the approximation of representing the dependence of the mean collision rate578

on the droplet radius by a power law is not accurate and must be relaxed for a useful benchmark579

experiment.580

In summary, the superdroplet algorithm appears to take fluctuations fully into account, at least581

for the problem of coagulation due to gravitational settling in quiescent air. Computing the582

distribution of cumulative collision times in the context of turbulent coagulation would be rather583

expensive, because one would need to perform many hundreds of fully resolved 3-D simulations.584
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Our study suggests that fluctuations are correctly described for collisions between droplets settling585

in quiescent fluid, but we do not know whether this conclusion carries over to the turbulent case.586
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APPENDIX602

A1. Numerical treatment of approach I603

In section b, we noted that solutions to approach I have been obtained with the Pencil Code604

(Pencil Code Collaboration et al. 2021). This might seem somewhat surprising, given that this605

code is primarily designed for solving partial differential equations. It should be realized, however,606

that this code also provides a flexible framework for using the message passing interface, data607

analysis such as the computation of probability density distributions, and input/output.608

To compute the probability distribution of ) with approach I, we need to sum up sequences of609

random numbers for many independent realizations of C: drawn from an exponential distribution.610

We use the special/lucky_dropletmodule provided with the code. Each point in the computa-611

tional domain corresponds to an independent realization, so each point is initialized with a different612
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Fig. A1. Comparison of %()) for (a) different #s/#grid with fixed b8 (C0) = 1 and (b) for different b8 (C0) with

fixed #s/#grid = 4. The blue dots represent %()/〈)〉) from the simulation as in Figure 7. The red curve shows

the result for the LDM (approach I) with AA ≠ AB ≠ A: , which is the same simulation as the one in Figure 7.

615

616

617

random seed. The domain is divided into 1024 smaller domains, allowing the computational tasks613

to be performed simultaneously on 1024 processors, which takes about 4min on a Cray XC40.614

A2. Dependence on initial #s/#grid and #d/#s618

In this appendix, we first test the statistical convergence of %()) for the initial number of619

superdroplets per grid cell, #s(C0)/#grid. As discussed in section 2.b, we set #s(C0)/#grid = 4620

for 1-D simulations. Using the same numerical setup, we examine the statistical convergence of621

%()) for different values of #s(C0)/#grid. As shown in Figure A1(a), %()) converges even at622

#s(C0)/#grid = 1. This is important because one can use as few superdroplets as possible once623

#grid is fixed, without suffering from the statistical fluctuations.624

The most practical application of the superdroplet algorithm is the case when b8 ≥ 1. Thus,625

we investigate how b affects fluctuations by performing the same 1-D simulation as described in626

section 2.b with different values of b8 (C0). Figure A1(b) shows that %()) is insensitive to b8 (C0),627

which suggests that the superdroplet algorithm can capture the effects of fluctuations regardless628

of the value of b8 (C0). This is different from Dziekan and Pawlowska (2017), who found that the629

approach can represent fluctuations only if #d(C0)/#s(C0) ≤ 9.630
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Table A1. Results for approach II using 30,000 realization showing the effects of horizontal density fluctua-

tions in 3-D, and comparison with MFT.

644

645

Composition X=rms/=0 X=max/=0 )min [s] )MFT [s] 〈) (=max) 〉 [s] 〈) 〉 [s] )min/〈) 〉 )%=0.01/〈) 〉

(0) 0 0 782 1969 2117 2117 0.37 0.44

(i) 0.08 0.10 795 1790 1923 2126 0.37 0.42

(ii) 0.14 0.20 767 1641 1758 2155 0.36 0.40

(iii) 0.20 0.30 631 1515 1628 2203 0.29 0.36

A3. Horizontal variations of droplet densities631

In this appendix, we analyze in more detail the effect of horizontal variations of droplet densities632

discussed section b. This is relevant for computing the 3-D distribution function from a 1-D633

distribution function. The LDM applies to a given value of the number density. Other columns634

have somewhat different number densities and therefore also different mean cumulative collision635

times. The LDM with approaches I–III can be extended to include this effect by computing cases636

with different number densities and then combining %()) and normalizing by the 〈)〉 for the637

combined %()). This can be formulated by introducing the column density as638

Σ(G, H) =
∫ I2

I1

=(G, H, I) dI, (A1)

where I1 and I2 denote the vertical slab in which the first collision occurs, and using this Σ(G, H)639

as a weighting factor for the 1-D distribution functions %1D()) to compute the 3-D distribution640

functions as641

%3D()) =
∫
Σ(G, H)%1D()) dG dH

/∫
Σ(G, H) dG dH. (A2)

Since the first collision matters the most, we choose I2 = Imax (where the lucky droplet is released)642

and I1 = Imax− E2/_2 (where it has its first collision).643

Our reference model had a number density of =0 = 108 m−3. We now consider compositions of646

models with different values, where we include the densities (i) 0.9×108 m−3 and 1.1×108 m−3, as647

well as (ii) 0.8×108 m−3 and 1.2×108 m−3, and finally also (iii) 0.7×108 m−3 and 1.3×108 m−3.648

All these compositions have the same mean droplet number density but different distributions649

around the mean. We first average the distribution function and then normalize with respect to the650

mean collision time for the ensemble over all columns. The parameters of the resulting distributions651
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are listed in Table A1 for three compositions with different density dispersions. We see that, as we652

move from composition (i) to compositions (ii) and (iii), the dispersion (X=rms/=0) increases from653

0.08 to 0.14 and 0.20, the distribution %()) extends further to both the left and right. The reference654

model is listed as (o). Here we give the rms value of the column-averaged densities, 〈=〉8, as655

X=rms =

[
#8∑
8=0

(
〈=〉28 −=2

0

)]1/2

, (A3)

where 8 denotes the column and #8 is the number of columns. We also give the maximum difference656

from the average density,657

X=max =max
8
(〈=〉8 −=0) , (A4)

for families (i) with #8 = 2, (ii) with #8 = 4, and (iii) with #8 = 6. We also list in Table A1 several658

characteristic times in seconds. The quantity )min is the shortest time in which the lucky droplet659

reaches 50`m, )MFT denotes the value based on MFT, 〈) (=max)〉 is the mean value based on the660

column with maximum droplet density and 〈)〉 is the mean based on all columns. It turns out661

that for the models of all three families, the value of )min agrees with that obtained solely from the662

model with the highest density, which is 1.3×108 m−3 for composition (ii), for example.663

The quantity 〈) (=max)〉, i.e., the average time for all of the columns with the largest density, is664

shorter than the 〈)〉 for all the columns, especially for composition (iii) where the largest densities665

occur. For the model (o), there is only one column, so 〈) (=max)〉 is the same as 〈)〉. The value666

)MFT based on MFT is always somewhat shorter than 〈) (=max)〉. Finally, we give in Table A1667

the ratios )min/〈)〉 and )%=0.01/〈)〉, where the subscript % = 0.01 indicates the argument of %())668

where the function value is 0.01.669
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