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Abstract: It was previously shown that the superdroplet algorithm to model the collision-
coalescence process can faithfully represent mean droplet growth in turbulent
aerosols. But an open question is how accurately the superdroplet algorithm accounts
for fluctuations in the collisional aggregation process. Such fluctuations are particularly
important in dilute suspensions. Even in the absence of turbulence, Poisson
fluctuations of collision times in dilute suspensions may result in substantial variations
in the growth process, resulting in a broad distribution of growth times to reach a
certain droplet size. We quantify the accuracy of the superdroplet algorithm in
describing the fluctuating growth history of a larger droplet that settles under the effect
of gravity in a quiescent fluid and collides with a dilute suspension of smaller droplets
that were initially randomly distributed in space (‘lucky droplet model’). We assess the
effect of fluctuations upon the growth history of the lucky droplet and compute the
distribution of cumulative collision times. The latter is shown to be sensitive enough to
detect the subtle increase of fluctuations associated with collisions between multiple
lucky droplets. The superdroplet algorithm incorporates fluctuations in two distinct
ways: through the random distribution of superdroplets and through the explicit Monte
Carlo algorithm involved when two superdroplets reside within the volume around one
mesh point. Through specifically designed numerical experiments, we show that both
sources of fluctuations on their own give an accurate representation of fluctuations. We
conclude that the superdroplet algorithm can faithfully represent fluctuations in the
coagulation of droplets driven by gravity.
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We thank the reviewers for their repeated evaluation of our manuscript. 

We have addressed all points, as detailed below. The resulting changes 

in the manuscript are marked in blue. 

 

> Reviewer #1 

> Review of "Collision fluctuations of lucky droplets with superdroplets" 

> by Xiang-Yu Li et al. In response to my previous comments, the poor 

> narrative of the manuscript has been improved a little bit, but not 

> satisfactory yet. In addition, there is a growing concern regarding 

> the numerical setup of this study, which could substantially affect 

> the main conclusions; that is, the height of the domain for approach IV 

> (both 1-D and 3-D) could be too small. In this revised manuscript, the 

> authors provide more detail about their numerical setup, and as a 

result, 

> the issue has come to the surface. I would suggest the authors rerun 

all 

> the simulations with a much taller domain. If not, the authors have to 

> clearly justify that it is not crucial for this study. I acknowledge 

> that this is a cutting edge study. It is worth publishing, but after 

> all these issues are resolved. 

 

We have now modified the code so that we can run many realizations in one 

run. In this way, we have now demonstrated that the results are 

insensitive 

to the domain size and also the density of background droplets; 

see our changes to the paper in section 4.a. 

 

> Major Comments 

> 1) [request] P. 8, Eq. (7) 

> It is still unclear whether multiplicity \xi_i is an integer or a 

> real number in this study. Please clarify how you calculate \xi_i/2 

> and \xi_j/2 in Eq. (7) when \xi_i/2=\xi_j/2 is an odd number. 

 

In the paragraph below that of Eq.(7), we have now added the following to 

clarify that \xi is a real number in our study: "We emphasize that Eq. 

(5) 

does not require \xi to be an integer.  Since we usually specify the 

initial number density of physical particles, \xi may well be fractional 

from the beginning. This is different from the integer treatment of \xi 

in Shima et al 2009." 

 

> 2) [request] P. 8, ll. 159--161, "It is then assumed that, ..." 

> I do not understand. Does "two superdroplets with less than 

> one physical droplet" mean \xi_i<1 \wedge \xi_j<1? How can such 

> superdroplets be created from Eqs. (5) and (7)? Could you elaborate? 

 

We have now explained that \xi can be any fractional number already 

initially, thus Eq.(5) does not pose any constraint on this. 

 

> 3) [question] P. 11, ll. 213--215, 1-D setup I have several questions 

> regarding the setup. You explain that n_0=3e8 m^{-3}.  Please clarify 

if 

> n_0 includes the lucky droplet or not.  You distributed 256 droplets 

> in the domain. Then, the number concentration including the lucky 
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> droplets is 256/8.56\times10^{-7}\unit{m^{3}}\approx2.99\unit{m^{-3}, 

> and the number concentration of background droplets is 

> 255/8.56\times10^{-7}\unit{m^{3}}\approx2.98\unit{m^{-3}; both are 

> slightly smaller than n_0. Is this difference acceptable? 

 

We have now written "initial number density of background droplets 

of...". 

Instead of giving both the volume and the side lengths, we give just the 

side lengths of the domain. We now see that we were not accurate enough 

in specifying those, but we judge that this <1% error does not affect 

our results in any visible way. 

 

> 4) [question] P. 11, ll. 216 and 218, time step Please add the units. 

> Here, you show a fixed time step, but on p. 7, l. 134, you said that 

> it is adaptively determined. Which is correct? 

 

We have now rephrased our statement as the following, 

"...are integrated with an adaptive time step, the mean value 

of which delta t = 2.94 x 10^{-4} s. 

 

> 5) [request] P. 11, ll. 219, "Ngrid=64" 

> Please clarify the shape of the grid used for the 3-D simulations. 

> 4x4x4, 2x2x16, or anything else? 

 

We now write that "we use a cubic mesh with 4^3 points". 

 

> 6) [request] P. 12, l. 221, "125 collisions are required" This is 

> not correct.  123 collisions are required for a lucky droplet with 

> an initial radius 12.6 um grow to 50 um. 

 

We agree with the referee and have now corrected this. This mistake was 

also done in the earlier papers, which we have now emphasized in the 

text. 

 

> 7) [suggestion] P. 11, ll. 221, "This justifies our use of Ns(t0)>=128" 

> In both 1-D and 3-D, the vertical extent of the domains are too small 

> and not appropriate for the purpose of the study. 

> In 1-D, you have only 255 background droplets in the domain. Then, at 

> the time when the lucky droplet grows to 50 um, the number of 

background 

> droplets reduces from 255 to 132. Therefore, the number concentration 

of 

> the background droplets reduces from 2.98 m^{-3} to 1.54 m^{-3}, i.e., 

> almost halved! However, in the original LDM (approach I) it is assumed 

> that is constant in time. Considering that the lucky droplet falls 

> about 100 m or much more, we can expect that the substantial decrease 

> of n^{back} has a strong impact on the results. 

 

The number of superdroplets is kept approximately constant, i.e., for 

this experiment, only a negligible fraction of background droplets are 

removed from the simulations. We say this now in the middle of paragraph 

6 of Sec.4.a. Whether or not this compromises the statistical accuracy 

is now being addressed in the new Figure 8, where we also address other 

potential shortcomings pointed out by the referee below. We have now also 



conducted simulations with larger sizes (2L, 8L, and 64L) and showed 

in Fig.8(c) that P(T) is insensitive to the domain size. Therefore, 

the size we chose is appropriate for this study. 

 

Also, we demonstrated that P(T) is insensitive to xi, as discussed 

in section A2, "The most practical application of the superdroplet 

algorithm is the case when xi^i > 1. Thus, we investigate how xi affects 

fluctuations by performing the same 1-D simulation as described in 

section 2.b with different values of xi^i(t0).  Fig.A1(b) shows that 

P(T) is insensitive to xi^i(t0), which suggests that the superdroplet 

algorithm can capture the effects of fluctuations regardless of the 

value of xi^i(t0)." 

 

> In 3-D, the setup is more confusing to me. I assumed that the shape of 

> the grid is 2x2x16. Then, in the column where the lucky superdroplet 

> is located, you have only 64 droplets (32 superdroplets) in it on 

> average. This is not at all sufficient for the lucky droplet to grow 

> to 50 um, because 64 is much less than 123x2 (x2 is for the two lucky 

> droplets). Am I missing something? 

 

We recall that the boundary condition for the superdroplets is periodic 

and that the number of droplets is approximately constant. This is how 

50 um is reached in our simulations. We have clarified this now in the 

text in the 5th paragraph of Section 4.a. 

 

> All in all, I strongly suggest the authors rerun all the simulations 

> in much taller domains, say 100m, to obtain reliable statistics. For 

> taller domains, I consider the difference between 1-D and 3-D will 

> become negligible. If the authors stick to their original numerical 

> setup, they at least have to provide some clear justification of their 

> numerical setup. 

 

We have now added a new Figure 8 to clarify quantitatively the 

shortcomings of different tallness of the domain and different densities. 

We hope that the discussion around our new Figure 8 clarifies these 

questions. In our approach II, our domain is actually large enough and 

background particles are not recycled. In approach IV, we show that 

there is no marked difference compared with a 64 times larger domain. 

 

> 8) [request] P. 12, l. 230, "After the kth collision step ..." This 

> is not correct, because the initial size of the lucky droplet is . You 

> may say "After (k-2)th collision step ..." or add a note "For 

> convenience, we consider k starts from 3.". Please make it rigorous. 

 

We have corrected it to (k-1)th, because after the first collision means 

after r2 has collided with r1, so k-1=1=first. 

 

> 9) [request] P. 12, Eq. (9) 

> This must be a summation from k=3 to 125, not k=2 to 125. Please 

correct. 

 

We agree that there is a problem, but according to our counting, the 

first 

collision must happen with the lucky droplet of radius r2=12.6um, so the 



first mean waiting time is t2 = ...*(r2+r1)^2 (v2-v1). The first 

collision 

leads to r3. The target radius 50um is r_125, and it is achieved by 

colliding 

with a droplet of radius r_124, so the sum should go from k=2 to 124. 

 

> 10) [request] P. 12, l. 124, "124 collisions" Not "124 collisions" 

> but "123 collisions". 

 

We have corrected this now. 

 

> 11) [request] P. 12, Eq. (10) 

> This is something that I already pointed out in (9) of my previous 

> review comments, but this equation and the explanation that follows 

> are incorrect. Here is my suggestion how to introduce lambda_k: The 

collision 

> rate at the (k+1)th collision of the lucky droplet r_k obeys 

lambda_k=..., 

> where E_k=..., and v_k and v_1 are given by their terminal velocities. 

> Note here that lambda_k is the collision rate between the lucky 

droplets 

> and ALL the background droplets, therefore lambda_k /= lambda_k1. To 

> avoid this confusion, I suggest you not use the greek letter lambda 

> for lambda_k. In relation to the above note, how do you evaluate the 

> velocities of the droplets in approach I? I assume that you use their 

> terminal velocity. Please clarify this point. 

 

Yes, we do use the terminal velocities here. (We have checked at one 

point that the inclusion of the acceleration phase made virtually no 

difference.) We have now included the formulation suggested by the 

referee. 

 

> 12) [request] P. 13, ll. 251--252, "Given that the variance of ..." 

> This is again what I already pointed out in my previous comment (10). 

You 

> should explicitly mention that the variance of the mean collision time 

> is lambda_k^{-2}. Otherwise, readers cannot tell if the variance is 

> large for smaller k. 

