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Abstract: It was previously shown that the superdroplet algorithm to model the collision-
coalescence process can faithfully represent mean droplet growth in turbulent
aerosols. But an open question is how accurately the superdroplet algorithm accounts
for fluctuations in the collisional aggregation process. Such fluctuations are particularly
important in dilute suspensions. Even in the absence of turbulence, Poisson
fluctuations of collision times in dilute suspensions may result in substantial variations
in the growth process, resulting in a broad distribution of growth times to reach a
certain droplet size. We quantify the accuracy of the superdroplet algorithm in
describing the fluctuating growth history of a larger droplet that settles under the effect
of gravity in a quiescent fluid and collides with a dilute suspension of smaller droplets
that were initially randomly distributed in space (‘lucky droplet model’). We assess the
effect of fluctuations upon the growth history of the lucky droplet and compute the
distribution of cumulative collision times. The latter is shown to be sensitive enough to
detect the subtle increase of fluctuations associated with collisions between multiple
lucky droplets. The superdroplet algorithm incorporates fluctuations in two distinct
ways: through the random distribution of superdroplets and through the explicit Monte
Carlo algorithm involved when two superdroplets reside within the volume around one
mesh point. Through specifically designed numerical experiments, we show that both
sources of fluctuations on their own give an accurate representation of fluctuations. We
conclude that the superdroplet algorithm can faithfully represent fluctuations in the
coagulation of droplets driven by gravity.
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Dear Dr. Susan C van den Heever, 

 

Thank you for overseeing the reviewing process of our manuscript. 

 

We have now addressed all the comments from reviewers point by point. 

 

The code we use, the Pencil-Code, is publicly available. 

In addition, we have also provided the details of our numerical 

setup, post-processing scripts, and the data. 

With this, our results can be easily reproduced by researchers in 

this community.  

 

Best regards, 

 

Xiang-Yu Li and other coauthors.     
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We thank the three reviewers for their detailed assessment. In the 

following we explain in detail the changes made to the paper. All the 

changes in response to the comments are marked in blue. 

 

-------------------------------------------------------------------------

--- 

> Reviewer #1 

> Review of "Collision fluctuations of lucky droplets with superdroplets" 

> by Xiang-Yu Li et al. This manuscript could be considered for 

publication 

> after a major revision. This is an interesting study assessing the 

> collision fluctuation of the Monte Carlo algorithm of super-droplet 

method 

> through a unique approach. Their results suggest that super-droplet 

> method can faithfully capture the behavior of lucky droplets if 

> "jumps" (artificially enhanced coalescence between lucky droplets) 

> do not occur. The condition tested in this study is based on the so-

called 

> lucky droplet model and very idealized. Some more future works have to 

be 

> done to clarify the consequence and relevance of their findings to more 

> realistic simulations in cloud scales, but the results of this study is 

> very insightful and encouraging to the cloud modeling community. 

However, 

> very unfortunately, the manuscript is not at all well organized and not 

> clearly written. A lot more elaboration is required to make it into its 

> final form. For example, the notations are not consistent and 

confusing. 

> The numerical setup is not thoroughly explained. I have to say I had a 

> hard time reading this manuscript. It is like an early draft not ready 

> for a review. Nevertheless, recognizing that this is a cutting-edge 

> study, I look forward to reading the revision of this manuscript. 

 

We thank the referee for a detailed assessment and the many concrete 

suggestions. We recognize the shortcomings identified by the referee 

and have now responded to all items identified below. We hope that the 

present version addresses the concerns regarding confusing notation and 

the lack of explanations noted above. 

 

> Major Comments 

> 1) [request] Table 1 The definition of Np/s is not clear and 

> confusing. The number of droplets in a superdroplet can differ in each 

> superdroplet i, and it varies in time. The definition of Np is also 

> confusing. The total number of droplets varies in time, and Np=Np/s Ns 

> does not hold all the time. Please use appropriate notations and 

symbols 

> throughout the manuscript. 

 

Shima et al used "M_i" to denote the "mass of the solute contained in 

the droplet." and "xi" for multiplicity. Dziekan and Pawlowska used 

"xi" for multiplicity as well, but used "m" as a symbol for the mass in 

general to describe the mass density distribution instead of the specific 

"mass of superdroplet". We now follow the notation of Shima et al to 

describe the algorithm and use consistent notation throughout. Thus, 
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we have now changed N_{p/s} to "xi". Also, we have now changed them 

to N_d/s^i(t), Nd(t), and Ns(t) all throughout the paper. xi_i(t=0), 

Nd(t=0), and Ns(t=0) represent the initial numbers. The new symbols are 

now in blue in Table 1, where we also now use the word multiplicity. 

 

> 2) [request] P. 8, ll. 133--134 

> To reduce the computational cost, Shima et al. (2009) introduced two 

> techniques; multiple coalescence trick and sample reduction trick. 

> Dziekan and Pawlowska (2017) and Unterstrasser et al. (2020) confirmed 

> that these techniques work efficiently. Please explicitly mention that 

> these are not adopted in this study. Note also that when comparing 

> the results with Dziekan and Pawlowska (2017), you have to take this 

> difference into account. 

 

According to the scheme, we are only considering collisions within a mesh 

point, which is perhaps what the referee refers to as multiple 

coalescence 

trick. We have now acknowledged that the superdroplet algorithm, as 

implemented in the Pencil Code, does not use the random permutation 

technique. This is now said in the last paragraph of section 2.a. 

 

> 3) [request] P. 8, l. 135, "which pairs of droplets collide." This 

> should be "which pairs of superdroplets collide and coalesce." 

> It should be also mentioned that all pairs in have the possibility to 

> collide and coalesce. 

 

We have now changed this to superdroplets. We have also now stated 

"All pairs of superdroplets within one mesh point may collide."; see 

the paragraph just before Eq.(3). 

 

> 4) [request] P. 8, ll. 138--139, "To avoid a probability ..." 

> Is a fixed constant? Or, do you adjust it adaptively? Please clarify 

> this point. 

 

Yes, so we have now added the sentence "This is one of several other 

time step constraints that are applied adaptively during the simulation." 

This is in the paragraph just before Eq.(4). 

 

> 5) [request] Pp. 8--9, ll. 139--141, Eq. (4). 

> It is explained that "N_{p/s} is the largest initial number of droplet 

per 

> superdroplet or (Table 1)". However, this has to be "the largest 

> number of droplet per superdroplet or". Further, the above 

> definition of conflicts with that of Table 1. Please resolve this 

issue. 

> Please also clarify how "\delta x^3" is assigned in this study.  Around 

here or 

> elsewhere, what about explaining explicitly that background droplets do 

> not coalesce each other? It must be informative to the readers. 

 

We agree with the referee and have now removed "initial" and have 

introduced the superscript max to clarify that the larger one of 

superdroplets i and j is to be used, which also resolves the conflict 

with Table 1. We have also now added "being the volume of a grid cell" 



after "\delta x^3". We have also now added the statement "Note that 

Eq.(4) 

implies that our background droplets, which all have the same radius, 

can never collide among themselves." This is in the paragraph just 

below Eq.(4). 

 

> 6) [request] P . 9, Eq. (7). 

> Please clarify if N_p/s^i is an integer or a real number in this study. 

In Shima 

> et al. (2009), it is defined as an integer, and they use Eq. (16) 

> in their paper when splitting a superdroplet to guarantee that they 

> remain integers. 

 

We have now removed our statement about non-integer multiplicities. 

 

> 7) [request] P. 10, Sec. 2b. "Numerical setup". 

> Please explain the numerical setup in more detail. How big is the 

> domain? How many grids do you have in the domain? What is the boundary 

> condition? How the superdroplets are initialized? How do you solve the 

> equation of motion (1)? How big is the time step? What is the 

difference 

> between 1-D and 3-D superdroplet simulations? 

 

Superdroplets are initialized randomly. This was said at the first 

paragraph of section 2.b. Domain size, boundary conditions, and time 

steps are now given in the last paragraph of section 2. Yes, the 

smaller one is removed once it collides with a bigger one as presented 

just below Eq.7. For a 12.6um-sized (radius) droplet to grow to 50um, 

125 collisions is needed. We therefore used 256 droplets, so that we 

don't 

run out of droplets for the 1-D simulation and 128 for the 3-D 

simulation. 

This is said just below Eq.(7). 

 

We've also added more detailed information of the numerical setup 

in captions of figures showing the results of superdroplet simulations. 

 

> 8) [request] P. 11, ll. 196--197, "In 3-D, however, the number 

> density ..." Please elaborate. I do not understand why there is no 

> fluctuation of number density in 1-D. 

 

In 3-D, we have independent vertical columns. They are independent 

because 

the droplets fall vertically. The mean density in each column can be 

different. This was already mentioned in the penultimate paragraph of 

Section 2.b and the last paragraph of Section 3.b. It is also the 

topic of Section 4.d, where we quantify this variation and are able 

to reproduce the 3-D superdroplet model with a correspondingly adapted 

version of approach II; see also appendix A.2. 

 

> 9) [request] P. 12, ll. 215--218, "The rate \lambda_k ..." 

> The explanation here is incorrect and misleading. Please revise 

> it. If I understand correctly, \lambda_k is the coalescence rate 

> that the lucky droplet coalesce with any one background droplet. And 



> the definition of \lambda_k1 is very unclear; in Eq. (4) i and j 

> are used for superdroplet indices, but k here represents the k-th 

> coalescence of the lucky droplet, and the second subscript 1 seems 

> to be representing the background droplet. Therefore, by any means, 

> the statement "lambda_k=lambda_k1" is wrong. Perhaps this is what 

> you mean: Let N' be the number of droplets in "\delta x^3", then 

> \lambda_{k}&=N'\pi(r_k+r_1)^2\lvert \vec v_k - \vec v_1\rvert 

> E(r_k,r_1)/\delta x^3\\\\ &\approx \pi(r_k+r_1)^2\lvert \vec v_k - 

> \vec v_1\rvert E(r_k,r_1) n. 

 

Our original intention was not to repeat an equation that looks very 

similar to Eq.(4). We have now done this, as suggested by the referee, 

and have added the additional clarifications. This is now shown as 

Eq.(10) in Section 3.a. 

 

> 10) [suggestion] P. 13, ll. 226--227, "The actual time until ..." 

> It should be informative to point out that the variance is 1/lamk^2. 

 

We have now started the sentence like so "Given that the variance of 

lambda_k^{-1} is large for small k, the actual time until the first 

collision can be very long, but it can also be very short, depending 

on fluctuations." 

 

> 11) [request and question] P. 14, Fig.4. Could you explain how you 

> calculated P(T) of LDM? Is it possible to derive the analytic form? 

> Or, did you plot it numerically? Is <T> equal to T_125^MFT? 

 

Yes, we have done this numerically, and have now added some explanations 

in the paragraph after Eq.(15), where we also refer to the new Appendix 

A.1, where we describe a convenient method to compute the sums 

efficiently 

for 10^10 realizations using the Pencil Code. 

 

> 12) [request] P. 17, Eq. (16). 

> Again, the meaning of the subscript is different in Eq. (16) and in 

> Eq. (2). Please clarify. 

 

We have now addressed this just above Eq.16 as "Here we use the 

subscript k to represent the stopping time of the k-th collision, 

which is equivalent to the i-th droplet." 

 

> 13) [question and request] Approaches I--IV 

> Let me confirm: approach I = LDM; approach II = explicit collision 

model; 

> approach III = Monte-Carlo model described in Sec. 3e; approach IV = 

> superdroplet method.  In approaches I (LDM) and III (Monte-Carlo 3e), 

> background droplets are not considered explicitly.  In approaches 

> I, II, and III, superdroplets are not used, i.e., all .  Are these 

> correct? Please explain these points more clearly in the manuscript. 

> It seems a tall box domain is used for approach II. Please specify the 

> size. Please also clarify the boundary condition. Was this domain also 

> used for approach IV (superdroplet method)? Or, was some different 

> geometry used for approach IV? 

