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process. The model relies on representing several physical droplets in terms of
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compute the distribution of cumulative collision times. The latter is shown to be
sensitive enough to detect

the subtle increase of fluctuations associated with collisions between multiple lucky
droplets. We conclude

that the superdroplet algorithm can faithfully represent fluctuations in the coagulation of
droplets driven by

gravity.
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ABSTRACT
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Direct numerical simulations of collisional aggregation of droplets in at-

mospheric flows are computationally demanding. An alternative is to use

a more efficient, yet approximate, model of the collision-coalescence pro-

cess. The model relies on representing several physical droplets in terms of

‘superdroplets’. Instead of following all droplets, one only tracks collisions

between superdroplets and accounts for collisions between physical droplets

using a Monte-Carlo algorithm. It was previously shown that this algorithm

can faithfully represent mean droplet growth in turbulent aerosols. But an

open question is how accurately the superdroplet method accounts for fluctu-

ations in the collisional aggregation process. Such fluctuations are particularly

important in dilute suspensions. Even in the absence of turbulence, Poisson

fluctuations of collision times in dilute suspensions may result in substantial

fluctuations in the growth process, resulting in a broad distribution of growth

times to reach a certain droplet size. We quantify the accuracy of the super-

droplet method in describing the fluctuating growth history of a larger droplet

that settles under the effect of gravity in a quiescent fluid and collides with a

dilute suspension of smaller droplets that were initially randomly distributed

in space (‘lucky droplet model’). We assess the effect of fluctuations upon

the growth history of the lucky droplet and compute the distribution of cu-

mulative collision times. The latter is shown to be sensitive enough to detect

the subtle increase of fluctuations associated with collisions between multi-

ple lucky droplets. We conclude that the superdroplet algorithm can faithfully

represent fluctuations in the coagulation of droplets driven by gravity. To what

extent the superdroplet method describes fluctuations of collision histories of

droplets in turbulence remains an open question.
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1. Introduction53

Direct numerical simulations (DNS) have become an essential tool to investigate collisional54

growth of droplets in turbulence (Onishi et al., 2015; Saito and Gotoh, 2018). The most natural55

and physical way to analyze collisional growth is to track individual droplets and to record their56

collisions, one by one. However, DNS of the collision-coalescence process are very challenging,57

not only when a large number of droplets must be tracked, but also because the flow must be58

resolved over a large range of time and length scales.59

In the past ten years, an alternative way of modeling aerosols has gained popularity. The idea60

is to combine physical aerosol droplets into ‘superdroplets’ (Zsom and Dullemond, 2008; Shima61

et al., 2009). To gain efficiency, one tracks only superdroplet collisions and uses a Monte-Carlo62

algorithm (Sokal, 1997) to account for collisions between physical droplets. The superdroplet63

algorithm is used in both the meteorological literature (Andrejczuk et al., 2008; Shima et al., 2009;64

Andrejczuk et al., 2010; Sölch and Kärcher, 2010; Patterson and Wagner, 2012; Riechelmann65

et al., 2012; Arabas and Shima, 2013; Naumann and Seifert, 2015, 2016; Jokulsdottir and Archer,66

2016; Unterstrasser et al., 2017; Dziekan and Pawlowska, 2017; Li et al., 2017, 2018, 2019, 2020;67

Sato et al., 2017; Brdar and Seifert, 2018; Hoffmann et al., 2019; Dziekan et al., 2019; Grabowski68

et al., 2019; Grabowski, 2020), as well as in the astrophysical literature (Zsom and Dullemond,69

2008; Ormel et al., 2009; Zsom et al., 2010; Johansen et al., 2012; Johansen et al., 2015; Ros70

and Johansen, 2013; Drakowska et al., 2014; Kobayashi et al., 2019; Baehr and Klahr, 2019; Ros71

et al., 2019; Nesvornỳ et al., 2019; Yang and Zhu, 2020; Poon et al., 2020; Li and Mattsson, 2020).72

Compared with DNS, the superdroplet method is distinctly more efficient. It has been shown73

to accurately model average properties of droplet growth in turbulent aerosols. Li et al. (2018)74

demonstrated, for example, that the mean collision rate obtained using the superdroplet algorithm75
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agrees with the mean turbulent collision rate (Saffman and Turner, 1956) when the droplets are76

small.77

Less is known about how the superdroplet algorithm represents fluctuations in the collisional78

aggregation process. Dziekan and Pawlowska (2017) compared the results of the superdroplet79

algorithm with the predictions of the stochastic coagulation equation of Gillespie (1972) in the80

context of coalescence of droplets settling in a quiescent fluid. Dziekan and Pawlowska (2017)81

concluded that the results of the superdroplet algorithm qualitatively agree with what Kostinski82

and Shaw (2005) called the lucky droplet model (LDM). To assess the importance of fluctuations,83