 

We have adopted this formulation in the revised text after Eq.(11). 

 

> 13) [comment] P. 13, Eq. (12) 

> Here you assumed the terminal velocity. 

 

Yes, and this is now explained in our response to your earlier point 

above. 

We made this assumption in Sect.3d (page 17) when we solve a dynamical 

model, but we felt it would be confusing to make a corresponding remark 

at this point, where we just state the cross section as a function of 

a given velocity difference. 

 

> 14) [request] P. 13, l. 261, "... would correspond to the expression 

> equation (4) used in the superdroplet algorithm" Eq. (12) does not 

> correspond to Eq. (4), but corresponds to Eq. (10). Please correct. 



 

We have now corrected this. 

 

> 15) [request and suggestions] P. 14, l. 277, "In Figure 4 ..." In 

> Figure 4, you are comparing not P(T) but the normalized probability 

> density, P(T/<T>). Please explicitly mention this here.  As you show in 

> Table 2, <T> differs very much among the three cases. <T> is an 

important 

> quantity that characterizes the behavior of the lucky droplet. Why do 

you 

> compare not P(T) but P(T/<T>)? Please explain. I do not say comparing 

> P(T/<T>) is pointless, but I strongly suggest that you should discuss 

> the difference of <T> as well. 

 

We have now added an extra paragraph emphasizing this; see the 

penultimate 

paragraph of Section 3.b. 

 

> 16) [request] P. 15, l. 288, "In Figure 5, ..." The same as the above 

> applies here. According to Table 2, <T> differs very much among the 

three 

> cases. Please explain why you compare not P(T) but P(T/<T>). Please 

also 

> discuss the difference of <T>. 

 

This applies actually to all our plots of distribution times, and was 

also done in the work of Kostinski and Shaw. 

 

> 17) [comment] P. 15, l. 302, "it does not result in any significant 

> error to assume r_k >> r_1" I do not agree. According to Table 2, <T> 

> are different among the three cases in Fig. 4. Please discuss this 

point. 

 

We agree with the referee and have now inserted "as far as the shapes 

of the different curves is concerned" in that sentence; see the first 

sentence of the third paragraph after Eq.(16). Regarding the changes 

of <T>, we have now added an additional paragraph after the present 

paragraph. 

 

> 18) [request] P. 15, l. 306, "T_125^MFT". 

> Based on the definition (14), <T>=T_124^MFT. Please show this relation 

> to the readers and provide the values of T_124^MFT", not T_125^MFT". 

 

We agree with the referee, so we have now added the sentence "We normally 

compute <T> as an average over all realizations, but these averages 

also agree with T_124^MFT." Regarding the variation, we have now added 

"On the other hand, the actual averages such as $<T> ~ T_124^MFT vary 

by almost 50%." 

 

> 19) [request] P. 18, l. 351, approach III 

> You have to explain explicitly that you will use only two superdroplets 

in 

> approach III; one for the lucky droplet and the other for the 

background 



> droplets. Please also clarify whether you remove the background droplet 

> (i.e., decrease the multiplicity) after coalescence or not. This is 

> important information because lambda_k is proportional to the 

multiplicity of 

> the background superdroplet, and hence lambda_k changes in time if you 

remove 

> the background droplet. Please also specify the size of the domain you 

> use for approach III. If you do not remove background droplets and the 

> background droplet number concentration is unchanged, I understand that 

> the domain size does not matter to approach III. If it is the case, 

please 

> explain this explicitly in the manuscript to increase the readability. 

 

We have done this now added the sentence "We note that in this approach, 

n is kept constant, i.e., no background droplet is being removed after 

a collision." 

 

> 20) [request] P. 19, l. 393, "We see examples in Figure 8 ..." 

> Is this approach IV in 1-D? Please clarify. 

 

Yes. We have added this now to the caption of Figure 6, but not to that 

of Figure 8, because it says "same as Figure 6". In addition, in the 

caption 

to Figure 11 we have now added that it is done with approach III. 

 

> 21) [request and question] P. 20, l. 403, "approach III" 

> Please explicitly explain that you have one superdroplet that 

represents 

> the background droplets. When the collision-coalescence of two lucky 

> droplets takes place, do you remove one of the lucky droplets? Please 

> clarify. 

 

To clarify this, we have now added the parenthetic sentence "(As always 

in approach III, the background particles are still represented by only 

one superdroplet, and n is kept constant.)" 

 

> 22) [question] P. 20, Eq. (19) 

> Is epsilon only for approach III? In approach III, are all N_d^luck, 

> N_d^back, xi_i, N_s^luck, and N_d^back constant in time? If not, please 

> declare that you define epsilon by their initial value. 

 

Yes, epsilon is an input parameter only for approach III, but we also 

estimate its effective value for approach IV, when we discuss Figure 6. 

We have now also clarified this by adding the parenthetic sentence 

"(In that approach, all quantities in Eq.(19) are kept constant.)" 

 

> 23) [request] P. 20, l. 413, "in the full superdroplet model studied 

> above, ..." Do you mean "in the full superdroplet model studied in 

> Fig. 8, ..."? Please clarify where you are pointing. 

 

We have now added "(see Figures 6 and 9)" in parentheses. 

 

> 24) [request] P. 21, l. 426, "As shown in section 4.b, ..." We are 

> still in Sec. 4.b. Please clarify. 



 

We have now removed "As shown in section 4.b", because we do already 

refer to Figure 11 in this sentence. 

 

> 25) [request] P. 21, l. 431, "Figure 11" 

> Is this a result of approach III? Please clarify. 

 

Yes, this have now been added in the caption. 

 

> 26) [question] P. 22, l. 450, "..., thus containing on average 700 

> droplets." Because the number concentration of the background droplets 

> is 3e8 m^{-3}, is it not 2100 droplets on average? Anyway, the domain 

is much 

> taller than that in approach IV. I believe you should test approach IV 

> (1-D and 3-D) in a similarly sized domain. 

 

We agree with the referee regarding 2100 droplets on average and have 

now corrected this. The results for taller domains are shown in our new 

Figure 8. 

 

> 27) [question] P. 22, l. 459, "..., we could only run 10^3 

> realizations." I do not understand why the computational cost of 

> approach IV is much larger than other approaches. Could you provide 

some 

> explanation why? 

 

This is because we solve the momentum equation (Eq.1) of all the 

superdroplets 

and detect their collision. So the time step is determined by the 

smallest value 

between the Stokes time and the collision time, which is often quite 

small and 

therefore the time step is small. 

Also, in the original calculation, every 

single simulation was treated as a separate run, and poor usage of the 

parallelization was made. We have now added an option to the Pencil Code 

to run independent realizations all in one go, which allowed us now to 

present results for the 8192 realizations in our new Figure 8. 

 

> 28) [request] P. 23, l. 466, "4-d. The effect of fluctuations in 3-D 

> simulations" I think the fluctuations in 3-D in your simulation is very 

> much exaggerated because the domain is not tall enough. Please rerun 

the 

> simulations with a much taller domain or provide some concrete evidence 

> that the domain height for 1-D and 3-D is not crucial. 

 

The effect of fluctuations agrees with what we expect theoretically. 

While 

we agree that the domain was not tall enough for accurate results, 

especially for the correct representation of rare events, we emphasize 

that effect of lateral fluctuations has the opposite trend and that 

therefore, these two effects compensate each other. 

 

> 29) [request] P. 4, ll. 79--80, "The ratio of droplets per 



> superdroplet is called the multiplicity." This explanation is not 

> precise enough. I would suggest the following: "The number of droplets 

> in each superdroplet is called the multiplicity." 

 

We have now changed it to "The number of droplets in each superdroplet 

is called the multiplicity." 

 

> 30) [typo] P. 5, l. 104, "Third" 

> I could not find any "First" or "Second". 

 

We have now removed the "Third" and rephrased the sentence, 

"As the small ..." 

 

> 31) [request] P. 7, ll. 131--132, "To avoid a probability larger than 

> unity, we limit the integration step through the condition ..." Shima 

> et al. (2009) introduced the multiple coalescence trick to relax this 

> condition. Unterstrasser et al. (2020) confirmed that this technique 

> works efficiently. Please explicitly mention that this is not adopted 

> in this study. 

 

We explicitly explained this at the end of section 2.a in the first 

revised version.  We have now elaborated more on it as the following, 

"To reduce the computational cost and make it linear in the number of 

superdroplets per mesh point, n_s(t), Shima et al. (2009) assumed that 

each droplet interacts at most with one other one, which is referred 

to as random permutation technique. This technique was also adopted in 

Dziekan and Pawlowska (2017) and Unterstrasser et al. (2020) but is not 

used in the Pencil Code ..." 

 

> 32) [request] P. 9, ll. 163--164, "..., Shima et al. (2009) assumed 

> that ..." This is not precise because it is not an assumption. I would 

> suggest the following: "..., Shima et al. (2009) imposed that ..." 

 

We have now replaced "assumed" by "imposed". 

 

> 33) [typo] P. 9, ll. 165--166, "This technique was also..." 

> Repetition. Please delete the second "Dziekan and Pawlowska (2017)". 

 

We have now removed it. 

 

> 34) [request] P. 9, ll. 175--176, "Since the flow is not disturbed 

> by the particles, we neglect two-way coupling" This is a misleading 

> statement. I understand that the flow is assumed to be quiescent and 

> the time evolution of the flow is not calculated in this study. If I am 

> correct, please remove the sentence. 

 

We have now removed it. 

 

> 35) [request] P. 10, l. 186, "... lucky and background droplets 

> ..." This has to be "... lucky and background superdroplets ..." 

 

We have now changed it to "superdroplets". 

 

> 36) [typo] P. 12, l. 245, "collision rate (4)" Collision rate (10) 



 

We have corrected this now. 

 

> 37) [typo] P.14, l. 274, "In the right hand panel" Perhaps "In 

> Fig. 2"? 

 

We have now changed it to Fig.2. 

 

> 38) [request] P. 14, l. 277 

> Please explicitly explain that you are using the Approach I here. 

 

We have now added "...using approach I". 

 

> 39) [typo] P. 14, Eq. (16) Do you mean min(1,(r_k/r*)^2)? If so, 

> please correct the following: "late in the evolution" -> "early in 

> the evolution" (P. 14, l.285), "r_k>=r*" -> "r_k<=r*" (P. 14, 

> l. 286). 

 

No, the text is correct as it is; we really meant the late evolution. 

We wanted to say that P(T) is not only sensitive to the first few 

collisions, but *also* later collisions, (albeit to a lesser extent. 

To show this, we have used a modified form of E(r) such that E=const 

for r<r_*, but increasing quadratically for larger values. The form 

(r/r_*)^2 becomes zero for r -> 0, but to prevent this and to have a 

constant value, we clip it by using the max function. 