 



We agree with the statements of the referee, although we regard LDM as 

the 

model examined with all four approaches. We have therefore now rephrased 

the sentence to say "By contrast, approach I is different from either of 

the two,..."  We have also now added details regarding approach II and 

write "For our solution using approach~II, we use a non-periodic domain 

of size $10^{-4}\times10^{-4}\times700\m^3$, containing thus on average 

700 droplets. This was tall enough for the lucky droplet to reach $50\um$ 

for all the $10^7$ realizations in this experiment." 

 

> 14) [question] P. 17, l. 318, "LDM" Do you mean "approach III"? 

 

Yes, so we have now written "include this effect in solutions of the 

LDM using approach III and compare with ...". We have now reviewed and 

adapted the usage of LDM throughout the paper. 

 

> 15) [request] P. 18, l.327, "N_{p/s}=1". Please clarify. I suppose 

> you set the initial multiplicity of all the background superdroplets 

> and the lucky superdroplet equal to 1, i.e., for all i, N_{p/s}^i=1. 

 

Yes, this applies to all droplets. This is now said in the last paragraph 

of section 2.b. 

 

> 16) [request] Caption of Figure 6 

> The configuration of the superdroplet simulation is partly explained 

for 

> the first time in the caption, but not in the main text. Please 

describe 

> all the detailed information necessary to reproduce the result in the 

> main text, such as the domain size, boundary conditions, and time 

steps. 

> In the caption, it is explained that the number of superdroplets used 

> for this simulation is N_s = 256. I assume that 1 superdroplet is for 

lucky 

> superdroplet. In the next sentence, it is explained that the mean 

number 

> density of droplets is n_0=2.28E9/m^3. This must be the INITIAL mean 

number density. Is 

> lucky superdroplet included in n_0? I have estimated the size of the 

domain 

> by \delta x^3 = (255 or 256)/n_0~1.1E-7/m^3. Is this correct? 

> If my interpretation above is correct, and also 

> because the lucky superdroplet has to coalesce 124 times to reach the 

size 50um, 

> the number density of droplets n will be almost half of n_0 

> at the end of the simulation. I think this is not the situation that 

> you want to simulate. Please clarify all these points in the main text. 

 

Domain size, boundary conditions, and time steps are now given in 

the last paragraph of section 2. Yes, the smaller one is removed 

once it collides with a bigger one as presented just below Eq.(7). 

For a 12.6um-sized (radius) droplet to grow to 50um, 125 collisions 

is needed. We therefore used 256 droplets, so that we don't run out 

of droplets for the 1-D simulation and 128 for the 3-D simulation. 



This is said just below Eq.(7). 

 

> 17) [request] Appendix A1 and Fig. 15. 

> The numerical setup tested here is very unclear. Suddenly, Ngrid and Nd 

> (=?Np) were introduced without any explanation. Please provide all the 

> details so that the readers can reproduce the results. 

 

We have now explained why we study these statistical convergences 

and full details are given in Appendix A1.  

 

> Please add "(a)" and "(b)" to Fig. 15. Replace "Figure 

> 7(a)" at the end of the caption of Fig. 15 by "Figure 7". 

 

We have now added "(a)" and "(b)" to what is now Fig.A1 (Fig.15 

in the original format) and replaced "Figure 7(a)" at the end of 

the caption of Fig.15 by "Figure 7". 

 

> 18) [comment] P. 19 and the rest of the manuscript 

> Because the sufficient detail of the simulations conducted are not 

> provided, it is difficult to understand and evaluate the rest of the 

> manuscript accurately. 

 

Details are now provided; see, in particular, the end of Section 2.b. 

 

> 19) [request] P. 19, l. 349, "Figure 8 where 

N_{p/s}^luck=N_{p/s}^back=2..." 

> First of all, you have to say that the INITIAL CONDITION OF 

MULTIPLICITY is 

> N_{p/s}^luck=N_{p/s}^back=2. You may consider it almost obvious, but 

> such a small lack of explanation is piled up high in this manuscript. 

And, 

> again, the numerical setup is unclear. What is the number of 

superdroplets 

> used for this test? The same domain size as before? What are the time 

> steps? 

 

Again, all these details are now provided at the end of Sec.2.b. 

We have also elaborated on the setup for Figure 8 in the first 

paragraph of Sec.4.b. 

 

> 20) [question] P. 19, l. 359, "N_p^luck=3 superdroplets" 

> Do you mean "droplets"? If I understand correctly, approach III does 

> not use superdroplets. 

 

That is not correct; approach III is probabilistic and applies to 

what happens when two superdroplets collide. In our (extreme) model 

(approach III), we have just 2 superdroplets, one (or a few, when we 

study different values of epsilon) for the lucky droplets and one for 

the background droplets. 

 

> 21) [suggestion] P. 19, Eq. (17). It is better to give lambda_ij^luck 

> simply by lambda_ij=pi*(ri+rj)^2|vi-vj|/dx^3. The newly introduced 

> variable n_luck satisfies n_luck=epsilon*n/N_p^luck=1/dx^3. 

> Further, more importantly, your definition of n_luck is confusing, 



> because it does not correspond to the number density of lucky 

> droplets, N_p^luck/dx^3. 

 

This is now explained in more detail in the text just after Eq.(19). 

 

> 22) [request] P. 19, Eq. (18) 

> The definition of epsilon is also confusing. It seems to me that 

> epsilon is defined by the initial ratio of lucky droplets and 

> background droplets, Np^luck(t=0)/Np^back(t=0). But, if so, 

> we cannot apply this epsilon to Eq. (17). 

> If I understand correctly, in approach III (Monte-Carlo 3e), 

> background droplets are not considered explicitly, hence the 

> number density of background droplets is a fixed constant. 

> Further, superdroplet is not used for the lucky droplets in 

> approach III. Then, it is confusing to use N_s in Eq. (18). 

> Please clarify. 

 

Approach III is purely probabilistic and describes the collision 

between superdroplets. Their number stays constant and therefore 

also the number of superdroplets containing luck droplets stays fixed. 

Therefore, we do not say anything about an initial number. 

Equation (17) contains n_luck, i.e., the number density of heavier 

droplets relevant for their mutual collisions. This is proportional 

to epsilon, and applies therefore to Eq.(17). The number density of 

background droplets does not have to be fixed, but including this 

would make a negligible difference. Furthermore, regarding the use 

of N_s, the relevant number is the actual number of lucky droplets. 

It becomes relevant when estimating epsilon for the superdroplet 

approach, which we do on the next page, where we discuss a case 

with a multiplicity of 2. 

 

> 23) [request] P. 19, ll. 364-366, "we used N_s=256..." 

> This information must be explained much earlier. 

 

This information is now provided at the end of Section 2.b. 

 

> 24) [question] P. 20, ll. 367--373 

> In approach III, will you reduce the number of lucky droplets when they 

> coalesce each other?  It is explained that Fig.9 was produced by the 

> approach II. Is this correct? I do not understand how multiple lucky 

> droplets were introduced to the approach II.  I cannot find any results 

> of approach III with multiple lucky droplets. Where is it? 

 

As explained above, approach III models superdroplets, and therefore 

their number does not change after a collision. We did write incorrectly 

approach~II, but did actually mean approach~III, and have now corrected 

this. In the following sentence, we now write "We see that for small 

values of epsilon, this model has similar cumulative distribution 

functions, so the effect of jumps is very small." 

 

> 25) [request] P. 20, ll. 374--385 

> It seems you suddenly switched the target and started talking about the 

> superdroplet model. Please declare more explicitly which one of the 

four 



> models you are currently talking about. 

 

Yes, so we have now added the sentence "Let us now compare with the 

jumps found using the full superdroplet approach (approach~IV)." 

 

> 26) [request] P. 24, l. 470, "LDM (approaches I, II, and III)" 

> If I understand correctly, approach I = LDM; approach II = explicit 

> collision model; approach III = Monte-Carlo model described in 

> Sec. 3e. Please use the same definitions throughout the manuscript. 

 

We have now added a table to summarize more concisely the four 

different approaches. We have also checked that we are using the name 

LDM consistently and have explained it in the beginning of the 

section "The effects of various approximations". We also clarify that 

lateral density variations can be addressed with the LDM using all four 

approaches, as is now said just before the section "Relation to the 

superdroplet algorithm". We have therefore also corrected the 

relevant sentence in the beginning of that section. 

 

> Minor Comments: 

> 27) [suggestion] P. 5, ll. 64--69 

> Perhaps you can also cite Jaruga and Pawlowska (2018), Sato et al. 

(2018), 

> Seifert et al. (2019), Shima et al. (2020), and Unterstrasser et 

> al. (2020). 

 

We have now cited the recommended references; see paragraph 2 of the 

introduction and at the end of Section 2.a, where the Unterstrasser et 

al. (2020) paper is mentioned another time. 

 

> 28) [typo] P. 8, l. 137, "p_ij < eta" -> "eta < p_ij" 

 

We have now corrected this; see the blue piece after Eq.(3). 

 

> 29) [question] P. 15, ll. 259--261, "P(T) can be approximated by a 

> lognormal ..." How good is the approximation? 

 

The departure from a lognormal distribution can be judged qualitatively 

by just inspective the shape and comparing with that of an inverted 

parabola, as was explained in the text. In the sentence starting with 

"To quantify the shape of $P(T)$", we have now also added "... and its 

departure from a lognormal distribution,...". This is where we refer 

to the table and, for clarity, we have now added "We recall that, for 

a perfectly lognormal distribution, skew X = kurt X = 0." 

 

> 30) [question] P. 15, l. 271 and Table 2, "T_K^mf " Do you mean 

> T_125^MFT? 

 

Yes, this is what we meant and we have now corrected this; 

which is also marked in blue. 

 

> 31) [suggestion] Figure 7 

> Perhaps you had better label the vertical axis as P(T/<T>). 

 



We have now updated the vertical label to as P(T/<T>). 

 

> References 

> Jaruga, A. and Pawlowska, H.: libcloudph++ 2.0: aqueous-phase chemistry 

> extension of the particle-based cloud microphysics scheme, Geosci. 

Model 

> Dev., 11, 3623–3645, https://doi.org/10.5194/gmd-11-3623-2018, 2018. 

 

This is now quoted in paragraph 2 of the introduction. 

 

> Sato, Y., Shima, S., & Tomita, H. (2018). Numerical convergence of 

shallow 

> convection cloud field simulations: Comparison between double-moment 

> Eulerian and particle-based Lagrangian microphysics coupled to the 

> same dynamical core. Journal of Advances in Modeling Earth Systems, 10, 

> 1495-1512. https://doi.org/10.1029/2018MS001285 

 

This is now quoted in paragraph 2 of the introduction. 

 

> Seifert, A., Leinonen, J., Siewert, C., and Kneifel, S.: The Geometry 

of 

> Rimed Aggregate Snowflakes: A Modeling Study, J. Adv. Model. Earth Sy., 

> 11, 712-731, https://doi.org/10.1029/2018MS001519, 2019. 

 

This is now quoted in paragraph 2 of the introduction. 

 

> Shima, S., Sato, Y., Hashimoto, A., and Misumi, R.: Predicting 

> the morphology of ice particles in deep convection using the 

> super-droplet method: development and evaluation of SCALE-SDM 

> 0.2.5-2.2.0, -2.2.1, and -2.2.2, Geosci. Model Dev., 13, 4107–4157, 

> https://doi.org/10.5194/gmd-13-4107-2020, 2020. 

 

This is now quoted in paragraph 2 of the introduction. 

 

> Unterstrasser, S., Hoffmann, F., and Lerch, M.: Collisional growth in 

> a particle-based cloud microphysical model: insights from column model 

> simulations using LCM1D (v1.0), Geosci. Model Dev., 13, 5119–5145, 

> https://doi.org/10.5194/gmd-13-5119-2020, 2020. 

 

This is now quoted in paragraph 2 of the introduction and at the end 

of Section 2.a. 