 

> 40) [typo] P. 14, l. 286, "To ensure that E_k<=1, ... to ensure 

> E_k<=1" Remove one of the two "to ensure that E_k<=1". 

 

We have now removed one of them. 

 

> 41) [typo] P. 15, l. 306 "Table 3" -> "Table 2" 

 

We have now corrected it. 

 

> 42) [request] P. 19, l. 378, "\int P(T) dT = 1" Ambiguous 

> explanation. In Figure 7, are you showing P(T/<T>)=<T>P(T), 

> the probability density of T/<T>? Please clarify. 

 

We agree with the referee and have now omitted this. The P(T) 

or P(T/<T>) are of course normalized as earlier in the paper. 

 

> 43) [typo] P. 52, Fig. 7. N_p/s is not defined. 

 

We have corrected this and have replaced N_p/s by xi. 

 

-------------------------------------------------------------------------

---- 

Reviewer #2 

 

> Review of a revised manuscript "Collision fluctuations of lucky 

> droplets with superdroplets" by Li at al. Recommendation: accept 

> after additional revisions General comments: The revised manuscript has 

> been improved. I like the expanded and now very comprehensive list of 



> references to previous studies in both communities (i.e., astrophysics 

> and cloud physics). However, I feel the lead author run simulations 

> described in the paper by custom-adopting the DNS code he is using in 

> other publications, the Pencil code. As far as I can tell there is no 

> flow dynamics in the simulations (see line 516) and thus references to 

> the Pencil code (and other related comments, see below) only provide 

> confusion. I think this has to change to improve readability. Overall, 

> the results are of interest and should be eventually published. 

> Line-by-line comments: 

 

It is true that there is no fluid dynamics in the present paper, but the 

superdroplet algorithm is part of the Pencil Code and this part has been 

used when working with approach IV. Any changes or improvements that we 

have made are publicly available in the default version of the code. 

 

> 1. L. 116: Replace "in terms of" by "by". 

 

It is now replaced. 

 

> 2. L. 126-128: The following text is unclear: "When two superdroplets 

> collide, a Monte-Carlo scheme is used to determine which pairs of 

> superdroplets collide.  All pairs of superdroplets within the volume 

> around one mesh point may collide.". I suggest revising the description 

> of the collision algorithm. Please see how other describe collisions of 

> real droplets as represented by superdroplets. 

 

We have now revised this text; see the blue part in the text above 

Equation (3). 

 

> 3. L. 129: as above. What do you mean by "two droplets in either of 

> the superdroplets"? I do not think separate droplet collisions are 

> considered, superdroplet collisions are. 

 

We have now changed it to "Superdroplet $i$ and $j$ residing in the same 

grid cell collide with a probability of ...". 

 

>4. L. 133: Why does the speed of sound (and other factors) limit the 

> time step?  I think you mean in the dynamic model, but it is not used 

> in simulations discussed in this paper. I suggest removal. 

 

We have now removed it. 

 

> 5. L. 168: What is the PENCIL CODE? If this is a dynamic model (like 

> the DNS code), why it is referred to in this paper? As far as I can 

> understand, there is no fluid flow in the simulations. See my general 

> comment above. 

 

We have now rephrased that part to explain that the Pencil Code comes 

with many different modules, many of which are not invoked in the present 

studies. The particle modules are part of the code, and that part is 

used in the present studies. 

 

> 6. L. 193: "(One time step...". Why? I do not think this is 

> correct. Maybe because of the coupling with the dynamic model, but the 



> dynamic model is not used in the simulations. 

 

We solve the momentum equation of particles (Eq.1 and Eq.2 ), where 

the Stokes time in Eq.(2) need to be resolved. Also the collision time 

scale, 

which is the inverse of Eq.(4) should be resolved.  

 

We have now explained it as follows: "The simulation time step must be 

less than the time for a superdroplet to fall from one mesh point to the 

next (Stokes time expressed in equation (2)) and the collision time scale 

(inverse of the collision rate expressed in equation (4))" 

 

> 7. Paragraph starting at L. 211. I do not understand why the reference 

> to the Pencil code is needed as there is no flow dynamics. The problem 

> of droplet collisions can be solved without any grid. I think I miss 

> something from the very beginning (see general comments). The 2 mm grid 

> in x and y is unclear. Why only about 20 cm in the vertical? Similar 

> comment for the 3D simulations. 3D does not have flow dynamics either, 

> just nonuniform spatial droplet distribution, correct? 

 

We already explained that the Pencil Code is not just a DNS code. The 

particle modules are part of it. It is true that droplet collisions can 

be 

solved without a mesh, and this is done in approach II. The connection 

with a mesh is an essential aspect of the superdroplet approach and 

is explained in paragraph 3 of Section 2.a. It avoids the problem of 

searching for possible collision partners. As we emphasize in the paper, 

the superdroplet approach (which we also refer to as approach IV) is 

a combination between approaches II and III, and in approach III there 

are only two superdroplets. Those are at the same mesh point, so a mesh 

is needed even then, even though we only need one! We hope that our 

paper clarifies this aspect of the superdroplet approach of Shima et al, 

which was not discussed previously. 

 

> 8. L. 242: what is "stopping time" for the collision? 

 

We have now rephrased it and write: "Here we use the subscript $k$ 

to represent the time until the $k$th collision." 

 

> 9. Please use the same scales and labels on the axes in Fig.6 and 8. 

> Please check other figures that the text calls to compare. 

 

We have now applied the same scales and labels on the axes in Fig.6 

and 8 and other figures. 

 

-------------------------------------------------------------------------

---- 

Reviewer #3: 

 

> Following up on the review of the JAS-D-20-0371, let me confirm that 

> several updates carried out by the Authors made the paper read much 

> better. I'm providing below a list of several minor issues still worth 

> addressing in my opinion: 

 



We thank the referee for the repeated review of our manuscript. 

 

> 1. Earlier references on the lucky droplet model and related discussion 

> worth citing, e.g.: Twomey 1964: "Statistical Effects in the Evolution 

> of a Distribution of Cloud Droplets by Coalescence" Madival 2018: 

> "Stochastic growth of cloud droplets by collisions during settling" 

 

We have now cited these papers; see the third-to-last paragraph of the 

introduction. 

 

> 2. On page 7/l138, the Authors rightly point out that superdroplets 

> of the same size can never collide with a geometric kernel (4); it 

would 

> be worth to elaborate as well on the issue of lack of representation of 

> self-collisions within a single superdroplet. The point is that even 

with 

> a collision kernel allowing collisions among droplets of the same size, 

> the superdroplet algorithm does not feature collision of same-sized 

> droplets within a single superdroplet. 

 

We have now added the following below Eq.(4), 

"Moreover, no collision is allowed in a single superdroplet" 

 

> 3. p8/l159: in Shima et al., the multiplicities are represented with 

> integer numbers, worth pointing out this difference. 

 

We have now added the following below Eq.(7) 

"Since we usually specify the initial number density of physical 

particles, \xi may well be fractional from the beginning. This is 

different from the integer treatment of \xi in Shima et al. (2009)." 

 

> 4. p9/l168: the linearity of computational cost is worth elaborating 

on: 

> as the Authors hint, it is the number of super-droplets per collision 

> volume that has either quadratic or linear scaling; however, as the 

> pair-sampling method can always be balanced by introducing substeps to 

> obtain matching statistics, what is likely of greater importance is the 

> lack of data dependence across candidate pairs in the Shima approach 

> which paves the way for parallel evaluation. For discussion, see e.g., 

> section 2.3.3 in Unterstrasser et al. 2020, also Bartman & Arabas 2021) 

 

The text in this paragraph, which was not well written, has now 

improved.  In addition, we have added the following text to the end 

of the paragraph in order to be explicit about the parallelization: 

"For the Pencil Code, collisions between particles residing within 

a given grid cell are evaluated by the same processor which is also 

evaluating the fluid equations of that grid cell. Due to this, together 

with the domain decomposition used in the code, the particle collisions 

are automatically efficiently parallelized as long as the particles are 

more or less uniformly distributed over the domain." 

 

> 5. p15/l307 "four approaches" are mentioned before being defined. 

 

We have now removed it. 



 

> 6. Technical issues with references I have pointed out in previous 

>    iteration were not addressed: 

>  - some reference entries include DOIs, some not; 

>  - several include doubled URLs (i.e., DOI and DOI-URL); 

>  - acronyms and proper names have bogus spelling (Mcsnow, 

>    lagrangian, kuiper, slams, neptunian, lcm1d, warsaw, uwlcm, monte 

carlo); 

>  - capitalisation is not consistent; 

>  - some journal names are abbreviated, some not. 

 

We have now made all the references consistent. We apologize for 

overlooking this issue in the previous iteration. 
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ABSTRACT: It was previously shown that the superdroplet algorithm for modeling the collision-

coalescence process can faithfully represent mean droplet growth in turbulent aerosols. But an open

question is how accurately the superdroplet algorithm accounts for fluctuations in the collisional

aggregation process. Such fluctuations are particularly important in dilute suspensions. Even

in the absence of turbulence, Poisson fluctuations of collision times in dilute suspensions may

result in substantial variations in the growth process, resulting in a broad distribution of growth

times to reach a certain droplet size. We quantify the accuracy of the superdroplet algorithm in

describing the fluctuating growth history of a larger droplet that settles under the effect of gravity

in a quiescent fluid and collides with a dilute suspension of smaller droplets that were initially

randomly distributed in space (‘lucky droplet model’). We assess the effect of fluctuations upon the

growth history of the lucky droplet and compute the distribution of cumulative collision times. The

latter is shown to be sensitive enough to detect the subtle increase of fluctuations associated with

collisions between multiple lucky droplets. The superdroplet algorithm incorporates fluctuations

in two distinct ways: through the random distribution of superdroplets and through the explicit

Monte Carlo algorithm involved when two superdroplets reside within the volume around one

mesh point. Through specifically designed numerical experiments, we show that both sources of

fluctuations on their own give an accurate representation of fluctuations. We conclude that the

superdroplet algorithm can faithfully represent fluctuations in the coagulation of droplets driven

by gravity.
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1. Introduction34

Direct numerical simulations (DNS) have become an essential tool to investigate collisional35

growth of droplets in turbulence (Onishi et al. 2015; Saito and Gotoh 2018). Here, DNS refers36

to the realistic modeling of all relevant processes, which involves not only the use of a realistic37

viscosity, but also a realisticmodeling of collisions of droplet pairs in phase space. Themost natural38

and physical way to analyze collisional growth is to track individual droplets and to record their39

collisions, one by one. However, DNS of the collision-coalescence process are very challenging,40

not only when a large number of droplets must be tracked, but also because the flow must be41

resolved over a large range of time and length scales.42

Over the past few decades, an alternative way of modeling aerosols has gained popularity.43

Zannetti (1984) introduced the concept of “superparticles, i.e., simulation particles representing44

a cloud of physical particles having similar characteristics.” This concept was also used by Paoli45

et al. (2004) in the context of condensation problems. The application to coagulation problems46

was pioneered by Zsom and Dullemond (2008) and Shima et al. (2009), who also developed47

a computationally efficient algorithm. The idea is to combine physical aerosol droplets into48

‘superdroplets’. To gain efficiency, one tracks only superdroplet collisions and uses a Monte Carlo49

algorithm (Sokal 1997) to account for collisions between physical droplets. The superdroplet50

algorithm is used in both the meteorological literature (Shima et al. 2009; Sölch and Kärcher 2010;51

Riechelmann et al. 2012; Arabas and Shima 2013; Naumann and Seifert 2015, 2016; Unterstrasser52

et al. 2017; Dziekan and Pawlowska 2017; Li et al. 2017, 2018, 2019, 2020; Sato et al. 2017; Jaruga53

and Pawlowska 2018; Brdar and Seifert 2018; Sato et al. 2018; Seifert et al. 2019; Hoffmann et al.54

2019; Dziekan et al. 2019; Grabowski et al. 2019; Shima et al. 2020; Grabowski 2020; Unterstrasser55

et al. 2020), as well as in the astrophysical literature (Zsom and Dullemond 2008; Ormel et al. 2009;56

Zsom et al. 2010; Johansen et al. 2012; Johansen et al. 2015; Ros and Johansen 2013; Drakowska57

et al. 2014; Kobayashi et al. 2019; Baehr and Klahr 2019; Ros et al. 2019; Nesvornỳ et al. 2019;58

Yang and Zhu 2020; Poon et al. 2020; Li and Mattsson 2020; Li, X.-Y. and Mattsson, L. 2021).59

Compared with DNS, the superdroplet algorithm is distinctly more efficient. It has been shown60

to accurately model average properties of droplet growth in turbulent aerosols. Li et al. (2018)61

demonstrated, for example, that the mean collision rate obtained using the superdroplet algorithm62
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agrees with the mean turbulent collision rate (Saffman and Turner 1956) when the droplets are63

small.64

Less is known about how the superdroplet algorithm represents fluctuations in the collisional65

aggregation process. Dziekan and Pawlowska (2017) compared the results of the superdroplet66

algorithm with the predictions of the stochastic coagulation equation of Gillespie (1972) in the67

context of coalescence of droplets settling in a quiescent fluid. Dziekan and Pawlowska (2017)68

concluded that the results of the superdroplet algorithm qualitatively agree with what Kostinski69

and Shaw (2005) called the lucky droplet model (LDM). To assess the importance of fluctuations,70

Dziekan and Pawlowska (2017) computed the time C10%, after which 10% of the droplets have71

reached a radius of 40`m. In agreement with earlier Lagrangian simulations of Onishi et al.72

(2015), which did not employ the superdroplet algorithm, they found that the difference in C10%73

between their superdroplet simulations and the stochastic model of (Gillespie 1972) decreases with74

the square root of the number of droplets, provided that there are no more than about nine droplets75

per superdroplet. The number of droplets in each superdroplet is called the multiplicity. When this76

number is larger than 9, they found that a residual error remains. We return to this question in the77

discussion of the present paper, where we tentatively associate their findings with the occurrence78

of several large (lucky) droplets that grew from the finite tail of their initial droplet distribution.79

The role of fluctuations is particularly important in dilute systems, where rare extreme events80

may substantially broaden the droplet-size distribution. This is well captured by the LDM, which81

was first proposed by Telford (1955) and later numerically addressed by Twomey (1964), and more82

recently quantitatively analyzed by Kostinski and Shaw (2005). The model describes one large83

droplet (twice the mass of 10`m-sized droplets in radius) settling through a dilute suspension of84

smaller droplets. The collision times between the larger droplets (the lucky droplet) and the smaller85

ones are exponentially distributed, leading to substantial fluctuations in the growth history of the86

lucky droplet. Wilkinson (2016) derived analytic expressions for the cumulative distribution times87

using large-deviation theory. Madival (2018) extended the theory of Kostinski and Shaw (2005) by88

considering a more general form of the droplet-size distribution than just the Poisson distribution.89

The goal of the present paper is to investigate how accurately the superdroplet algorithm repre-90

sents fluctuations in the collisional growth history of settling droplets in a quiescent fluid. Unlike91

the work of Dziekan and Pawlowska (2017), who focused on the calculation of C10% we compare92
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here with the LDM. We record growth histories of the larger droplet in an ensemble of different93

realizations of identical smaller droplets that were initially randomly distributed in a quiescent94

fluid. We show that the superdroplet algorithm accurately describes the fluctuations of growth his-95

tories of the lucky droplet in an ensemble of simulations. In its simplest form, the LDM assumes96

that the lucky droplet is large compared to the background droplets, so that the radius of those97

smaller droplets can be neglected in the geometrical collision cross section and collision velocities.98

Since fluctuations early on in the growth history are most important (Kostinski and Shaw 2005;99

Wilkinson 2016), this can make a certain difference in the distribution of the time ) it takes for100

the lucky droplet to grow to a certain size. As the small droplets are initially randomly distributed,101

their local number density fluctuates. Consequently, lucky droplets can grow most quickly where102

the local number density of small droplets happens to be large. This needs to be taken into account103

when comparing with three-dimensional (3-D) versions of the LDM.104

The remainder of this paper is organized as follows. In section 2 we describe the superdroplet105

algorithm and highlight differences between different implementations used in the literature (Shima106

et al. 2009; Johansen et al. 2012; Li et al. 2017). Section 3 summarizes the LDM, the setup of107

our superdroplet simulations, and how we measure fluctuations of growth histories. Section 4108

summarizes the results of our superdroplet simulations. We conclude in section 6.109

2. Method110

a. Superdroplet algorithm111

Superdroplet algorithms represent several physical droplets by one superdroplet. All droplets in112

superdroplet 8 are assumed to have the samematerial density dd, the same radius A8, the samevelocity113

v8, and reside in a volume around the same position x8. The index 8 labeling the superdroplets114

Table 1. Definition of variables in superdroplet algorithm.

= number density of droplets in the domain

=luck number density of lucky droplets

#s (C) Number of “superdroplets” in the domain

b8 (C) Number of droplets in superdroplet 8 (multiplicity)

#d (C) Total number of physical droplets in the domain

#real number of independent simulations (realizations)
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yC

(a) (b) (c)

b8=10 b 9=6

"8=10 " 9=2

b8=4 b 9=6

"8=10 " 9=12

b8=6 b 9=10

"8=10 " 9=2

b8=6 b 9=4

"8=12 " 9=2

b8=8 b 9=8

"8=10 " 9=2

b8=4 b 9=4

"8=12 " 9=12

Fig. 1. Collision outcomes when two superdroplets collide and droplet collisions occur. Time increases

downward, as indicated by the arrow. Superdroplet 8 contains b8 large droplets of mass "8 , superdroplet 9

contains b 9 small droplets of mass " 9 < "8 .

117

118

119

ranges from 1 to #s(C0) (Table 1), where C0 denotes the initial time. The hydrodynamic force is115

modeled using Stokes law.116

The equation of motion for the position x8 and velocity v8 of superdroplet 8 reads:120

dx8
dC

= v8 ,
dv8
dC

= −v8
g8
+g . (1)

Here g is the gravitational acceleration,121

g8 =
2
9
dd
d

A2
8

a
(2)

is the droplet response (or Stokes) time attributed to the superdroplet, a = 10−5 m2 s−1 is the viscosity122

of air, and d is the mass density of the airflow.123

Droplet collisions are represented by collisions of superdroplets (Shima et al. 2009; Johansen124

et al. 2012; Li et al. 2017), as mentioned above. Superdroplets 8 and 9 residing inside a grid cell125

collide with probability126

?8 9 = _8 9XC , (3)
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where XC is the integration time step. A collision happens when [ < ?8 9 , where 0 ≤ [ ≤ 1 is127

a uniformly distributed random number. To avoid a probability larger than unity, we limit the128

integration step through the condition XC < 1/_8 9 . The collision rate is129

_8 9 = c
(
A8 + A 9

)2 |v8 −v 9 |�8 9
bmax

XG3 , (4)

where �8 9 is the collision efficiency, bmax = max(b8, b 9 ) is the larger one of the two b values for130

superdroplets 8 or 9 (Table 1), and XG3 is the volume of the grid cell closest to the superdroplet.131

Note that equation (4) implies that background droplets, which all have the same radius (and132

therefore v8 = v 9 , so _8 9 = 0) can never collide among themselves. Moreover, no collisions are133

possible between physical particles within a single superdroplet, because their velocity difference134

vanishes. To facilitate the comparison with the earlier work, we assume �8 9 = 1 for most of135

our simulations. To assess the effects of this assumption, we also compare with results where the136

efficiency increases with droplet radius (Lamb and Verlinde 2011). Following Kostinski and Shaw137

(2005) and Wilkinson (2016), we adopt a simple power law prescription for the dependence of the138

efficiency on the droplet radius.139

What happens when two superdroplets collide? To write down the rules, we denote the number140

of droplets in superdroplet 8 by b8, while b 9 is the number of droplets in superdroplet 9 . "8 and141

" 9 are the corresponding droplet masses. The collision scheme suggested by Shima et al. (2009)142

amounts to the following rules; see also Figure 1 for an illustration. To ensure mass conservation143

between superdroplets 8 and 9 , when b 9 > b8, which is the case illustrated in Figure 1(b), droplet144

numbers and masses are updated such that145

b8→ b8 , b 9 → b 9 − b8 , (5)

"8→ "8 +" 9 , " 9 → " 9 .

When b 9 < b8, which is the case shown in Figure 1(a), the update rule is also given by equation (5),146

but with indices 8 and 9 exchanged. In other words, the number of droplets in the smaller147

superdroplet remains unchanged (and their masses are increased), while that in the larger one is148

reduced by the amount of droplets that have collidedwith all the droplets of the smaller superdroplet149

(and their masses remain unchanged).150
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To ensure momentum conservation during the collision, the momenta of droplets in the two151

superdroplets are updated as152

v8"8→ v8"8 +v 9" 9 ,

v 9" 9 → v 9" 9 , (6)

after a collision of superdroplets.153

Finally, when b8 = b 9 , which is the case described in Figure 1(c), droplet numbers and masses154

are updated as155

b8→ b8/2 , b 9 → b 9/2 , (7)

"8→ "8 +" 9 , " 9 → "8 +" 9 .