 

-------------------------------------------------------------------------

--- 

> Reviewer #2: General comments: This manuscript returns to the problem 

> of "lucky droplets" as discussed in Telford (1955) and Kostinsky and 

> Shaw (2005) by considering growth of an ensemble of lucky droplets 

> and applying a superdroplet method (SDM). As the cloud simulation 

> community expands the use of Lagrangian microphysics to study 

> cloud and precipitation processes, understanding its limitations is 

> important. This paper contributes to such an effort. Moreover, it is 

> also important to recognize that the authors represent two distant 

> communities that apply Lagrangian method in collision/coalescence 

> simulations and making these two communities aware of the progress is 



> important. I thus recommend publication after my general and specific 

> comments are addressed. 

 

We thank the reviewer for their positive assessment. 

 

> General comments: 

> 1. I feel some aspects of the paper discussion (e.g., the four 

approaches, 

> I to IV) seem to detract from the main thrust of the paper. In my view, 

> the narrative can be substantially tightened up, focusing on the new 

> aspects, like the extension of previous studies by allowing many 

initially 

> larger droplets that lead to jumps. The abstract does not give justice 

> to the discussion in the main text. This is perhaps my personal taste, 

> but if other reviewers echo my assessment, then the authors should 

> seriously consider significant rewriting focusing on the key new 

findings. 

 

We do not agree that the jumps are the main new contribution of this 

paper. Our main point is to say that the superdroplet algorithm models 

the lucky droplet problem correctly. We do this by decomposing this 

algorithm into approaches II and III, and demonstrate that both of them 

give, on their own, an accurate solution, which is also the same when 

combined into approach four. The aspects of jumps occurs as an extra 

complication that we now can explain. Likewise, the extension from 1-D 

to 3-D is another such complication that we are also able to explain, 

which is necessary to compare with the right reference solution. 

 

To explain the significance of approaches II and III early on, we have 

now added the following to the abstract, "The superdroplet algorithm 

incorporates fluctuations in two distinct ways: through the random 

distribution of superdroplets and through the random choice of whether 

or not a collision occurs when two superdroplets reside within the volume 

of one mesh point. Through specifically designed numerical experiments, 

we show that both sources of fluctuations on their own give an accurate 

representation of fluctuations. 

 

> 2. The notation used in the paper should be improved. For instance, 

> having "N" with various sub- and superscripts makes reading and 

> understanding difficult. This is why those various "N" symbols are 

> listed in Table 1. One can use N and M for number of superdroplets and 

> multiplicity, respectively, and use "m" for mass (not M as it is now). 

> Or maybe use the same notation as in Shima et al.? I think this is 

> what Dziekan and Pawlowska used, correct? The word "multiplicity" never 

> appears in the manuscript and I think it should as this is the best way 

> in my view to represent the essence of superdroplets. 

 

Shima et al used "M_i" to denote "mass of the solute contained in the 

droplet." and "xi" for multiplicity. Dziekan and Pawlowska used "xi" for 

multiplicity as well but used "m" as a symbol for the mass in general to 

describe the mass density distribution instead of the specific "mass of 

superdroplet". Thus, we follow the notation of Shima et al to describe 

the 

algorithm for consistency. We have now changed N_{p/s} to "xi". Also, 



we have now changed them to xi_i(t), Nd(t), and Ns(t) all across the 

paper. xi_i(t=0), Nd(t=0), and Ns(t=0) represent the initial numbers. 

 

> 3. The key idea of the SDM is somehow lost in the paper. In real world, 

> two colliding droplets create a new droplet of a larger size. The same 

> applies to superdroplets. In a numerical implementation, one then 

expects 

> the number of superdroplets to increase in time, up to the point when 

the 

> problem becomes computationally intractable. The beauty of the Shima et 

> al. stochastic algorithm is that the number of superdroplets stays the 

> same because one waits until the droplets with smaller number are 

replaced 

> by the product of their collisions with larger-number superdroplets. 

The 

> other aspect, stochastic selection of superdroplet pairs involved in 

> collisions, is also important, although probably irrelevant for the 

> problem considered in the manuscript under review. Maybe this comment 

> reflects the fact that it is not clear to me where the superdroplet 

> approach enters the study presented in the paper. In other words, most 

> of the paper does not require reference to superdroplets at all, 

correct? 

 

This is not correct; the model of Shima et al is what is implemented 

and what is tested, typically with up to 1000 independent realizations. 

This is barely enough to see the inaccuracies in the model and already 

computationally expensive. This is what is referred to as approach IV. 

However, we explain that the superdroplet algorithm invokes two separate 

sources of randomness, and we show that both of them on their own 

(approaches II and III) describe the LDM correctly. It is therefore 

not correct that we do not make references to superdroplets. To clarify 

this further, we have now added Table 3 to summarize these aspects. 

 

> 4. Jumps. I think this is where the paper moves forward when compared 

to 

> Telford and Kostinsky/Shaw. This is because Li et al. study considers 

> a growth of an ensemble of initially-larger droplets (rather than a 

> single larger droplet as in those other studies), and thus collisions 

> between those larger droplets are possible. This where the jumps come 

> from, correct? If so, this needs to be appropriately stressed. That 

> said, I am surprised by the difference in the time axes in figure 6 and 

> 8. I would expect jumps accelerate the growth, but this is not the case 

> comparing the two figures (the mean reaches 50 microns in about 100 s 

> in Fig. 6 and about 700 s in Fig. 8; why?). I think there are other 

> differences than just inclusion of more-than-one initial larger 

droplet. 

> Please explain. Also, rather than presenting details of each simulation 

> in the figure caption, the main text should provide those. Figure 6 is 

> a good example, but the same applies to several other figures. 

 

Yes, this explanation of jumps is correct. The reason for the change in 

the typical time scale of growth was caused by a change in n_0. We have 

now rerun this case and updated Figures 6 and 7 correspondingly. 

 



> 5. I think the fact that the study applies completely unrealistic 

> collision efficiencies (equal to 1) needs to be stressed 

> throughout. Collision efficiencies for such small droplets are just a 

few 

> percent and they rapidly increase to about 70% for collisions between 

10 

> and 50 micron droplets (see Table 1 in Hall JAS 1980). The authors 

argue 

> that they use collision efficiency of 1 to compare to previous studies, 

> but this aspect (the comparison) is not really discussed in detail 

> in the manuscript (maybe I missed it?). I feel both including large 

> number of initially-larger droplets (per 3 above) and realistic 

collision 

> efficiencies are important to bring this study closer to reality. 

 

We did discuss efficiencies different from unity in Equation (15) and 

presented corresponding results in Figure 5. To stress this, we have now 

added the sentence "To assess the effects of this assumption, we also 

compare with result where the efficiency increases with droplet radius 

(Lamb & Verlinde_2011). In particular, we adopt a simple power law 

prescription that was previously considered by Kosinski & Shaw (2005) 

and Wilkinson (2016)." at the end of the paragraph after Eq.(4). 

 

> Specific comments: 

> 1. L. 89/90, "When the number...". This sentence is unclear. What 

> correlations? Also, this is a good place to introduce multiplicity as 

> suggested above. 

 

We have now removed this sentence, which was essentially a quote from 

the paper by Dziekan & Pawlowska (2017). We have now changed this and 

introduced the multiplicity, as suggested by the referee, so: "This 

number 

is what is called the multiplicity, which we denote by xi. When this 

number is larger than 9, they found that a residual error remains." 

 

> 2. L. 142. As stated above, this is an unrealistic assumption and I do 

> not see direct comparison with previous models. In fact, adding 

realistic 

> collision efficiencies, together with many initially-larger droplets 

> would benefit the presentation. 

 

We refer here to the model of Kosinski & Shaw (2005) as well as that of 

Wilkinson (2016). This is first mentioned at the end of the paragraph 

after Eq.(4). We return to this when explaining Eq.(16). The results 

are described in the following paragraph; see also Figure 5 for the 

quantitative results. 

 

> 3. L. 152. A discussion of Fig. 1 would be appropriate here. 

 

This is the content of the two paragraphs involving Eqs.(5)-(7). 

We have now incorporated the discussion of Fig.1 in the text 

around Eq.(5). 

 

> 4. L. 156. I do not understand how one can get "fractional number of 



> droplets". Please explain. 

 

You are right, in this work we do not consider fractional droplet 

numbers. 

We have now removed this statement, which was previously just below 

Eq.(7). 

 

> 5. L. 158. When and why do you remove a droplet from the calculations 

> (per 4 above)? How often does that happen? Is the loss of the total 

> mass significant? 

 

We have now revised this sentence to the following, "It is then assumed 

that, when two superdroplets with less than one physical droplet collide, 

the superdroplet containing the smaller physical droplet is collected by 

the larger one and thus is removed from the computational domain after 

the collision." 

 

> 6. L. 190. Where the viscosity given in this line enters the picture? 

 

We have now moved the viscosity of the airflow right after Eq.(2). 

 

> 7. L. 192. Where do the fall velocity of the initial larger droplet 

(3.5 

> cm/s) comes from? 10 micron droplet falls with about 1.2 cm/s at 

typical 

> surface conditions (air temperature, density, etc). 12.6 micron droplet 

> would then fall around 1.9 cm/s following the Stokes law. Please 

explain. 

 

The fall velocity is given by g*tau, where g=9.81 m/s^2 and, 

according to our Eq.(2), tau=2*1000*r1^2/(9*rho*nu), so 

tau=2*1000*12.6e-6^2/(9*1*1e-5)=0.00352s, and v=9.81*0.00352=0.035m/s. 

 

> 8. L. 219-221. But rk >> r1 not a valid approximation for the case 

> considered here! Neither is E=1. 

 

We have now added "While the LDM is well suited for addressing 

theoretical questions regarding the significance of rare events, it 

should be emphasized that it is at the same time highly idealized. 

Collisions with $r_i\gg r_1$ are not very realistic. Furthermore, 

it is well known that..." 

 

> 9. Eq. 10-12. The Stokes flow regime that is assumed here is not 

> valid beyond droplet radius of about 30 microns. This should be 

> pointed out here. 

 

At the end of Section 3.a, we have now added "Note that for droplets 

with r >= 30 um, the linear Stokes drag is not valid." below Eq.(10). 

 

> 10. Fig. 15, right panel. Green and blue symbols are difficult to 

> distinguish. I suggest using red for either blue or green. 

 

We have now changed the green color to red. 

 



-------------------------------------------------------------------------

--- 

> Review #3 

> Dear Editor, Dear Authors, 

> In what follows, I provide my comments to the manuscript entitled 

> "Collision fluctuations of 1 context of cloud droplets. The motivation 

> revolves around understanding the role of fluctuations in the process, 

and 

> in assessing the performance of the numerical coagulation schemes used 

in 

> particle- based cloud microphysics modelling. The topic clearly matches 

> the scope of the journal. In several aspects, the submitted version of 

> the paper presents the findings in juxtaposition to those reported in 

> Dziekan and Pawlowska 2017 (the discussion section is solely devoted to 

> it). The study uses a simple quiescent setup with mostly monodisperse 

> particles settling and colliding under gravity but not affecting the 

flow 

> (i.e., there is no flow). In what follows, I suggest several points to 

> address when revising the paper before publication (citations that are 

> not listed in the reviewed manuscript are given below). 

 

We thank the reviewer for the detailed assessment and have now improved 

the paper in the ways explained below in detail. 