It is then assumed that, when two superdroplets, each with less than one physical droplet, collide,156

the superdroplet containing the smaller physical droplet is collected by the more massive one; it is157

thus removed from the computational domain after the collision. We emphasize that equation (5)158

does not require b to be an integer. Since we usually specify the initial number density of physical159

particles, b can be fractional from the beginning. This is different from the integer treatment of b160

in Shima et al. (2009).161

The superdroplet simulations are performed by using the particle modules of the Pencil Code162

(Pencil Code Collaboration et al. 2021). The fluid dynamics modules of the code are not utilized163

here. To reduce the computational cost and make it linear in the number of superdroplets per mesh164

point, =s(C), Shima et al. (2009) supposed that each droplet interacts at most with one other one,165

which is what Shima et al. (2009) refer to as random permutation technique or linear sampling166

technique. This technique was also adopted by Dziekan and Pawlowska (2017), and also by167

Unterstrasser et al. (2020). It is not used in the Pencil Code, because it could reduce the statistical168

accuracy of the results. Furthermore, it is important to emphasize that the computational cost is in169

either case only linear in the total number of superdroplets, because we do not allow for collisions170

between superdroplets that are not in the proximity of the same mesh point. In the Pencil Code,171

collisions between particles residing within a given grid cell are evaluated by the same processor172

which is also evaluating the fluid equations of that grid cell. Due to this, together with the domain173
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decomposition used in the code, the particle collisions are automatically efficiently parallelized174

as long as the particles are more or less uniformly distributed over the domain. For the purpose175

of the present study, we designed a parallel technique to run thousands of one-dimensional (1-D)176

superdroplet simulations simultaneously.177

b. Numerical setup178

In our superdroplet simulations, we consider droplets of radius 10`m, randomly distributed in179

space, together with one droplet of twice the mass and radius 21/3×10`m = 12.6`m. The larger180

droplet has a higher settling speed than the 10`m droplets and sweeps them up through collision181

and coalescence. For each simulation, we track the growth history of the larger droplet until it182

reaches 50`m in radius and record the time ) it takes to grow to that size.183

In the superdroplet algorithm, one usually takes b8 (C0) � 1, which implies that the actual number184

of lucky droplets is also more than one. This was not intended in the original formulation of the185

lucky droplet model (Telford 1955; Kostinski and Shaw 2005; Wilkinson 2016) and could allow186

the number of superdroplets with heavier (lucky) droplets, # (luck)
s , to become larger than unity.187

This would manifest itself in the growth history of the lucky droplets through an increase by more188

than the mass of a background droplet. We refer to this as “jumps”. Let us therefore now discuss189

the conditions under which this would happen and denote the values of b (C0) for the lucky and190

background droplets by bluck and bback, respectively. First, for bluck = bback, the masses of both191

lucky and background superdroplets can increase, provided their values of b (C0) are above unity;192

see Figure 1(c). Second, even if bluck < bback initially, new lucky superdroplets could in principle193

emerge when the same two superdroplets collide with each other multiple times. This can happen194

for two reasons. First, the use of periodic boundary conditions for the superdroplets (i.e., in the195

vertical direction in our laminar model with gravity). Second, two superdroplets can remain at196

the same location (corresponding to the same mesh point of the Eulerian grid for the fluid) during197

subsequent time steps. The simulation time step must be less than both the time for a superdroplet198

to cross one grid spacing and the mean collision time, i.e., the inverse collision rate given by199

equation (4). Looking at Figure 1, we see that bback can then decrease after each collision and200

potentially become equal to or drop below the value of bluck. This becomes exceedingly unlikely if201

initially bback� bluck, but it is not completely impossible, unless bluck is chosen initially to be unity.202
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The initial value of bback can in principle also be chosen to be unity. Although such a case203

will indeed be considered here, it would defeat the purpose and computational advantage of the204

superdroplet algorithm. Therefore, we also consider the case bback� bluck. As already mentioned,205

jumps are impossible if bluck is unity. For orientation, we note that the speed of the lucky droplet206

prior to the first collision is about 3.5cms−1, the average time to the first collision is 490s, and207

thus, it falls over a distance of about 17m before it collides.208

The superdroplet algorithm is usually applied to 3-D simulations. If there is no horizontal mixing,209

one can consider 1-D simulations. Moreover, we are only interested in the column in which the210

lucky droplet resides. In 3-D, however, the number density of the 10`m droplets beneath the lucky211

one is in general not the same as the mean number density of the whole domain. This leads to212

yet another element of randomness that we shall consider in this paper by studying the difference213

between 1-D and 3-D simulations, and fluctuations of the number density between columns.214

Equation (1) is solved with periodic boundary conditions using the Pencil Code (Pencil Code215

Collaboration et al. 2021), which employs a third-order Runge-Kutta time stepping scheme. The216

superdroplet algorithm is implemented in the Pencil Code, which is used to solve equation (3)–217

equation (7). We perform 1-D simulations to mimic the settling of cloud droplets purely due to218

gravity. 3-D simulations are conducted to investigate how the spatial distribution of cloud droplets219

affects the collision process. For the 1-D superdroplet simulations, we employ an initial number220

density of background droplets of =0≈3× 108 m−3 within a volume + = !G × !H × !I with !G =221

!H = 0.002m, !I = 0.214m, and #s(C0) = 256 such that the multiplicity is bluck(C0) = bback(C0) = 1.222

For each simulation, 7,686,000 time steps are integrated with an adaptive time step with a mean223

value of XC = 2.942× 10−4 s. For 3-D simulations, we use =0 = 3× 108 m−3, + = 8.847× 10−7 m3
224

(!G = !H = !I = 0.0096m), and #s(C0) = 128 with multiplicity bluck(C0) = bback(C0) = 2. There are225

about 107 time steps integrated with a time step XC = 1.04× 10−4 s. We use a cubic mesh with226

#grid = 43 points and perform 1000 simulations for both cases. For a superdroplet with an initial227

radius 12.6`m to grow to 50`m, 123 collisions are required.228
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3. Lucky-droplet models229

a. Basic idea230

In its simplest form, the LDM describes the collisional growth of a larger droplet that settles231

through a quiescent fluid and collides with smaller monodisperse droplets, that were initially232

randomly distributed in space. This corresponds to the setup described in the previous section. We233

begin by recalling the main conclusions of Kostinski and Shaw (2005). Initially, the lucky droplet234

has a radius corresponding to a volume twice that of the background droplets, whose radius was235

assumed to be A1 = 10`m. Therefore, its initial radius is A2 = 21/3A1 = 12.6`m. After the (: −1)th236

collision step with smaller droplets, it increases as237

A: ∼ A1:
1/3. (8)

Fluctuations in the length of the time intervals C: between collision :−1 and : give rise to fluctuating238

growth histories of the larger droplet. These fluctuations are quantified by the distribution of the239

cumulative time240

) =

124∑
:=2

C: , (9)

corresponding to 123 collisions needed for the lucky droplet to grow from 12.6`m to 50.0`m.241

[Note that Kostinski and Shaw (2005) used one more collision, so their final radius was actually242

50.1`m.] The time intervals C: between successive collisions are drawn from an exponential243

distribution with a probability ?: (C: ) = _: exp(−_: C: ). The rates _: depend on the differential244

settling velocity |v: − v1 | between the colliding droplets through equations (3) and (4). Here,245

however, the background droplets have always the radius A1, so the collision rate at the (: − 1)th246

collision of the lucky droplet with radius A: obeys247

_: = c (A: + A1)2 |v: −v1 |�: =back, (10)

where �: = � (A: , A1), and v: and v1 are approximated by their terminal velocities.248

While the LDM is well suited for addressing theoretical questions regarding the significance of249

rare events, it should be emphasized that it is at the same time highly idealized. Furthermore,250
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while it is well known that �: � 1 (Pruppacher and Klett 1997), it is instructive to assume, as an251

idealization, �: = 1 for all : , so the collision rate (10) can be approximated as _: ∼ A4
:
(Kostinski252

and Shaw 2005), which is permissible when A: � A1. It follows that, in terms of the collision index253

: , the collision frequency is254

_: = _∗:
4/3, (11)

where _∗ = (2c/9) (dd/d) (6=/a)A4
1 , and = is the number density of the 10`m background droplets.255

This is essentially the model of Kostinski and Shaw (2005) and Wilkinson (2016), except that they256

also assumed �: ≠ 1. They pointed out that, early on, i.e., for small : , _: is small and therefore the257

mean collision time _−1
:

is long. We note that the variance of the mean collision time is _−2
:
, which258

is large for small : . The actual time until the first collision can be very long, but it can also be very259

short, depending on fluctuations. Therefore, at early times, fluctuations have a large impact on the260

cumulative collision time. Note that for droplets with A ≥ 30`m, the linear Stokes drag is not valid261

(Pruppacher and Klett 1997).262

b. Relaxing the power law approximation266

We now discuss the significance of the various approximations being employed in the mathe-267

matical formulation of the LDM of Kostinski and Shaw (2005). To relax the approximations made268

in equation (11), we now write it in the form269

_: = _∗�:A
2
A(A: )A

2
B(A: )/A

4
1 (: ≥ 2), (12)

where270

A2
A = (A: + A1)2, A2

B = A
2
: − A

2
1 (13)

would correspond to the expression equation (10) used in the superdroplet algorithm. In equa-271

tion (11), however, it was assumed that AA = AB = A: . To distinguish this approximation from272

the form used in equation (12), we denote that case by writing symbolically “AA ≠ A: ≠ AB”; see273

Figure 2.274

In equation (13), we have introduced AA and AB to study the effect of relaxing the assumption275

AA = AB = A: , made in simplifying implementations of the LDM. Both of these assumptions are276
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Fig. 2. Contributions to the two correction factors A2/A2
A (red) and A2/A2

B (blue), as well as their product. The

discrete radii A: for : ≥ 2 are shown in a horizontal line of dots. The vertical dash-triple-dotted lines denote the

radius A = 50`m.

263

264

265

justified at late times when the lucky droplet has become large compared to the smaller ones, but277

not early on, when the size difference is moderate.278

By comparison, in mean-field theory (MFT), one assumes deterministic collision times that are281

given by C: = _−1
:
. In Figure 3 we demonstrate the effect of the contributions from AA and AB on282

the mean cumulative collision time in the corresponding MFT,283

)MFT
: =

:∑
: ′=2

CMFT
: ′ , (14)

where284

CMFT
: = _−1

: (15)
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Fig. 3. Cumulative mean collision times, )MFT
:

, for AA ≠ A: ≠ AB (solid black line), compared with the

approximations AA = AB = A: (red dashed line) and only AB = A: (blue dash-dotted line).

279

280

are the inverse of the mean collision rates. We see that, while the contribution from AA shortens285

the mean collision time, that of AB enhances it. In Figure 2, we also see that the contributions to286

the two correction factors A2/A2
A and A2/A2

B have opposite trends, which leads to partial cancelation287

in their product.288

In Figure 4 we show a comparison of the distribution of cumulative collision times for vari-289

ous representations of A: using approach I. Those are computed numerically using 1010 realiza-290

tions of sequences of random collision times C: . To perform this many realizations, we use the291

special/lucky_droplet module of the Pencil Code (Pencil Code Collaboration et al. 2021);292

see Appendix A1 for details.293

The physically correct model is where AA ≠ A: ≠ AB (black line in Figure 4). To demonstrate the294

sensitivity of %()) to changes in the representation of A: , we show the result for the approximations295
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Fig. 4. Comparison of %()) in a double-logarithmic representation for the LDM appropriate to our benchmark

(black solid line) with various approximations where AA = AB = A: (red dashed line) along with a case where only

AB = A: is assumed (blue dash-dotted line). Here we used approach I with 1010 realizations.

304

305

306

AA = A: = AB (red line) and AA ≠ A: = AB (blue line). The %()) curve is also sensitive to changes in296

the collision efficiency late in the evolution. To demonstrate this, we assume �: ∝ A2
:
when A: ≥ A∗297

(Lamb and Verlinde 2011). To ensure that �: ≤ 1, we take298

�: = �∗ max
(
1, (A/A∗)2

)
, (16)

with �∗ = (A∗/50`m)2. However, the normalized %()) curves are independent of the choice of299

the value of �∗. In Figure 5, we show the results for AA ≠ A: ≠ AB using A∗ = 40`m and 30`m (red300

and blue lines, respectively) and compare with the case �: = const. The more extreme cases with301

A∗ = 20`m and 10`m are shown as gray lines. The latter is similar to the case _: ∼ A6
:
considered302

by Kostinski and Shaw (2005) and Wilkinson (2016).303

When AA = A: = AB, or only A: = AB, the %()) curves exhibit smaller widths. By contrast, when313

the collision efficiency becomes quadratic later on (when A > A∗ ≡ 30`m or 40`m), the %())314

curves have larger widths; see Figure 5. To quantify the shape of %()), we give in Table 2 the315

average of - ≡ ln()/〈)〉), its standard deviation f = 〈G2〉1/2, where G ≡ - − 〈-〉, its skewness316

skew - = 〈G3〉/f3, and its kurtosis kurt - = 〈G4〉/f4−3. We recall that, for a perfectly lognormal317

distribution, skew - = kurt - = 0. The largest departure from zero is seen in the skewness, which318

is positive, indicating that the distribution is somewhat enhanced for long times. The kurtosis is319

rather small, however.320
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Fig. 5. Comparison of %()) in a double-logarithmic representation for the LDM for A∗ = 40`m and 30`m

using AA ≠ A: ≠ AB. The black line agrees with that in Figure 4, and the two gray lines refer to the cases with

A∗ = 20`m and 10`m. Here we used approach I with 1010 realizations.

307

308

309

Table 2. Moments of - = ln()/〈)〉) computed from 1010 realizations for different values of A∗ (in `m), and

different prescriptions of AA and AB. The corresponding values of )MFT
124 are also given and are normalized to

unity for AA ≠ A: ≠ AB with A∗ ≥ 50`m.

310

311

312

A∗ AA AB ) MFT
124 〈- 〉 f (- ) skew - kurt -

— — A: 0.67 −0.020 0.21 0.22 0.08

— A: A: 1.49 −0.033 0.25 0.25 0.05

— — — 1 −0.040 0.28 0.34 0.10

40 — — 0.99 −0.041 0.28 0.33 0.09

30 — — 0.93 −0.046 0.30 0.28 0.05

20 — — 0.79 −0.063 0.35 0.18 −0.04

10 — — 0.34 −0.111 0.47 0.16 −0.17

The main conclusion that can be drawn form the investigation mentioned above is that, as far as321

the shapes of the different curves is concerned, it does not result in any significant error to assume322

A: � A1. The value of f is only about 10% smaller if AA = A: = AB is used (compare the red dashed323

and black solid lines in Figure 4). This is because the two inaccuracies introduced by AA and AB324

almost cancel each other. When A∗ = 40`m or 30`m, for example, the values of f increase by 3%325

and 15%, respectively; see Table 3, where we also list the corresponding values of )MFT
124 . On the326

other hand, the actual averages such as 〈)〉 ≈ )MFT
124 vary by almost 50%.327

Here and below, we plot the distribution of the cumulative times versus the normalized time,328

)/〈)〉, as was done in the work of Kostinski and Shaw (2005). Normalizing by 〈)〉 allows us to see329

changes in the shape of %()/〈)〉), thus allows a more direct comparison of the subtle differences330
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in the shapes of the different curves and ensures that the peaks of all curves are at approximately331

the same position. We normally compute 〈)〉 as an average over all realizations, but these averages332

also agree with )MFT
124 .333

A straightforward extension of the LDM is to take horizontal variations in the local column334

density into account. Those are always present for any random initial conditions, but could be335

larger for turbulent systems, regardless of the droplet speeds. Indeed, in our 3-D superdroplet336

simulations, large droplets can fall in different vertical columns that contain different numbers of337

small droplets, a consequence of the fact that the small droplets are initially randomly distributed.338

To describe the results of our 3-D simulations, it is necessary to solve for an ensemble of columns339

with different number density of the 10`m background droplets and compute the distribution340

of cumulative collision times. We present a corresponding comparison with our superdroplet341

algorithm at the end of this paper.342

c. Relation to the superdroplet algorithm343

To understand the nature of the superdroplet algorithm, and why it captures the lucky droplet344

problem accurately, it is important to realize that the superdroplet algorithm is actually a com-345

bination of two separate approaches, each of which turns out to be able to reproduce the lucky346

droplet problem to high precision. In principle, we can distinguish four different approaches to347

obtaining the collision time interval C: . In approach I, C: was taken from an exponential distribution348

of random numbers. Another approach is to use a randomly distributed set of 10`m background349

droplets and then to solve for the collisions between the lucky droplets and the background explic-350

itly (approach II). A third approach is to use a Monte Carlo method to solve for the time evolution351

to decide whether at any time there is a collision or not (approach III). This is actually what is done352

within each grid cell in the superdroplet algorithm; see equations (3) and (4). The fourth approach353

is the superdroplet algorithm discussed extensively in section 2.a (approach IV). It is essentially a354

combination of approaches II and III. We have compared all four approaches and found that they355

all give very similar results. In the following, we describe approaches II and III in more detail,356

before focussing on approach IV in section 4.357
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Table 3. Summary of the four approaches.

Approach Description

I time interval C: drawn from distribution

II true Lagrangian particles collide

III probabilistic, just a pair of superdroplets

IV superdroplet model (combination of II & III)

d. Solving for the collisions explicitly358

A more realistic method (approach II) is to compute random realizations of droplet positions in359

a tall box of size !2
h× !I, where !h and !I are the horizontal and vertical extents, respectively. We360

position the lucky droplet in the middle of the top plane of the box. Collisions are only possible361

within a vertical cylinder of radius A: + A1 below the lucky droplet. Next, we calculate the distance362

ΔI to the first collision partner within the cylinder. We assume that both droplets reach their363

terminal velocity well before the collision. This is an excellent approximation for dilute systems364

such as clouds, because the droplet response time g: of equation (2) is much shorter than the mean365

collision time. Here we use the subscript : to represent the time until the (: −1)th collision, which366

is equivalent to the 8th droplet. We can then assume the relative velocity between the two as given367

by the difference of their terminal velocities as368

ΔE: = (g: − g1) 6. (17)

The time until the first collision is then given by C2 = ΔI/ΔE2. This collision results in the lucky369

droplet having increased its volume by that of the 10`m droplet. Correspondingly, the radius of the370

vertical cylinder of collision partners is also increased. We then search for the next collision partner371

beneath the position of the first collision, using still the original realization of 10`m droplets. We372

continue this procedure until the lucky droplet reaches a radius of 50`m.373

e. The Monte Carlo method to compute C:374

In the Monte Carlo method (approach III) we choose a time step XC and step forward in time. As375

in the superdroplet algorithm, the probability of a collision is given by ?: = _:XC; see equation (3).376

We continue until a radius of 50`m is reached. We note that in this approach, = is kept constant,377

i.e., no background droplet is being removed after a collision.378
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Fig. 6. 98 growth histories of lucky droplets obtained from 98 independent 1-D superdroplet simulations

(approach IV), as described in the text. All superdroplets have initially the same number of droplets, b8 (C0) = 1

with #s(C0) = 256. The mean number density of droplets is =0 = 3×108 m−3. The fat solid line shows the average

time for each radius.

393

394

395

396

Approach III also allows us to study the effects of jumps in the droplet size by allowing for several379

lucky droplets at the same time and specifying their collision probability appropriately. These will380

then be able to interact not only with the 10`m background droplets, but they can also collide381

among themselves, which causes the jumps. We will include this effect in solutions of the LDM382

using approach III and compare with the results of the superdroplet algorithm.383

4. Results384

a. Accuracy of the superdroplet algorithm385

We now want to determine to what extent the fluctuations are correctly represented by the su-386

perdroplet algorithm. For this purpose, we now demonstrate the degree of quantitative agreement387

between approaches I–III and the corresponding solution with the superdroplet algorithm (ap-388

proach IV). This is done by tracking the growth history of each lucky droplet. As the first few389

collisions determine the course of the formation of larger droplets, we also use the distribution390

%()) of cumulative collision times ) . We perform #real superdroplet simulations with different391

random seeds using b8 (C0) = 1.392
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Fig. 7. Corresponding %()) of Figure 6 obtained with the superdroplet algorithm (blue dots) and the LDM

using approach I with AA ≠ A: ≠ AB (red solid line).

397

398

We begin by looking at growth histories for many individual realizations obtained from the404

superdroplet simulation. Figure 6 shows an ensemble of growth histories (thin gray lines) obtained405

from #real ≈ 103 independent simulations, as described above. The times between collisions are406

random, leading to a distribution of cumulative growth times to reach 50`m. Also shown is the407

mean growth curve (thick black line), obtained by averaging the time at fixed radii A. This figure408

demonstrates that the fluctuations are substantial. We also see that large fluctuations relative to the409

average time are rare.410

To quantify the effect of fluctuations from all realizations, we now consider the corresponding411

%()) in Figure 7. We recall that b8 (C0) = 1 for our superdroplet simulation in Figure 7. However, a412

simulation with b8 (C0) = 50 yields almost the same result; see Appendix A2.413

The comparison of the results for the LDM using approach I and the superdroplet algorithm414

shows small differences. The width of the %()) curve is slightly larger for approach I than for the415

superdroplet simulations. This suggests that the fluctuations, which are at the heart of the LDM,416

are slightly underrepresented in the superdroplet algorithm.417

An important question is to what extent our results depend on the density of background droplets418

and the size of the computational domain. To examine this with the superdroplet algorithm419

(approach IV), we consider three values of the initial number density: =0 = 3×108 m−3, 10=0, and420

100=0. Figure 8 shows %()) for these three cases using first the cumulative time ) [Figure 8(a)]421
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Fig. 8. (a): %()) for =0 (red), 10=0 (blue), and 100=0 (black) with =0 = 3×108 m−3 and ! = 0.214m and (b):

%()/〈)〉) =0, 2=0 (green), 10=0, and 100=0 and (c): %()/〈)〉) for !, 2!, 8!, and 64! with 100=0, obtained

using the superdroplet algorithm (approach IV). The red dash-dotted line in (b) represents the LDM (approach I)

with AA ≠ A: ≠ AB and =0 = 3×108 m−3, which is the same simulation as the one in Figure 7. The green line in

(b) is for 8192 realizations, while all the other simulations are for 1024 realizations.