 

> 1. The "superdroplets" mentioned already in the title are presented 

> in a misleading way in my opinion. The authors interchangeably use 

> "superdroplet method", "superdroplet algorithm", "superdroplet 

> simulation", "the superdroplet model" to refer to either general 

> or specific aspects of probabilistic particle-based simulations of 

> flow-coupled phenomena and/or coagulation. While the study does not 

> feature flow coupling, it is still of great value to clearly 

distinguish: 

> (a) super-particle approach to simulations; (b) inclusion of 

coagulation 

> process in such simulations, (c) particular algorithm used to 

numerically 

> represent coagulation (e.g., SDM); and (d) its implementation (here, 

the 

> super-particle coagulation module of Pencil-Code). It is worth noting 

that 

> the idea "to combine physical aerosol droplets into superdroplets" 

> (p5/l61) and its application to atmospheric simulations clearly 

predates 

> the cited works of Zsom and Dullemond, 2008 and Shima et al., 2009 

> (see e.g., [Lan78; Zan84; CO97; PHP04]). While I agree that the aughts 

> brought breakthroughs with the introduction of scalable Monte-Carlo 

> schemes in the referenced works (but also owing to other developments 

> surveyed e.g. in [DRW11]), the background information presented in 

> the study and the nomenclature used seems misleading. The particular 

> algorithm, SDM, introduced in Shima et al. 2009 is a precisely-defined 

> numerical representation of Monte-Carlo coagulation. SDM has the unique 

> feature of having computational complexity linear with the number of 

> super-particles used (among other aspects due to candidate pair 

selection 



> method). It seems to me to be essential to discuss such "details" 

> as the favorable scaling of SDM comes at a trade-off (see e.g., 

> discussion in [UHL20] where SDM is referred to as "AON with linear 

> sampling"). All the more, given that the authors state in the abstract 

> that they "quantify the accuracy of the super-droplet method". 

 

We have now used the word "superdroplet algorithm" throughout, except 

when 

we talk about "superdroplet simulation", which refers to a simulation 

performed with the superdroplet algorithm.  We thank the referee for 

the other references that we have studied with interest. Quoting them in 

the context of the present lucky droplet work seemed to us a bit remote, 

so have not mentioned them here. 

 

The work of Zannetti 1984  and Paoli et al 2004 indeed 

introduced the superpartcile concept but they didn't tackle 

the coagulation problem. 

We have said this now in the paper. 

Since we only address the application of Monte-Carlo coagulation 

scheme in this manuscript, those work are beyond the scope of 

this study. As far as we understand, Lange 78 

(https://doi.org/10.1175/1520-0450(1978)017%3C0320: ATDPIC%3E2.0.CO;2.) 

does not discuss the Monte-Carlo collison scheme. It is a Lagrangian 

tracking method for particles advected in a Eulerian turbulent flow. 

CO97 

(https://rmets.onlinelibrary.wiley.com/doi/epdf/10.1017/S1350482797000455

) 

does not discuss the superdroplet method either. 

 

> 2. There is no discussion on the discrepancy between the presented 

> simulations involving "several" (as already acknowledged in 

> the abstract) real drops per super-droplet, and the common values of 

> billions of particles per super-particle which is found in many of the 

> referenced works. 

 

We say that it doesn't matter much; see Figs.10 and A.1. 

  

> 3. The notion of Direct Numerical Simulation (DNS) – the very first 

> words of the paper – seem to be used in a somewhat different way then 

> it is often assumed in the domain (which is not wrong, but calls for 

> discussion). In the introduction, the super-particle method is 

introduced 

> 1The paper seems to be an updated version of an e-print published on 

> arXiv in 2018 [Li+18] where it has a "Q. J. R. Meteorol. Soc" header, 

> and which constituted one of five papers contained in the PhD thesis of 

> the first author [Li18] where it is labelled as "Phys.Rev. E., to be 

> submitted". 1 lucky droplets with superdroplets" submitted to JAS . 

> Presented study deals with the process of collisional growth of 

particles 

> and is discussed in the by contrasting it with DNS: "Compared with DNS, 

> the superdroplet method is distinctly more efficient". However, it 

> seems common to associate the DNS qualifier with the type of 

continuous- 



> phase representation, regardless of the way the dispersed phase is 

treated 

> (in particular also when using super-particle/weighting-factor approach 

> as in [RPW20], but also when using bulk or bin representation for cloud 

> water as in [And+04]). 

 

We have now added an explanation of what DNS means; see the second 

sentence of the introduction, where we have now added the sentence "Here, 

DNS refers to the realistic representation of all relevant processes 

including the use of a realistic viscosity along with proper operators 

for the viscous flux and a realistic modeling of all droplets." This 

connected naturally with the already existing explanation of Lagrangian 

tracking. Regarding the history of the present paper, the referee's 

observation is correct in that it was originally submitted t0 QJRMS, 

but received unfavorable comments. In the following 3 years, we have 

substantially reworked the paper. The paper was never sent to Phys Rev 

E, but the template of that journal was used in the thesis.  To refer 

to RPW20 and And+04. 

 

> 4. The choice and usage of references is puzzling. On the one hand, 

> there are just four papers cited on the very topic of "lucky 

> droplets" announced in the title. On the other hand, a dozen of 

> papers on astrophysical aggregation mechanisms are among the referenced 

> literature. At times, references are misleading and off target, e.g.: 

> (*) Jokulsdottir and Archer 2016 is listed among "meteorological 

> literature" while the study deals with the biological pump mechanism 

> in the oceans; 

> (*) Patterson & Wagner 2012 seem also not to involve the meteorological 

> context either, while listing 20 other "meteorological" works in one 

> parenthesis (p5/l64-69) without a hint of explanation why these and not 

> others were picked is confusing – one may come up with a different 

> set of 20 works applying super-particle approach in "meteorological 

> literature" (starting with the above-mentioned works predating Zsom 

> & Dullemond and Shima et al. papers); 

> (*) there is a mention of "the stochastic coagulation equation 

> of Gillespie (1972)" despite that Gillespie’s model is the very 

> alternative to SCE; 

> (*) works not even dealing with Monte-Carlo coalescence are listed 

> as using "the superdroplet algorithm": Andrejczuk et al. 2008 does 

> not feature coalescence at all (it’s a condensation- only study), 

> Andrejczuk et al. 2010 does not feature Monte-Carlo coalescence (it 

uses 

> SCE-like approach) – these works use particle-based cloud microphysics, 

> super-particle approach, but not the Super-Droplet Method algorithm 

> (please do differentiate the terms). 

> Overall, the first 20 lines of the text contain 40 references, while 

> the whole bibliography totals 46 items, of which a sheer majority is 

> cited once on the first page. Not that the actual numbers matter here, 

> but it would be worth to bring some more balance. Intriguingly, unlike 

> in the case of the submitted text, the initial version of the 

manuscript 

> [Li+18] and the PhD thesis it was a part of [Li18] do provide somewhat 

> clearer background sections pointing to several review papers on the 

> topic to which references are not present in the present version (e.g., 



> [Sha03; Da12; GW13; PW16]). Technical issues with references: some 

> reference entries include DOIs, some not; several include doubled URLs; 

> numerous entries include "n/a-n/a" page ranges; acronyms and proper 

> names have bogus spelling (Mcsnow, lagrangian, kuiper, slams, 

neptunian, 

> ...); capitalisation is not consistent. 

 

We are aware of only 4 papers addressing the lucky droplet model. 

We mention astrophysical papers to address the wide application of 

the superdroplet approach beyond meteorology. We have now removed the 

references to Jokulsdottir and Archer 2016 and Patterson & Wagner 2012, 

as well as Andrejczuk et al. 2008 and 2010. We have now listed other 

meteorological references and hope that this addresses the referee's 

concern regarding the lack of suitable papers. 

 

We mentioned Gillespie et al just to describe the work of Dziekan et al 

2017. 

We have now corrected those entries with "n/a-n/a" page ranges. 

 

> 5. Effectively, the paper seem to lack proper definition of the 

simulation 

> mesh. It is just said that simulations are performed in 1D and in 3D. 

 

We have now added the mesh points in Sec.2.b. 

 

> 6. Reproducibility. Information on the software used to perform the 

> simulations (multi-purpose CFD solver, not the actual setups or 

analysis 

> scripts) can only be found in Acknowledgements, without version number 

or 

> permanent archive. Please follow the AMS guidelines regarding archiving 

> of core research output including software. Github does not qualify 

> as permanent archive, please use e.g., zenodo.org. To make the study 

> reproducible, the code archive should include all scripts needed to set 

> up, run and analyse the simulations to obtain the presented figures. 

> Hope that helps. 

 

We have now assembled all the run scripts on the web page mentioned at 

the end of the paper. We have also now put a copy with this information 

on Zenodo. 
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ABSTRACT

It was previously shown that the superdroplet algorithm to model the collision-coalescence

process can faithfully represent mean droplet growth in turbulent aerosols. But an open

question is how accurately the superdroplet algorithm accounts for fluctuations in the col-

lisional aggregation process. Such fluctuations are particularly important in dilute suspen-

sions. Even in the absence of turbulence, Poisson fluctuations of collision times in dilute

suspensions may result in substantial variations in the growth process, resulting in a broad

distribution of growth times to reach a certain droplet size. We quantify the accuracy of

the superdroplet algorithm in describing the fluctuating growth history of a larger droplet

that settles under the effect of gravity in a quiescent fluid and collides with a dilute sus-

pension of smaller droplets that were initially randomly distributed in space (‘lucky droplet

model’). We assess the effect of fluctuations upon the growth history of the lucky droplet and

compute the distribution of cumulative collision times. The latter is shown to be sensitive

enough to detect the subtle increase of fluctuations associated with collisions between mul-

tiple lucky droplets. The superdroplet algorithm incorporates fluctuations in two distinct

ways: through the random distribution of superdroplets and through the explicit Monte

Carlo algorithm involved when two superdroplets reside within the volume around one mesh

point. Through specifically designed numerical experiments, we show that both sources of

fluctuations on their own give an accurate representation of fluctuations. We conclude

that the superdroplet algorithm can faithfully represent fluctuations in the coagulation of

droplets driven by gravity.
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1. Introduction36

Direct numerical simulations (DNS) have become an essential tool to investigate collisional37

growth of droplets in turbulence (Onishi et al. 2015; Saito and Gotoh 2018). Here, DNS38

refers to the realistic modeling of all relevant processes, which involves not only the use39

of a realistic viscosity, but also a realistic modeling of collisions of droplet pairs in phase40

space. The most natural and physical way to analyze collisional growth is to track individual41

droplets and to record their collisions, one by one. However, DNS of the collision-coalescence42

process are very challenging, not only when a large number of droplets must be tracked, but43

also because the flow must be resolved over a large range of time and length scales.44

Over the past few decades, an alternative way of modeling aerosols has gained popularity.45

Zannetti (1984) introduced the concept of “superparticles, i.e., simulation particles repre-46

senting a cloud of physical particles having similar characteristics.” This concept was also47

used by Paoli et al. (2004) in the context of condensation problems. The application to co-48

agulation problems was pioneered by Zsom and Dullemond (2008) and Shima et al. (2009),49

who also developed a computationally efficient algorithm. The idea is to combine physi-50

cal aerosol droplets into ‘superdroplets’. To gain efficiency, one tracks only superdroplet51

collisions and uses a Monte-Carlo algorithm (Sokal 1997) to account for collisions between52

physical droplets. The superdroplet algorithm is used in both the meteorological literature53

(Shima et al. 2009; Sölch and Kärcher 2010; Riechelmann et al. 2012; Arabas and Shima 2013;54

Naumann and Seifert 2015, 2016; Unterstrasser et al. 2017; Dziekan and Pawlowska 2017;55

Li et al. 2017, 2018, 2019, 2020; Sato et al. 2017; Jaruga and Pawlowska 2018; Brdar and56

Seifert 2018; Sato et al. 2018; Seifert et al. 2019; Hoffmann et al. 2019; Dziekan et al. 2019;57

Grabowski et al. 2019; Shima et al. 2020; Grabowski 2020; Unterstrasser et al. 2020), as well58
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as in the astrophysical literature (Zsom and Dullemond 2008; Ormel et al. 2009; Zsom et al.59

2010; Johansen et al. 2012; Johansen et al. 2015; Ros and Johansen 2013; Drakowska et al.60

2014; Kobayashi et al. 2019; Baehr and Klahr 2019; Ros et al. 2019; Nesvornỳ et al. 2019;61

Yang and Zhu 2020; Poon et al. 2020; Li and Mattsson 2020; Li, Xiang-Yu and Mattsson,62