399

400

401

402

403

and then the normalized time )/〈)〉 [Figure 8(b)]. We see that the positions of the peaks in %())422

change linearly with the initial number density =0, but %()/〈)〉) are very similar to each other. This423

is related to the fact that, after normalization, =0 drops out from the expression for C:/〈)〉 in the424

LDM (approach I); see equation (9). At small values of )/〈)〉, however, all curves show a similar425

slight underrepresentation of the fluctuations as already seen in Figure 7. In all these simulations,426

we used 1024 realizations, except for one case where we used 8192 realizations; see the green line427
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Fig. 9. Same as Figure 6 but with initial condition b8 (C0) = 2 using #s(C0) = 128. Note the occurrence of

jumps, indicated in red.

443

444

in Figure 8(b). The distribution of cumulative growth times is obviously much smoother in the428

latter case, but the overall shape is rather similar.429

In our superdroplet simulations (approach IV), the vertical extent of the simulation domain is430

only ! = 0.214m. This is permissible given that we use periodic boundary conditions for the431

particles, and that the number of particles is approximately constant. Nevertheless, the accuracy432

of our results may suffer from poor statistics. To investigate this in more detail, we now perform433

1-D simulations with 2!, 8!, and 64!. At the same time, we increased the number of mesh434

points and the number of superdroplets by the same factors. Since the shape of %()/)̄) is almost435

independent of =0, as shown in Figure 8(b), we use =0 = 3×1010 m−3 instead of =0 = 3×108 m−3
436

to save computational power. As shown in Figure 8(c), %()/)̄) is insensitive to the domain size.437

Therefore, our results with ! = 0.214m can be considered as accurate with respect to %()/)̄).438

In the following, we discuss how our conclusions relate to those of earlier work. We then discuss439

a number of additional factors that can modify the results (jumps in A or the effects of 3-D, for440

example). Those additional factors can also be taken into account in the LDM. Even in those cases,441

it turns out that the differences between the LDM and the superdroplet algorithm are small.442
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b. The occurrence of jumps445

One of the pronounced features in our superdroplet simulations with b8 (C0) > 1 is the possibility446

of jumps. We see examples in Figure 9 where bluck = bback = 2 and the jumps are visualized by the447

red vertical lines. Those jumps are caused by the coagulation of the lucky droplet with droplets of448

radii larger than 10`m that were the result of other lucky droplets in the simulations. What is the449

effect of these jumps? Could they be responsible for the behavior found by Dziekan and Pawlowska450

(2017) that the difference in their C10% between the numerical and theoretical calculation decreases451

with the square root of the number of physical droplets, as discussed in section 1?452

It is clear that those jumps occur only at late times when there has been enough time to grow453

several more lucky droplets. Because the collision times are so short at late times, the jumps are454

expected to be almost insignificant. To quantify this, it is convenient to use approach III, where455

we choose # (luck)
s = 3 superdroplets simultaneously. (As always in approach III, the background456

particles are still represented by only one superdroplet, and = is kept constant.) We also choose457

bluck = 1, and therefore # (luck)
d = 3. The lucky droplets can grow through collisions with the 10`m458

background droplets and through mutual collisions between lucky droplets. The collision rate459

between lucky droplets 8 and 9 is, analogously to equation (12), given by460

_
(luck)
8 9

= c
(
A8 + A 9

)2 |v8 − v 9 | =luck, (18)

where =luck is the number density of physical droplets in the superdroplet representing the lucky461

droplet. To obtain an expression for =luck in terms of the volume of a grid cell XG3, we write462

=luck = bluck/XG3. The ratio of the physical number of lucky droplets, # (luck)
d , to the physical463

number of background droplets, # (back)
d is given by464

n =
#
(luck)
d

#
(back)
d

=
bluck#

(luck)
s

bback#
(back)
s

. (19)

To investigate the effect of jumps on %()) in the full superdroplet model studied above (see465

Figures 6 and 9), we first consider the case depicted in Figure 6, where bluck = bback ≡ b8 (C0) = 1.466

Here, we used #s = 256 superdroplets, of which one contained the lucky droplet, so # (luck)
s = 1,467

and the other 255 superdroplets contained a 10`m background droplet each. In our superdroplet468
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Fig. 10. Comparison of models with n = 0 (no jumps), 0.004 (the value expected for the simulations), 0.02,

and 0.05 using approach III.

476

477

solution, the ratio (19) was therefore n = 1/255 = 0.004. Using approach III, n enters simply as469

an extra factor in the collision probability between different lucky droplets. (In approach III, all470

quantities in equation (19) are kept constant.) The effect on %()) is shown in Figure 10, where we471

present the cumulative collision times for models with three values of n using approach III. We see472

that for small values of n , the cumulative distribution function is independent of n , and the effect473

of jumps is therefore negligible (compare the black solid and the red dashed lines of Figure 10).474

More significant departures due to jumps can be seen when n = 0.02 and larger.475

Let us now compare with the case in which we found jumps using the full superdroplet approach478

(approach IV). The jumps in the growth histories cause the droplets to grow faster than without479

jumps. However, jumps do not have a noticeable effect upon %()) in the superdroplet simulations480

we conducted; see Figure 11. By comparing %()) for bback = 40 (blue crosses in Figure 11) with481

that for bback = 2 (black circles), while keeping bluck = 2 in both cases, hardly any jumps occur and482

the lucky droplet result remains equally accurate.483

For larger values of n , jumps occur much earlier, as can be seen from Figure 12, where we487

show 30 growth curves for the cases n = 0.004, which is relevant to the simulations of Figure 7, as488

well as n = 0.02, and 0.05. We also see that for large values of n , the width in the distribution of489

arrival times is broader and that both shorter and longer times are possible. This suggests that the490

reason for the finite residual error in the values of C10% found by Dziekan and Pawlowska (2017)491

for b8 (C0) > 9 could indeed be due to jumps. In our superdroplet simulations, by contrast, jumps492

cannot occur when b8 (C0) = 1 or bback � bluck.493
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Fig. 11. %()/〈)〉) of simulations in Figure 9 (black circles) and the ones with initially bback = 40 (blue

crosses). bluck = 2 in both cases. The red line denotes the LDM (approach I) with AA ≠ A: ≠ AB, which is the

same simulation as the one in Figure 7.

484
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486

Fig. 12. Growth histories from approach III for n = 0.004 (very few jumps, relevant to the simulations of

Figure 7), as well as n = 0.02, and 0.05, where jumps are more frequent. The thick solid line gives the average

collision time and cannot be distinguished from that of MFT, which is shown as a thick dotted line.
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495

496

c. The two aspects of randomness497

Let us now quantify the departure that is caused by the use of the Monte Carlo collision scheme.498

To do this, we need to assess the effects of randomness introduced through equations (3) and (4)499
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Fig. 13. Comparison of %()) for approaches I, II, and III.

Table 4. Comparison of the moments of - = ln()/〈)〉) for approaches I–III.

Approach 〈- 〉 f (- ) skew - kurt -

I −0.040 0.279 0.34 0.10

II −0.039 0.275 0.35 0.11

III −0.040 0.279 0.34 0.11

on the one hand and the random distribution of the 10`m background droplets on the other. Both500

aspects enter in the superdroplet algorithm.501

We recall that in approach II, fluctuations originate solely from the random distribution of the502

10`m background droplets. In approach III, on the other hand, fluctuations originate solely from503

the Monte Carlo collision scheme. By contrast, approach I is different from either of the two,504

because it just uses the exponential distribution of the collision time intervals, which is indirectly505

reproduced by the random initial droplet distribution in approach II and by theMonte Carlo scheme506

in approach III.507

In Figure 13, we compare approaches I, II, and III. For our solution using approach II, we use a508

nonperiodic domain of size 10−4×10−4×700m3, thus containing on average 2100 droplets. This509

was tall enough for the lucky droplet to reach 50`m for all the 107 realizations in this experiment.510

The differences between them are very minor, and also the first few moments are essentially the511

same; see Table 4. We thus see good agreement between the different approaches. This suggests512

that the fluctuations introduced through random droplet positions is not crucial and that it can be513

substituted by the fluctuations of the Monte Carlo scheme alone.514
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Fig. 14. Comparison of the 3-D case (solid black line) with the 1-D case (dotted black line) with b8 (C0) = 2.

The red curve shows the result for the LDM approach I with AA ≠ AB ≠ A: , which is the same simulation as the

one in Figure 7. The 1-D case is the same as the one in Figure 11.

530

531

532

It is worth noting that we were able to perform 107 and 106 realizations with approaches II515

and III, respectively, and 1010 realizations with approach I, while in the superdroplet algorithm516

(approach IV), we could only run 103–104 realizations due to the limitation of the computational517

power. This may be the reason why fluctuations appear to be slightly underrepresented in the518

superdroplet algorithm; see Figure 7 and the discussion in section 4.a. Nevertheless, the agreement519

between the LDM and the superdroplet simulations demonstrates that the superdroplet algorithm520

does not contain mean-field elements. This can be further evidenced by the fact that the results of521

approaches II and III agree perfectly with those of approach I, and the superdroplet algorithm is522

just the combination of approaches II and III.523

d. The effects of fluctuations in 3-D simulations524

Onemight have expected that a 3-D simulation could be more realistic and perhaps more accurate525

than a 1-D simulation. In Figure 14 we compare the resulting %()) for 3-D and 1-D cases. The526

result is surprising in that the %()) curves from the two cases are rather different. The %()) curve527

from the 1-D case agrees well with the LDMusing approaches I–III. In the 3D case, the fluctuations528

appear to be vastly exaggerated, similarly to the blue line in Figure 4. This will be discussed next.529
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Fig. 15. Comparison between the 3-D superdroplet simulation of Figure 14 and approach II evaluated with a

dispersion of X=max/=0 = 0.2, corresponding to composition (iii); see Table A1 for details.