Lars 2021). Compared with DNS, the superdroplet algorithm is distinctly more efficient.63

It has been shown to accurately model average properties of droplet growth in turbulent64

aerosols. Li et al. (2018) demonstrated, for example, that the mean collision rate obtained65

using the superdroplet algorithm agrees with the mean turbulent collision rate (Saffman and66

Turner 1956) when the droplets are small.67

Less is known about how the superdroplet algorithm represents fluctuations in the col-68

lisional aggregation process. Dziekan and Pawlowska (2017) compared the results of the69

superdroplet algorithm with the predictions of the stochastic coagulation equation of Gille-70

spie (1972) in the context of coalescence of droplets settling in a quiescent fluid. Dziekan71

and Pawlowska (2017) concluded that the results of the superdroplet algorithm qualitatively72

agree with what Kostinski and Shaw (2005) called the lucky droplet model (LDM). To as-73

sess the importance of fluctuations, Dziekan and Pawlowska (2017) computed the time t10%,74

after which 10% of the droplets have reached a radius of 40µm. In agreement with earlier75

Lagrangian simulations of Onishi et al. (2015), which did not employ the superdroplet algo-76

rithm, they found that the difference in t10% between their superdroplet simulations and the77

stochastic model of (Gillespie 1972) decreases with the square root of the number of droplets,78

provided that there are no more than about nine droplets per superdroplet. The ratio of79

droplets per superdroplet is called the multiplicity. When this number is larger than 9, they80

found that a residual error remains. We return to this question in the discussion of the81
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present paper, where we tentatively associate their findings with the occurrence of several82

large (lucky) droplets that grew from the finite tail of their initial droplet distribution.83

The role of fluctuations is particularly important in dilute systems, where rare extreme84

events may substantially broaden the droplet-size distribution. This is well captured by the85

LDM, which was first proposed by Telford (1955), and more recently quantitatively analyzed86

by Kostinski and Shaw (2005). The model describes one large droplet (twice the mass of87

10µm-sized droplets in radius) settling through a dilute suspension of smaller droplets. The88

collision times between the larger droplets (the lucky droplet) and the smaller ones are89

exponentially distributed, leading to substantial fluctuations in the growth history of the90

lucky droplet. Wilkinson (2016) derived analytic expressions for the distribution of the91

cumulative distribution time using large-deviation theory.92

The goal of the present paper is to investigate how accurately the superdroplet algorithm93

represents fluctuations in the collisional growth history of settling droplets in a quiescent94

fluid. Unlike the work of Dziekan and Pawlowska (2017), we use here the LDM. We record95

growth histories of the larger droplet in an ensemble of different realizations of identical96

smaller droplets that were initially randomly distributed in a quiescent fluid. We show that97

the superdroplet algorithm accurately describes the fluctuations of growth histories of the98

lucky droplet in an ensemble of simulations. In its simplest form, the LDM assumes that99

the lucky droplet is large compared with the background droplets so that the radius of those100

smaller droplets can be neglected in the geometrical collision cross section and collision101

velocities. Since fluctuations early on in the growth history are most important (Kostinski102

and Shaw 2005; Wilkinson 2016), this can make a certain difference in the distribution of103

the times T it takes for the lucky droplet to grow to a certain size. Third, since the small104

droplets are initially randomly distributed, their local number density fluctuates. Lucky105
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droplets can grow most quickly where the local number density of small droplets happens106

to be large.107

The remainder of this paper is organized as follows. In section 2.2 we describe the super-108

droplet algorithm and highlight differences between different implementations used in the109

literature (Shima et al. 2009; Johansen et al. 2012; Li et al. 2017). Section 3 summarizes the110

LDM, the setup of our superdroplet simulations, and how we measure fluctuations of growth111

histories. Section 4 summarizes the results of our superdroplet simulations. We conclude in112

section 6.113

2. Method114

a. Superdroplet algorithm115

Superdroplet algorithms represent several physical droplets in terms of one superdroplet.116

All droplets in superdroplet i are assumed to have the same material density ρd, the same117

radius ri, the same velocity vi, and reside in a volume around the same position xi. The118

index i labeling the superdroplets ranges from 1 to Ns(t0) (Table 1), where t0 denotes the119

initial time. The hydrodynamic force is modeled using Stokes law.120

The equation of motion for the position xi and velocity vi of superdroplet i reads:121

dxi
dt

= vi ,
dvi
dt

= −vi
τi

+ g . (1)

Here g is the gravitational acceleration,122

τi = 2ρdr
2
i /9ρν (2)

is the droplet response (or Stokes) time attributed to the superdroplet, ν = 10−5 m2 s−1 is123

the viscosity of air, and ρ is the mass density of the airflow.124

6



Droplet collisions are represented by collisions of superdroplets (Shima et al. 2009; Jo-125

hansen et al. 2012; Li et al. 2017), as mentioned above. When two superdroplets collide, a126

Monte-Carlo scheme is used to determine which pairs of superdroplets collide. All pairs of127

superdroplets within the volume around one mesh point may collide. It is assumed that128

two droplets in either of the superdroplets (with indices i and j) collide with probability129

pij = λijδt , (3)

where δt is the integration time step. A collision happens when η < pij, where 0 ≤ η ≤ 1 is130

a uniformly distributed random number. To avoid a probability larger than unity, we limit131

the integration step through the condition δt < 1/λij. This is one of several other time step132

constraints (e.g., those based on the sound speed, the advection velocity, and the viscosity)133

that are applied adaptively during the simulation. The collision rate is134

λij = π (ri + rj)
2 |vi − vj|Eij ξmax/δx

3 , (4)

where Eij is the collision efficiency, ξmax = max(ξi, ξj) is the larger one of the two ξ values135

for superdroplets i or j (Table 1), and δx3 is the volume of the grid cell closest to the136

superdroplet. Note that equation (4) implies that background droplets, which all have the137

same radius (and therefore vi = vj, so λij = 0) can never collide among themselves. To138

facilitate the comparison with the earlier work, we assume Eij = 1 for most of our models.139

To assess the effects of this assumption, we also compare with results where the efficiency140

increases with droplet radius (Lamb and Verlinde 2011). Following Kostinski and Shaw141

(2005) and Wilkinson (2016), we adopt a simple power law prescription.142

What happens when two superdroplets collide? To write down the rules, we denote the143

number of droplets in superdroplet i by ξi, while ξj is the number of droplets in superdroplet144

j. Mi and Mj are the corresponding droplet masses. The collision scheme suggested by145
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Shima et al. (2009) amounts to the following rules; see also Figure 1 for an illustration. To146

ensure mass conservation between superdroplets i and j, when ξj > ξi, which is the case147

illustrated in Figure 1(b), droplet numbers and masses are updated such that148

ξi → ξi , ξj → ξj − ξi , (5)

Mi →Mi +Mj , Mj →Mj .

When ξj < ξi, which is the case shown in Figure 1(a), the update rule is also given by149

equation (5), but with indices i and j exchanged. In other words, the number of droplets in150

the smaller superdroplet remains unchanged (and their masses are increased), while that in151

the larger one is reduced by the amount of droplets that have collided with all the droplets152

of the smaller superdroplet (and their masses remain unchanged).153

To ensure momentum conservation during the collision, the momenta of droplets in the154

two superdroplets are updated as155

viMi → viMi + vjMj ,

vjMj → vjMj , (6)

after a collision of superdroplets.156

Finally, when ξi = ξj, which is the case described in Figure 1(c), droplet numbers and157

masses are updated as158

ξi → ξi/2 , ξj → ξj/2 , (7)

Mi →Mi +Mj , Mj →Mi +Mj .

It is then assumed that, when two superdroplets with less than one physical droplet collide,159

the superdroplet containing the smaller physical droplet is collected by the larger one; it is160

thus removed from the computational domain after the collision.161
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To reduce the computational cost and make it linear in the number of superdroplets per162

mesh point, ns(t), Shima et al. (2009) assumed that each droplet interacts at most with one163

other one, which is referred to as random permutation technique. This technique was also164

adopted in Dziekan and Pawlowska (2017) and Unterstrasser et al. (2020), This technique165

was also adopted in Dziekan and Pawlowska (2017) and but is not used in the Pencil Code,166

because it could reduce the collision statistics. Furthermore, it is important to emphasize167

that the computational cost is in either case only linear in the total number of superdroplets,168

because we do not allow for collisions between superdroplets that are not in the proximity169

of the same mesh point.170

b. Numerical setup171

In our superdroplet simulations, we consider droplets of radius 10µm, randomly dis-172

tributed in space, together with one droplet of twice the mass and radius 21/3 × 10µm =173

12.6µm. The larger droplet has a higher settling speed than the 10µm droplets and sweeps174

them up through collision and coalescence. Since the flow is not disturbed by the particles,175

we neglect two-way coupling. For each simulation, we track the growth history of the larger176

droplet until it reaches 50µm in radius and record the time T it takes to grow to that size.177

In the superdroplet algorithm, one usually takes ξi(t0)� 1, which implies that the actual178

number of lucky droplets is also more than one. This was not intended in the original179

formulation of the lucky droplet model (Telford 1955; Kostinski and Shaw 2005; Wilkinson180

2016) and could allow the number of superdroplets with heavier (lucky) droplets, N (luck)
s ,181

to become larger than unity. This would manifest itself in the growth history of the lucky182

droplets through an increase by more than the mass of a background droplet. We refer to183

this as “jumps”. Let us therefore now discuss the conditions under which this would happen184
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and denote the values of ξ(t0) for the lucky and background droplets by ξluck and ξback,185

respectively. First, for ξluck = ξback, the masses of both lucky and background droplets can186

increase, provided their values of ξ(t0) are above unity; see Figure 1(c). Second, even if187

ξluck < ξback initially, new lucky superdroplets could in principle emerge when the same two188

superdroplets collide with each other multiple times. This can happen for two reasons. First,189

the use of periodic boundary conditions for the superdroplets (i.e., in the vertical direction190

in our laminar model with gravity). Second, two superdroplets can remain at the same191

location (corresponding to the same mesh point of the Eulerian grid for the fluid) during192

subsequent time steps. (Our time step must be less than the time for a superdroplet to fall193

from one mesh point to the next.) Looking at Figure 1, we see that ξback can then decrease194

after each collision and potentially become equal to or drop below the value of ξluck. This195

becomes exceedingly unlikely if initially ξback � ξluck, but it is not completely impossible,196

unless ξluck is chosen initially to be unity.197

The initial value of ξback can in principle also be chosen to be unity. Although such a case198

will indeed be considered here, it would defeat the purpose and computational advantage of199

the superdroplet algorithm. Therefore, we also consider the case ξback � ξluck. As already200

mentioned, jumps are impossible if ξluck is unity. For orientation, we note that the speed of201

the lucky droplet prior to the first collision is about 3.5 cm s−1, the average time to the first202

collision is 490 s, and thus, it falls over a distance of about 17 m before it collides.203

The superdroplet algorithm is usually applied to three-dimensional (3-D) simulations. If204

there is no horizontal mixing, one can consider one-dimensional (1-D) simulations. Moreover,205

we are only interested in the column in which the lucky droplet resides. In 3-D, however,206

the number density of the 10µm droplets beneath the lucky one is in general not the same207

as the mean number density of the whole domain. This leads to yet another element of208
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randomness that we shall consider in this paper by studying the difference between 1-D and209

3-D simulations, and fluctuations of the number density between columns.210

Equation (1) is solved with periodic boundary conditions using the Pencil Code (Pencil211

Code Collaboration et al. 2021), which employs a third-order Runge-Kutta time stepping212

scheme. For 1-D simulations, we employ initial number density n0 = 3 × 108 m−3, volume213

V = 8.56× 10−7 m3 (Lx = Ly = 0.002 m, Lz = 0.214 m), and Ns(t0) = 256 with multiplicity214

ξluck(t0) = ξback(t0) = 1. For each simulation, 7,686,000 time steps are integrated with a time215

step δt = 2.942× 10−4. For 3-D simulations, we use n0 = 3× 108 m−3, V = 8.847× 10−7 m3
216

(Lx = Ly = Lz = 0.0096 m), and Ns(t0) = 128 with multiplicity ξluck(t0) = ξback(t0) = 2.217

There are 9,677,500 time steps integrated with a time step δt = 1.04 × 10−4. We set218

Ngrid = 64 and perform 1000 simulations for both cases. Recall that smaller superdroplets219

with ξ(t0) = 1 are removed after a collision event. For a superdroplet with a initial radius220

12.6µm grow to 50µm, 125 collisions are required. This justifies our use of Ns(t0) ≥ 128.221

3. Lucky-droplet models222

a. Basic idea223

In its simplest form, the LDM describes the collisional growth of a larger droplet that224

settles through a quiescent fluid and collides with smaller monodisperse droplets, that were225

initially randomly distributed in space. This corresponds to the setup described in the pre-226

vious section. We begin by recalling the main conclusions of Kostinski and Shaw (2005).227

Initially, the lucky droplet has a radius corresponding to a volume twice that of the back-228

ground droplets, whose radius was assumed to be r1 = 10µm. Therefore, its initial radius229
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is r2 = 21/3r1 = 12.6µm. After the kth collision step with smaller droplets, it increases as230

rk ∼ r1k
1/3. (8)

Fluctuations in the length of the time intervals tk between collision k − 1 and k give rise to231

fluctuating growth histories of the larger droplet. These fluctuations are quantified by the232

distribution of the cumulative time233

T =
125∑
k=2

tk, (9)

corresponding to 124 collisions needed for the lucky droplet to grow from 12.6µm to 50µm.234

The time intervals tk between successive collisions are drawn from an exponential distribution235

with a probability pk(tk) = λk exp(−λktk). The rates λk depend on the differential settling236

velocity |vk−v1| between the colliding droplets through equations (3) and (4). Here, however,237

the background droplets have always the radius r1, so the collision rate at the kth collision238

of the superdroplet i obeys239

λi(k) = π (ri + r1)
2 |vi − v1|Ei ξmax/δx

3 . (10)

i.e., the second index on λ is here dropped, because it is always 1. Likewise, we have also240

dropped the second index on the collision efficiency, i.e., Ek ≡ Ek1.241

While the LDM is well suited for addressing theoretical questions regarding the signifi-242

cance of rare events, it should be emphasized that it is at the same time highly idealized.243

Furthermore, while it is well known that Ek � 1 (Pruppacher and Klett 1997), it is in-244

structive to assume, as an idealization, Ek = 1 for all k, so the collision rate (4) can be245

approximated as λk ∼ r4k (Kostinski and Shaw 2005), which is permissible when rk � r1. It246

follows that, in terms of the number of collisions k, the collision frequency is247

λk = λ∗k
4/3, (11)
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where λ∗ = (2π/9)(ρd/ρ)(gn/ν)r41, and n is the number density of the 10µm background248

droplets. This is essentially the model of Kostinski and Shaw (2005) and Wilkinson (2016),249

except that they also assumed Ek 6= 1. They pointed out that, early on, i.e., for small k, λk250

is small and therefore the mean collision time λ−1k is long. Given that the variance of λ−1k is251

large for small k, the actual time until the first collision can be very long, but it can also be252

very short, depending on fluctuations. Therefore, at early times, fluctuations have a large253

impact on the cumulative collision time. Note that for droplets with r ≥ 30µm, the linear254

Stokes drag is not valid (Pruppacher and Klett 1997).255

b. Relaxing the power law approximation256

We now discuss the significance of the various approximations being employed in the257

mathematical formulation of the LDM of Kostinski and Shaw (2005). To relax the approx-258

imations made in equation (11), we now write it in the form259

λk = λ∗Ekr
2
A(rk)r

2
B(rk)/r

4
1 (k ≥ 2), (12)

where260

r2A = (rk + r1)
2, r2B = r2k − r21 (13)

would correspond to the expression equation (4) used in the superdroplet algorithm. In261

equation (11), however, it was assumed that rA = rB = rk. To distinguish this approximation262

from the form used in equation (12), we denote that case by writing symbolically “rA 6= rk 6=263

rB”; see Figure 2.264

In equation (13), we have introduced rA and rB to study the effect of relaxing the as-265

sumption rA = rB = rk, made in simplifying implementations of the LDM. Both of these266
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assumptions are justified at late times when the lucky droplet has become large compared267

to the smaller ones, but not early on, when the size difference is moderate.268

By comparison, in mean-field theory (MFT), one assumes deterministic collision times269

that are given by tk = λ−1k . In Figure 3 we demonstrate the effect of the contributions from270

rA and rB on the mean cumulative collision time in the corresponding MFT,271

TMFT
k =

k∑
k′=2

tMFT
k′ , (14)

where272

tMFT
k = λ−1k (15)

are the inverse of the mean collision rates. We see that, while the contribution from rA273

shortens the mean collision time, that of rB enhances it. In the right-hand panel, we274

also see that the contributions to the two correction factors r2/r2A and r2/r2B have opposite275

trends, which leads to partial cancelation in their product.276

In Figure 4 we show a comparison of the distribution of cumulative collision times for277

various representations of rk. Those are computed numerically using 1010 realizations of278

sequences of random collision times tk. To perform this many realizations, we use the279

special/lucky_droplet module of the Pencil Code (Pencil Code Collaboration et al.280

2021); see Appendix A1 for details.281

The physically correct model is where rA 6= rk 6= rB (black line). To demonstrate the282

sensitivity of P (T ) to changes in the representation of rk, we show the result for the ap-283

proximations rA = rk = rB (red line) and rA 6= rk = rB (blue line). The P (T ) curve is also284

sensitive to changes in the collision efficiency late in the evolution. To demonstrate this, we285

assume Ek ∝ r2k when rk ≥ r∗ (Lamb and Verlinde 2011). To ensure that Ek ≤ 1, we assume286

Ek = E∗ max
(
1, (r/r∗)

2
)
, (16)

14



where E∗ ≤ 1 has been introduced to ensure Ek ≤ 1. However, the normalized P (T ) curves287

are independent of the choice of the value of E∗. In Figure 5, we show the results for288

rA 6= rk 6= rB using r∗ = 40µm and 30µm (red and blue lines, respectively) and compare289

with the case Ek = const. The more extreme cases with r∗ = 20µm and 10µm are shown290

as gray lines. The latter is similar to the case λk ∼ r6k considered by Kostinski and Shaw291

(2005) and Wilkinson (2016).292

When rA = rk = rB, or only rk = rB, the P (T ) curves exhibit smaller widths. By293

contrast, when the collision efficiency becomes quadratic later on (when r > r∗ ≡ 30µm or294

40µm), the P (T ) curves have larger widths; see Figure 5. To quantify the shape of P (T ),295

we give in Table 3 the average of X ≡ ln(T/〈T 〉), its standard deviation σ = 〈x2〉1/2, where296

x ≡ X − 〈X〉, its skewness skew X = 〈x3〉/σ3, and its kurtosis kurt X = 〈x4〉/σ4 − 3.297

We recall that, for a perfectly lognormal distribution, skew X = kurt X = 0. The largest298

departure from zero is seen in the skewness, which is positive, indicating that the distribution299

is somewhat enhanced for long times. The kurtosis is rather small, however.300

The main conclusion that can be drawn form the investigation mentioned above is that301

it does not result in any significant error to assume rk � r1. The value of σ is only about302

10% smaller if rA = rk = rB is used (compare the red dashed and black solid lines in303

Figure 4). This is because the two inaccuracies introduced by rA and rB almost cancel each304

other. When r∗ = 40µm or 30µm, for example, the values of σ increase by 3% and 15%,305

respectively; see Table 3, where we also list the corresponding values of TMFT
125 .306

A straightforward extension of the LDM, which is possible with all the four approaches,307

is to take horizontal variations in the local column density into account. Those are always308

present for any random initial conditions, but could be larger for turbulent systems, regard-309

less of the droplet speeds. Indeed, in our 3-D superdroplet simulations, large droplets can310
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fall in different vertical columns that contain different numbers of small droplets, a conse-311

quence of the fact that the small droplets are initially randomly distributed. To describe312

the results of our 3-D simulations, it is necessary to solve for an ensemble of columns with313

different number density of the 10µm background droplets and compute the distribution of314

cumulative collision times. We present a corresponding comparison with our superdroplet315

algorithm at the end of this paper.316

c. Relation to the superdroplet algorithm317

To understand the nature of the superdroplet algorithm, and why it captures the lucky318

droplet problem accurately, it is important to realize that the superdroplet algorithm is319

actually a combination of two separate approaches, each of which turns out to be able to320

reproduce the lucky droplet problem to high precision. In principle, we can distinguish321

four different approaches to obtaining the collision time interval tk. In approach I, tk was322

taken from an exponential distribution of random numbers. Another approach is to use a323

randomly distributed set of 10µm background droplets and then to solve for the collisions324

between the lucky droplets and the background explicitly (approach II). A third approach325

is to use a Monte-Carlo method to solve for the time evolution to decide whether at any326

time there is a collision or not (approach III). This is actually what is done within each grid327

cell in the superdroplet algorithm; see equations (3) and (4). The fourth approach is the328

superdroplet algorithm discussed extensively in section 2.a (approach IV). It is essentially329

a combination of approaches II and III. We have compared all four approaches and found330

that they all give very similar results. In the following, we describe approaches II and III in331

more detail, before focussing on approach IV in section 4.332
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d. Solving for the collisions explicitly333

A more realistic method (approach II) is to compute random realizations of droplet posi-334

tions in a tall box of size L2
h × Lz, where Lh and Lz are the horizontal and vertical extents,335

respectively. We position the lucky droplet in the middle of the top plane of the box. Col-336

lisions are only possible within a vertical cylinder of radius rk + r1 below the lucky droplet.337

Next, we calculate the distance ∆z to the first collision partner within the cylinder. We338

assume that both droplets reach their terminal velocity well before the collision. This is an339

excellent approximation for dilute systems such as clouds, because the droplet response time340

τk of equation (2) is much shorter than the mean collision time. Here we use the subscript341

k to represent the stopping time of the kth collision, which is equivalent to the ith droplet.342

We can then assume the relative velocity between the two as given by the difference of their343

terminal velocities as344

∆vk = (τk − τ1) g. (17)

The time until the first collision is then given by t2 = ∆z/∆v2. This collision results in the345

lucky droplet having increased its volume by that of the 10µm droplet. Correspondingly,346

the radius of the vertical cylinder of collision partners is also increased. We then search for347

the next collision partner beneath the position of the first collision, using still the original348

realization of 10µm droplets. We continue this procedure until the lucky droplet reaches a349

radius of 50µm.350
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e. The Monte-Carlo method to compute tk351

In the Monte-Carlo method (approach III) we choose a time step δt and step forward in352

time. As in the superdroplet algorithm, the probability of a collision is given by pk = λkδt;353

see equation (3). We continue until a radius of 50µm is reached.354

Approach III also allows us to study the effects of jumps in the droplet size by allowing for355

several lucky droplets at the same time and specifying their collision probability appropri-356

ately. These will then be able to interact not only with the 10µm background droplets, but357

they can also collide among themselves, which causes the jumps. We will include this effect358

in solutions of the LDM using approach III and compare with the results of the superdroplet359

algorithm.360

4. Results361

a. Accuracy of the superdroplet algorithm362

We now want to determine to what extent the fluctuations are correctly represented by the363

superdroplet algorithm. For this purpose, we now demonstrate the degree of quantitative364

agreement between approaches I–III and the corresponding solution with the superdroplet365

algorithm (approach IV). This is done by tracking the growth history of each lucky droplet.366