533

534

An important difference between 1-D and 3-D is the fact that in 3-D, we accumulate statistics535

for lucky droplets that fall through vertical columns whose mean droplet number density fluctuates536

from one column to another. These fluctuations lead to a broadening of %()), but it is a priori not537

evident that this explains the 3-D results quantitatively.538

In Figure 15, we compare the results from our 3-D superdroplet simulations with the LDMwhere539

the relevant fluctuations in droplet number density have been taken into account; see Appendix A3540

for details. The lateral fluctuations are quantified by the relative dispersion X=max/=0. We see541

that there is a close match between the two lines. This suggests that the superdroplet algorithm542

is accurate and reproduces the results of the LDM, provided all known corrections are applied543

to it. It also appears that the additional fluctuations introduced in 3-D compensate for the slight544

underrepresentation of fluctuations in 1-D.545

5. Discussion546

Fluctuations play a central role in the LDM. We have therefore used it as a benchmark for547

our simulation. It turns out that the superdroplet algorithm is able to reproduce the growth548

histories qualitatively and the distribution of cumulative collision times quantitatively. The role of549

fluctuations was also investigated by Dziekan and Pawlowska (2017), whose approach to assessing550

the fluctuations is different from ours. Instead of analyzing the distribution of cumulative collision551
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times, as we do here, their primary diagnostics is the time C10%, after which 10% of the mass of552

cloud droplets has reached a radius of 40`m. In the LDM, such a time would be infinite, because553

there is only one droplet that is allowed to grow. They then determined the accuracy with which the554

value of C10% is determined. The accuracy increases with the square root of the number of physical555

droplets, provided that the ratio b8 (C0) is kept below a limiting value of about 9. For b8 (C0) > 9,556

they found that there is always a residual error in the value of C10% that no longer diminishes as557

they increase the number of physical droplets. We have demonstrated that, when b8 (C0) > 1, jumps558

in the growth history tend to occur. Those jumps can lead to shorter cumulative collision times,559

which could be the source of the residual error they find.560

For a given fraction of droplets that first reach a size of 40`m, they also determined their average561

cumulative collision time. They found a significant dependence on the number of physical droplets.562

This is very different in our case where we just have to make sure that the number of superdroplets563

is large enough to keep finding collision partners in the simulations. However, as the authors point564

out, this is a consequence of them having chosen an initial distribution of droplet sizes that has a565

finite width. This implies that for a larger number of droplets, there is a larger chance that there566

could be a droplet that is more lucky than for a model with a smaller number of droplets. In our567

case, by contrast, we always have a well-known number of superdroplets of exactly 12.6`m, which568

avoids the sensitivity on the number of droplets.569

The b8 (C0) = 9 limit of Dziekan and Pawlowska (2017) may not be as stringent as originally570

believed. In this context we need to recall that their criterion for acceptable quality concerned the571

relative error of the time in which 10% of the total water has been converted to 40`m droplets. In572

our case, we have focussed on the shape of the %()) curve, especially for small ) .573

6. Conclusions574

We investigated the growth histories of droplets settling in quiescent air using superdroplet575

simulations. The goal was to determine how accurately these simulations represent the fluctuations576

of the growth histories. This is important because the observed formation time of drizzle-sized577

droplets is much shorter than the one predicted based on the mean collisional cross section. The578

works of Telford (1955), Kostinski and Shaw (2005), and Wilkinson (2016) have shown that579

this discrepancy can be explained by the presence of stochastic fluctuations in the time intervals580
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between droplet collisions. By comparing with the lucky droplet model (LDM) quantitatively, we581

have shown that the superdroplet simulations capture the effect of fluctuations.582

A tool to quantify the significance of fluctuations on the growth history of droplets is the583

distribution of cumulative collision times. Our results show that the superdroplet algorithm584

reproduces the distribution of cumulative collision times that is theoretically expected based on585

the LDM. In 3-D, there are additional fluctuations in the system owing to the fact that the mean586

column density of droplets varies in the horizontal plane. Again, this effect is reproduced by the587

superdroplet algorithm, where the size distribution is computed from an ensemble with different588

number densities.589

The approximation of representing the dependence of the mean collision rate on the droplet590

radius by a power law is not accurate and must be relaxed for a useful benchmark experiment.591

The superdroplet algorithm demonstrates clear differences between 1-D and 3-D simulations. The592

broader %()) distribution can be explained by taking variations of the droplet density in the593

horizontal direction into account.594

In summary, the superdroplet algorithm appears to take fluctuations fully into account, at least595

for the problem of coagulation due to gravitational settling in quiescent air. Computing the596

distribution of cumulative collision times in the context of turbulent coagulation would be rather597

expensive, because one would need to perform many hundreds of fully resolved 3-D simulations.598

Our study suggests that fluctuations are correctly described for collisions between droplets settling599

in quiescent fluid, but we do not know whether this conclusion carries over to the turbulent case.600
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APPENDIX615

A1. Numerical treatment of approach I616

In section b, we noted that solutions to approach I have been obtained with the Pencil Code617

(Pencil Code Collaboration et al. 2021). This might seem somewhat surprising, given that this618

code is primarily designed for solving partial differential equations. It should be realized, however,619

that this code also provides a flexible framework for using the message passing interface, data620

analysis such as the computation of probability density distributions, and input/output.621

To compute the probability distribution of ) with approach I, we need to sum up sequences of622

random numbers for many independent realizations of C: drawn from an exponential distribution.623

We use the special/lucky_dropletmodule provided with the code. Each point in the computa-624

tional domain corresponds to an independent realization, so each point is initialized with a different625

random seed. The domain is divided into 1024 smaller domains, allowing the computational tasks626

to be performed simultaneously on 1024 processors, which takes about 4min on a Cray XC40.627

A2. Dependence on initial #s/#grid and #d/#s631

In this appendix, we first test the statistical convergence of %()) for the initial number of632

superdroplets per grid cell, #s(C0)/#grid. As discussed in section 2.b, we set #s(C0)/#grid = 4633

for 1-D simulations. Using the same numerical setup, we examine the statistical convergence of634

%()) for different values of #s(C0)/#grid. As shown in Figure A1(a), %()) converges even at635

#s(C0)/#grid = 1. This is important because one can use as few superdroplets as possible once636

#grid is fixed, without suffering from the statistical fluctuations.637

The most practical application of the superdroplet algorithm is the case when b8 ≥ 1. Thus,638

we investigate how b affects fluctuations by performing the same 1-D simulation as described in639
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fixed #s/#grid = 4. The blue dots represent %()/〈)〉) from the simulation as in Figure 7. The red curve shows

the result for the LDM (approach I) with AA ≠ AB ≠ A: , which is the same simulation as the one in Figure 7.

628

629

630

section 2.b with different values of b8 (C0). Figure A1(b) shows that %()) is insensitive to b8 (C0),640

which suggests that the superdroplet algorithm can capture the effects of fluctuations regardless641

of the value of b8 (C0). This is different from Dziekan and Pawlowska (2017), who found that the642

approach can represent fluctuations only if #d(C0)/#s(C0) ≤ 9.643

A3. The 3-D LDM644

In this appendix, we describe in more detail the 3-D LDM used in section 4.d. The usual LDM645

applies to a given value of the number density. Other columns have somewhat different number646

densities and therefore also different mean cumulative collision times. The LDM with approaches647

I–III can be extended to include this effect by computing cases with different number densities and648

then combining %()) and normalizing by the 〈)〉 for the combined %()). This can be formulated649

by introducing the column density as650

Σ(G, H) =
∫ I2

I1

=(G, H, I) dI, (A1)

where I1 and I2 denote the vertical slab in which the first collision occurs, and using this Σ(G, H)651

as a weighting factor for the 1-D distribution functions %1D()) to compute the 3-D distribution652
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Table A1. Results for approach II using 30,000 realization showing the effects of lateral density fluctuations

in 3-D, and comparison with MFT.

656

657

Composition X=rms/=0 X=max/=0 )min [s] )MFT [s] 〈) (=max) 〉 [s] 〈) 〉 [s] )min/〈) 〉 )%=0.01/〈) 〉

(0) 0 0 782 1969 2117 2117 0.37 0.44

(i) 0.08 0.10 795 1790 1923 2126 0.37 0.42

(ii) 0.14 0.20 767 1641 1758 2155 0.36 0.40

(iii) 0.20 0.30 631 1515 1628 2203 0.29 0.36

functions as653

%3D()) =
∫
Σ(G, H)%1D()) dG dH

/∫
Σ(G, H) dG dH. (A2)

Since the first collision matters the most, we choose I2 = Imax (where the lucky droplet is released)654

and I1 = Imax− E2/_2 (where it has its first collision).655

Our reference model had a number density of =0 = 108 m−3. We now consider compositions of658

models with different values, where we include the densities (i) 0.9×108 m−3 and 1.1×108 m−3, as659

well as (ii) 0.8×108 m−3 and 1.2×108 m−3, and finally also (iii) 0.7×108 m−3 and 1.3×108 m−3.660

All these compositions have the same mean droplet number density but different distributions661

around the mean. We first average the distribution function and then normalize with respect to the662

mean collision time for the ensemble over all columns. The parameters of the resulting distributions663

are listed in Table A1 for three compositions with different density dispersions. We see that, as we664

move from composition (i) to compositions (ii) and (iii), the dispersion (X=rms/=0) increases from665

0.08 to 0.14 and 0.20, the distribution %()) extends further to both the left and right. The reference666

model is listed as (o). Here we give the rms value of the column-averaged densities, 〈=〉8, as667

X=rms =

[
#8∑
8=0

(
〈=〉28 −=2

0

)]1/2

, (A3)

where 8 denotes the column and #8 is the number of columns. We also give the maximum difference668

from the average density,669

X=max =max
8
(〈=〉8 −=0) , (A4)

for families (i) with #8 = 2, (ii) with #8 = 4, and (iii) with #8 = 6. We also list in Table A1 several670

characteristic times in seconds. The quantity )min is the shortest time in which the lucky droplet671

reaches 50`m, )MFT denotes the value based on MFT, 〈) (=max)〉 is the mean value based on the672

33



column with maximum droplet density and 〈)〉 is the mean based on all columns. It turns out673

that for the models of all three families, the value of )min agrees with that obtained solely from the674

model with the highest density, which is 1.3×108 m−3 for composition (ii), for example.675

The quantity 〈) (=max)〉, i.e., the average time for all of the columns with the largest density, is676

shorter than the 〈)〉 for all the columns, especially for composition (iii) where the largest densities677

occur. For the model (o), there is only one column, so 〈) (=max)〉 is the same as 〈)〉. The value678

)MFT based on MFT is always somewhat shorter than 〈) (=max)〉. Finally, we give in Table A1679

the ratios )min/〈)〉 and )%=0.01/〈)〉, where the subscript % = 0.01 indicates the argument of %())680

where the function value is 0.01.681
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