As the first few collisions determine the course of the formation of larger droplets, we also367

use the distribution P (T ) of cumulative collision times T . We perform Nreal superdroplet368

simulations with different random seeds using ξi(t0) = 1.369

We begin by looking at growth histories for many individual realizations obtained from the370

superdroplet simulation. Figure 6 shows an ensemble of growth histories (thin gray lines)371

obtained from Nreal ≈ 103 independent simulations, as described above. The times between372
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collisions are random, leading to a distribution of cumulative growth times to reach 50µm.373

Also shown is the mean growth curve (thick black line), obtained by averaging the time at374

fixed radii r. This figure demonstrates that the fluctuations are substantial. We also see375

that large fluctuations relative to the average time are rare.376

To quantify the effect of fluctuations from all realizations, we now consider the corre-377

sponding P (T ). It is normalized such that
∫
P (T ) dT = 1 and is shown in Figure 7, where378

we have divided T by its average, 〈T 〉 ≡
∫∞
0
TP (T ) dT . We recall that ξi(t0) = 1 for our379

superdroplet simulation in Figure 7. However, a simulation with ξi(t0) = 50 yields almost380

the same result; see Appendix A2.381

The comparison of the results for the LDM using approach I and the superdroplet algo-382

rithm shows small differences. The width of the P (T ) curve is slightly larger for approach I383

than for the superdroplet simulations. This suggests that the fluctuations, which are at the384

heart of the LDM, are slightly underrepresented in the superdroplet algorithm.385

In the following, we discuss how our conclusions relate to those of earlier work. We then386

discuss a number of additional factors that can modify the results (jumps in r or the effects387

of 3-D, for example). Those additional factors can also be taken into account in the LDM.388

Even in those cases, it turns out that the differences between the LDM and the superdroplet389

algorithm are small.390

b. The occurrence of jumps391

One of the pronounced features in our superdroplet simulations with ξi(t0) > 1 is the392

possibility of jumps. We see examples in Figure 8 where ξluck = ξback = 2 and the jumps are393

visualized by the red vertical lines. Those jumps are caused by the coagulation of the lucky394

droplet with droplets of radii larger than 10µm that were the result of other lucky droplets395
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in the simulations. What is the effect of these jumps? Could they be responsible for the396

behavior found by Dziekan and Pawlowska (2017) that the difference in their t10% between397

the numerical and theoretical calculation decreases with the square root of the number of398

physical droplets, as discussed in section 1?399

It is clear that those jumps occur only at late times when there has been enough time400

to grow several more lucky droplets. Because the collision times are so short at late times,401

the jumps are expected to be almost insignificant. To quantify this, it is convenient to use402

approach III, where we choose N (luck)
s = 3 superdroplets simultaneously. We also choose403

ξluck = 1, and therefore N (luck)
d = 3. The lucky droplets can grow through collisions with404

the 10µm background droplets and through mutual collisions between lucky droplets. The405

collision rate between lucky droplets i and j is, analogously to equation (12), given by406

λ
(luck)
ij = π (ri + rj)

2 |vi − vj| nluck, (18)

where nluck is the number density of physical droplets in the superdroplet representing the407

lucky droplet. To obtain an expression for nluck in terms of the volume of a grid cell δx3,408

we write nluck = ξluck/δx
3, and likewise n = N

(back)
d /δx3 for the background droplets. Thus,409

eliminating δx3, we have nluck = nξluck/N
(back)
d . Therefore, nluck = εn/N

(luck)
s , where ε is the410

ratio of the physical number of lucky droplets, N (luck)
d , to the physical number of background411

droplets, N (back)
d , i.e.,412

ε =
N

(luck)
d

N
(back)
d

=
ξluckN

(luck)
s

ξbackN
(back)
s

. (19)

To investigate the effect of jumps on P (T ) in the full superdroplet model studied above,413

we first consider the case depicted in Figure 6, where ξluck = ξback ≡ ξi(t0) = 1. Here, we414

used Ns = 256 superdroplets, of which one contained the lucky droplet, so N (luck)
s = 1, and415

the other 255 superdroplets contained a 10µm background droplet each. In our superdroplet416
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solution, the ratio (19) was therefore ε = 1/255 = 0.004. Using approach III, ε enters simply417

as an extra factor in the collision probability between different lucky droplets. The effect418

on P (T ) is shown in Figure 9, where we present the cumulative collision times for models419

with three values of ε using approach III. We see that for small values of ε, the cumulative420

distribution function is independent of ε, and the effect of jumps is therefore negligible421

(compare the black solid and the red dashed lines of Figure 9). More significant departures422

due to jumps can be seen when ε = 0.02 and larger.423

Let us now compare with the case in which we found jumps using the full superdroplet424

approach (approach IV). The jumps in the growth histories cause the droplets to grow faster425

than without jumps. As shown in section 4.b, however, jumps do not have a noticeable effect426

upon P (T ) in the superdroplet simulations we conducted; see Figure 10. By comparing P (T )427

for ξback = 40 (blue crosses in Figure 10) with that for ξback = 2 (black circles), while keeping428

ξluck = 2 in both cases, hardly any jumps occur and the lucky droplet result remains equally429

accurate.430

For larger values of ε, jumps occur much earlier, as can be seen from Figure 11, where431

we show 30 growth curves for the cases ε = 0.004, which is relevant to the simulations of432

Figure 7, as well as ε = 0.02, and 0.05. We also see that for large values of ε, the width433

in the distribution of arrival times is broader and that both shorter and longer times are434

possible. This suggests that the reason for the finite residual error in the values of t10%435

found by Dziekan and Pawlowska (2017) for ξi(t0) > 9 could indeed be due to jumps. In our436

superdroplet simulations, by contrast, jumps cannot occur when ξi(t0) = 1 or ξback � ξluck.437
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c. The two aspects of randomness438

Let us now quantify the departure that is caused by the use of the Monte-Carlo collision439

scheme. To do this, we need to assess the effects of randomness introduced through equa-440

tions (3) and (4) on the one hand and the random distribution of the 10µm background441

droplets on the other. Both aspects enter in the superdroplet algorithm.442

We recall that in approach II, fluctuations originate solely from the random distribution443

of the 10µm background droplets. In approach III, on the other hand, fluctuations originate444

solely from the Monte-Carlo collision scheme. By contrast, approach I is different from either445

of the two, because it just uses the exponential distribution of the collision time intervals,446

which is indirectly reproduced by the random initial droplet distribution in approach II and447

by the Monte-Carlo scheme in approach III.448

In Figure 12, we compare approaches I, II, and III. For our solution using approach II,449

we use a nonperiodic domain of size 10−4 × 10−4 × 700 m3, thus containing on average 700450

droplets. This was tall enough for the lucky droplet to reach 50µm for all the 107 realizations451

in this experiment. The differences between them are very minor, and also the first few452

moments are essentially the same; see Table 4. We thus see good agreement between the453

different approaches. This suggests that the fluctuations introduced through random droplet454

positions is not crucial and that it can be substituted by the fluctuations of the Monte-Carlo455

scheme alone.456

It is worth noting that we could perform 107 and 106 realizations with approaches II and457

III, respectively, and 1010 realizations with approach I, while in the superdroplet algorithm458

(approach IV), we could only run 103 realizations. This may be the reason why fluctuations459

appear to be slightly underrepresented in the superdroplet algorithm; see Figure 7 and the460
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discussion in section 4.a. Nevertheless, the agreement between the LDM and the super-461

droplet simulations demonstrates that the superdroplet algorithm does not contain mean-462

field elements. This can be further evidenced by the fact that the results of approaches II463

and III agree perfectly with those of approach I, and the superdroplet algorithm is just the464

combination of approaches II and III.465

d. The effects of fluctuations in 3-D simulations466

One might have expected that a 3-D simulation could be more realistic and perhaps more467

accurate than a 1-D simulation. In Figure 13 we compare the resulting P (T ) for 3-D and468

1-D cases. The result is surprising in that the P (T ) curves from the two cases are rather469

different. The P (T ) curve from the 1-D case agrees well with the LDM using approaches I–470

III. In the 3D case, the fluctuations appear to be vastly exaggerated, similarly to the blue471

line in Figure 4. This will be discussed next.472

An important difference between 1-D and 3-D is the fact that in 3-D, we accumulate473

statistics for lucky droplets that fall through vertical columns whose mean droplet number474

density fluctuates from one column to another. These fluctuations lead to a broadening of475

P (T ), but it is a priori not evident that this explains the 3-D results quantitatively.476

In Figure 14, we compare the results from our 3-D superdroplet simulations with the LDM477

where the relevant fluctuations in droplet number density have been taken into account; see478

Appendix A3 for details. The lateral fluctuations are quantified by the relative dispersion479

δnmax/n0. We see that there is a close match between the two lines. This suggests that480

the superdroplet algorithm is accurate and reproduces the results of the LDM, provided481

all known corrections are applied to it. It also appears that the additional fluctuations482

introduced in 3-D compensate for the slight underrepresentation of fluctuations in 1-D.483
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5. Discussion484

Fluctuations play a central role in the LDM. We have therefore used it as a benchmark for485

our simulation. It turns out that the superdroplet algorithm is able to reproduce the growth486

histories qualitatively and the distribution of cumulative collision times quantitatively. The487

role of fluctuations was also investigated by Dziekan and Pawlowska (2017), whose approach488

to assessing the fluctuations is different from ours. Instead of analyzing the distribution of489

cumulative collision times, as we do here, their primary diagnostics is the time t10%, after490

which 10% of the mass of cloud droplets has reached a radius of 40µm. In the LDM, such a491

time would be infinite, because there is only one droplet that is allowed to grow. They then492

determined the accuracy with which the value of t10% is determined. The accuracy increases493

with the square root of the number of physical droplets, provided that the ratio ξi(t0) is kept494

below a limiting value of about 9. For ξi(t0) > 9, they found that there is always a residual495

error in the value of t10% that no longer diminishes as they increase the number of physical496

droplets. We have demonstrated that, when ξi(t0) > 1, jumps in the growth history tend497

to occur. Those jumps can lead to shorter cumulative collision times, which could be the498

source of the residual error they find.499

For a given fraction of droplets that first reach a size of 40µm, they also determined their500

average cumulative collision time. They found a significant dependence on the number of501

physical droplets. This is very different in our case where we just have to make sure that the502

number of superdroplets is large enough to keep finding collision partners in the simulations.503

However, as the authors point out, this is a consequence of them having chosen an initial504

distribution of droplet sizes that has a finite width. This implies that for a larger number505

of droplets, there is a larger chance that there could be a droplet that is more lucky than506
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for a model with a smaller number of droplets. In our case, by contrast, we always have a507

well-known number of superdroplets of exactly 12.6µm, which avoids the sensitivity on the508

number of droplets.509

The ξi(t0) = 9 limit of Dziekan and Pawlowska (2017) may not be as stringent as origi-510

nally believed. In this context we need to recall that their criterion for acceptable quality511

concerned the relative error of the time in which 10% of the total water has been converted512

to 40µm droplets. In our case, we have focussed on the shape of the P (T ) curve, especially513

for small T .514

6. Conclusions515

We investigated the growth histories of droplets settling in quiescent air using superdroplet516

simulations. The goal was to determine how accurately these simulations represent the517

fluctuations of the growth histories. This is important because the observed formation time518

of drizzle-sized droplets is much shorter than the one predicted based on the mean collisional519

cross section. The works of Telford (1955), Kostinski and Shaw (2005), and Wilkinson (2016)520

have shown that this discrepancy can be explained by the presence of stochastic fluctuations521

in the time intervals between droplet collisions. By comparing with the lucky droplet model522

(LDM) quantitatively, we have shown that the superdroplet simulations capture the effect523

of fluctuations.524

A tool to quantify the significance of fluctuations on the growth history of droplets is the525

distribution of cumulative collision times. Our results show that the superdroplet algorithm526

reproduces the distribution of cumulative collision times that is theoretically expected based527

on the LDM. In 3-D, there are additional fluctuations in the system owing to the fact that528

the mean column density of droplets varies in the horizontal plane. Again, this effect is529
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reproduced by the superdroplet algorithm, where the size distribution is computed from an530

ensemble with different number densities.531

The approximation of representing the dependence of the mean collision rate on the droplet532

radius by a power law is not accurate and must be relaxed for a useful benchmark experiment.533

The superdroplet algorithm demonstrates clear differences between 1-D and 3-D simulations.534

The broader P (T ) distribution can be explained by taking variations of the droplet density535

in the horizontal direction into account.536

In summary, the superdroplet algorithm appears to take fluctuations fully into account, at537

least for the problem of coagulation due to gravitational settling in quiescent air. Computing538

the distribution of cumulative collision times in the context of turbulent coagulation would539

be rather expensive, because one would need to perform many hundreds of fully resolved540

3-D simulations. Our study suggests that fluctuations are correctly described for collisions541

between droplets settling in quiescent fluid, but we do not know whether this conclusion542

carries over to the turbulent case.543
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APPENDIX558

A1. Numerical treatment of approach I559

In section b, we noted that solutions to approach I have been obtained with the Pencil560

Code (Pencil Code Collaboration et al. 2021). This might seem somewhat surprising, given561

that this code is primarily designed for solving partial differential equations. It should be562

realized, however, that this code also provides a flexible framework for using the message563

passing interface, data analysis such as the computation of probability density distributions,564

and input/output.565

To compute the probability distribution of T with approach I, we need to sum up sequences566

of random numbers for many independent realizations of tk drawn from an exponential567

distribution. We use the special/lucky_droplet module provided with the code. Each568

point in the computational domain corresponds to an independent realization, so each point569

is initialized with a different random seed. The domain is divided into 1024 smaller domains,570

allowing the computational tasks to be performed simultaneously on 1024 processors, which571

takes about 4 min on a Cray XC40.572
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A2. Dependence on initial Ns/Ngrid and Nd/Ns573

In this appendix, we first test the statistical convergence of P (T ) for the initial number of574

superdroplets per grid cell, Ns(t0)/Ngrid. As discussed in section 2.b, we set Ns(t0)/Ngrid = 4575

for 1-D simulations. Using the same numerical setup, we examine the statistical convergence576

of P (T ) for different values of Ns(t0)/Ngrid. As shown in Figure A(a), P (T ) converges even577

at Ns(t0)/Ngrid = 1. This is important because one can use as few superdroplets as possible578

once Ngrid is fixed, without suffering from the statistical fluctuations.579

The most practical application of the superdroplet algorithm is the case when ξi ≥ 1.580

Thus, we investigate how ξ affects fluctuations by performing the same 1-D simulation as581

described in section 2.b with different values of ξi(t0). Figure A(b) shows that P (T ) is582

insensitive to Nd(t0)/Ns(t0), which suggests that the superdroplet algorithm can capture583

the effects of fluctuations regardless of the value of Nd(t0)/Ns(t0). This is different from584

Dziekan and Pawlowska (2017), who found that the approach can represent fluctuations585

only if Nd(t0)/Ns(t0) ≤ 9.586

A3. The 3-D LDM587

In this appendix, we describe in more detail the 3-D LDM used in section 4.d. The588

usual LDM applies to a given value of the number density. Other columns have somewhat589

different number densities and therefore also different mean cumulative collision times. The590

LDM with approaches I–III can be extended to include this effect by computing cases with591

different number densities and then combining P (T ) and normalizing by the 〈T 〉 for the592

combined P (T ). This can be formulated by introducing the column density as593

Σ(x, y) =

∫ z2

z1

n(x, y, z) dz, (A1)
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where z1 and z2 denote the vertical slab in which the first collision occurs, and using this594

Σ(x, y) as a weighting factor for the 1-D distribution functions P 1D(T ) to compute the 3-D595

distribution functions as596

P 3D(T ) =

∫
Σ(x, y)P 1D(T ) dx dy

/∫
Σ(x, y) dx dy. (A2)

Since the first collision matters the most, we choose z2 = zmax (where the lucky droplet is597

released) and z1 = zmax − v2/λ2 (where it has its first collision).598

Our reference model had a number density of n0 = 108 m−3. We now consider compositions599

of models with different values, where we include the densities (i) 0.9 × 108 m−3 and 1.1 ×600

108 m−3, as well as (ii) 0.8× 108 m−3 and 1.2× 108 m−3, and finally also (iii) 0.7× 108 m−3601

and 1.3× 108 m−3. All these compositions have the same mean droplet number density but602

different distributions around the mean. We first average the distribution function and then603

normalize with respect to the mean collision time for the ensemble over all columns. The604

parameters of the resulting distributions are listed in Table 5 for three compositions with605

different density dispersions. We see that, as we move from composition (i) to compositions606

(ii) and (iii), the dispersion (δnrms/n0) increases from 0.08 to 0.14 and 0.20, the distribution607

P (T ) extends further to both the left and right. The reference model is listed as (o). Here608

we give the rms value of the column-averaged densities, 〈n〉i, as609

δnrms =

[
Ni∑
i=0

(
〈n〉2i − n2

0

)]1/2
, (A3)

where i denotes the column and Ni is the number of columns. We also give the maximum610

difference from the average density,611

δnmax = max
i

(〈n〉i − n0) , (A4)
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for families (i) with Ni = 2, (ii) with Ni = 4, and (iii) with Ni = 6. We also list in Table 5612

several characteristic times in seconds. The quantity Tmin is the shortest time in which the613

lucky droplet reaches 50µm, TMFT denotes the value based on MFT, 〈T (nmax)〉 is the mean614

value based on the column with maximum droplet density and 〈T 〉 is the mean based on615

all columns. It turns out that for the models of all three families, the value of Tmin agrees616

with that obtained solely from the model with the highest density, which is 1.3 × 108 m−3617

for composition (ii), for example.618

The quantity 〈T (nmax)〉, i.e., the average time for all of the columns with the largest619

density, is shorter than the 〈T 〉 for all the columns, especially for composition (iii) where620

the largest densities occur. For the model (o), there is only one column, so 〈T (nmax)〉 is the621

same as 〈T 〉. The value TMFT based on MFT is always somewhat shorter than 〈T (nmax)〉.622

Finally, we give in Table 5 the ratios Tmin/〈T 〉 and TP=0.01/〈T 〉, where the subscript P = 0.01623

indicates the argument of P (T ) where the function value is 0.01.624
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Table 1. Definition of variables in superdroplet algorithm.

n number density of droplets in the domain

n(luck) number density of lucky droplets

Ns(t) Number of “superdroplets” in the domain

ξi(t) Number of droplets in superdroplet i (multiplicity)

Nd(t) Total number of physical droplets in the domain

Nreal number of independent simulations (realizations)
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Table 2. Moments of X = ln(T/〈T 〉) computed from 1010 realizations for different values of r∗

(in µm), and different prescriptions of rA and rB. The corresponding values of TMFT
125 are also given

and are normalized to unity for rA 6= rk 6= rB with r∗ ≥ 50µm.

779

780

781

r∗ rA rB TMFT
125 〈X〉 σ(X) skew X kurt X

— — rk 0.67 −0.020 0.21 0.22 0.08

— rk rk 1.49 −0.033 0.25 0.25 0.05

— — — 1 −0.040 0.28 0.34 0.10

40 — — 0.99 −0.041 0.28 0.33 0.09

30 — — 0.93 −0.046 0.30 0.28 0.05

20 — — 0.79 −0.063 0.35 0.18 −0.04

10 — — 0.34 −0.111 0.47 0.16 −0.17
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Table 3. Summary of the four approaches.

Approach Description

I time interval tk drawn from distribution

II true Lagrangian particles collide

III probabilistic, just a pair of superdroplets

IV superdroplet model (combination of II & III)

41



Table 4. Comparison of the moments of X = ln(T/〈T 〉) for approaches I–III.

Approach 〈X〉 σ(X) skew X kurt X

I −0.040 0.279 0.34 0.10

II −0.039 0.275 0.35 0.11

III −0.040 0.279 0.34 0.11
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Table 5. Results for approach II using 30,000 realization showing the effects of lateral density

fluctuations in 3-D, and comparison with MFT.

782

783

Composition δnrms/n0 δnmax/n0 Tmin [s] TMFT [s] 〈T (nmax)〉 [s] 〈T 〉 [s] Tmin/〈T 〉 TP=0.01/〈T 〉

(0) 0 0 782 1969 2117 2117 0.37 0.44

(i) 0.08 0.10 795 1790 1923 2126 0.37 0.42

(ii) 0.14 0.20 767 1641 1758 2155 0.36 0.40

(iii) 0.20 0.30 631 1515 1628 2203 0.29 0.36
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Fig. 1. Collision outcomes when two superdroplets collide and droplet collisions occur. Time

increases downward, as indicated by the arrow. Superdroplet i contains ξi large droplets of mass

Mi, superdroplet j contains ξj small droplets of mass Mj < Mi.
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Fig. 2. Contributions to the two correction factors r2/r2A (red) and r2/r2B (blue), as well as

their product. The discrete radii rk for k ≥ 2 are shown in a horizontal line of dots. The vertical

dash-triple-dotted lines denote the radius r = 50µm.
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Fig. 3. Cumulative mean collision times, TMFT
k , for rA 6= rk 6= rB (solid black line), compared

with the approximations rA = rB = rk (red dashed line) and only rB = rk (blue dash-dotted line).
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Fig. 4. Comparison of P (T ) in a double-logarithmic representation for the LDM appropriate to

our benchmark (black solid line) with various approximations where rA = rB = rk (red dashed line)

along with a case where only rB = rk is assumed (blue dash-dotted line). Here we used approach I

with 1010 realizations.
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Fig. 5. Comparison of P (T ) in a double-logarithmic representation for the LDM for r∗ = 40µm

and 30µm using rA 6= rk 6= rB. The black line agrees with that in Figure 4, and the two gray lines

refer to the cases with r∗ = 20µm and 10µm. Here we used approach I with 1010 realizations.
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Fig. 6. 98 growth histories of lucky droplets obtained from 98 independent 1-D superdroplet

simulations, as described in the text. All superdroplets have initially the same number of droplets,

ξi(t0) = 1 with Ns(t0) = 256. The mean number density of droplets is n0 = 3 × 108 m−3. The fat

solid line shows the average time for each radius.
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Fig. 7. Corresponding P (T ) of Figure 6 obtained with the superdroplet algorithm (blue dots)

and the LDM using approach I with rA 6= rk 6= rB (red solid line).
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Fig. 8. Same as Figure 6 but with initial condition ξi(t0) = 2 using Ns(t0) = 128. Note the

occurrence of jumps, indicated in red.
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Fig. 9. Comparison of models with ε = 0 (no jumps), 0.004 (the value expected for the simula-

tions), 0.02, and 0.05 using approach III.
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Fig. 10. P (T/〈T 〉) of simulations in Figure 8 (black circles) and the ones with initially ξback = 40

(blue crosses). ξluck = 2 in both cases. The red line denotes the result using approach I.
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Fig. 11. Growth histories for ε = 0.004 (very few jumps, relevant to the simulations of Figure 7),

as well as ε = 0.02, and 0.05, where jumps are more frequent. The thick solid line gives the average

collision time and cannot be distinguished from that of MFT, which is shown as a thick dotted line.
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Fig. 12. Comparison of P (T ) for approaches I, II, and III.
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Fig. 13. Comparison of the 3-D case (solid black line) with the 1-D case (dotted black line) with

ξi(t0) = 2. The red curve shows the result for the LDM with rA 6= rB 6= rk. The 1-D case is the

same as the one in Figure 10.
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Fig. 14. Comparison between the 3-D superdroplet simulation of Figure 13 and approach II

evaluated with a dispersion of δnmax/n0 = 0.2, corresponding to composition (iii); see Table 5 for

details.
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Fig. A. Comparison of P (T ) for different Ns/Ngrid with fixed ξi(t0) = 1 (left panel) and for

different ξi(t0) with fixed Ns/Ngrid = 4. The blue dots represent P (T/〈T 〉) from the simulation as

in Figure 7.
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