Dziekan and Pawlowska (2017) computed the time t10%, after which 10% of the droplets have84

reached a radius of 40 µm. In agreement with earlier Lagrangian simulations of Onishi et al.85

(2015), which did not employ the superdroplet algorithm, they found that the difference in t10%86

between their superdroplet simulations and the stochastic model of (Gillespie, 1972) decreases87

with the square root of the number of droplets, provided that there are no more than about nine88

droplets per superdroplet. When the number of droplets per superdroplet is larger, a residual error89

remains which the authors attribute to artificial correlations between different droplet sizes. We90

return to this question in the discussion of the present paper, where we tentatively associate their91

findings with the occurrence of several large (lucky) droplets that grew from the finite tail of their92

initial droplet distribution.93

The role of fluctuations is particularly important in dilute systems, where rare extreme events94

may substantially broaden the droplet-size distribution. This is well captured by the LDM, which95

was first proposed by Telford (1955), and more recently quantitatively analyzed by Kostinski and96

Shaw (2005). The model describes one large droplet (twice the mass of 10 µm-sized droplets97

in radius) settling through a dilute suspension of smaller droplets. The collision times between98

the larger droplets (the lucky droplet) and the smaller ones are exponentially distributed, leading99
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to substantial fluctuations in the growth history of the lucky droplet. Wilkinson (2016) derived100

analytic expressions for the distribution of the cumulative distribution time using large-deviation101

theory.102

The goal of the present paper is to investigate how accurately the superdroplet algorithm repre-103

sents fluctuations in the collisional growth history of settling droplets in a quiescent fluid. Unlike104

the work of Dziekan and Pawlowska (2017), we use here the LDM. We record growth histories of105

the larger droplet in an ensemble of different realizations of identical smaller droplets that were ini-106

tially randomly distributed in a quiescent fluid. We show that the superdroplet method accurately107

describes the fluctuations of growth histories of the lucky droplet in an ensemble of simulations. In108

its simplest form, the LDM assumes that the lucky droplet is large compared with the background109

droplets so that the radius of those smaller droplets can be neglected in the geometrical collision110

cross section and collision velocities. Since fluctuations early on in the growth history are most111

important (Kostinski and Shaw, 2005; Wilkinson, 2016), this can make a certain difference in the112

distribution of the times T it takes for the lucky droplet to grow to a certain size. Third, since113

the small droplets are initially randomly distributed, their local number density fluctuates. Lucky114

droplets can grow most quickly where the local number density of small droplets happens to be115

large.116

The remainder of this paper is organized as follows. In Sec. 2 we describe the superdroplet117

method and highlight differences between different implementations used in the literature (Shima118

et al., 2009; Johansen et al., 2012; Li et al., 2017). Section 3 summarizes the LDM, the setup119

of our superdroplet simulations, and how we measure fluctuations of growth histories. Section 4120

summarizes the results of our superdroplet simulations. We conclude in Sec. 6.121

7



2. Method122

a. Superdroplet algorithm123

Superdroplet algorithms represent several physical droplets in terms of one superdroplet. All124

droplets in superdroplet i are assumed to have the same material density ρd, the same radius ri,125

the same velocity vi, and reside in a volume around the same position xi. The index i labeling the126

superdroplets ranges from 1 to Ns (Table 1). The hydrodynamic force is modeled using Stokes127

law.128

The equation of motion for the position xi and velocity vi of superdroplet i reads:129

dxi

dt
= vi ,

dvi

dt
=−vi

τi
+g . (1)

Here g is the gravitational acceleration,130

τi = 2ρdr2
i /9ρν (2)

is the droplet response (or Stokes) time attributed to the superdroplet, and ρ is the mass density of131

the airflow.132

Droplet collisions are represented by collisions of superdroplets (Shima et al., 2009; Johansen133

et al., 2012; Li et al., 2017), as mentioned above. When two superdroplets collide, a Monte-Carlo134

scheme is used to determine which pairs of droplets collide. It is assumed that two droplets in135

either of the superdroplets (with indices i and j) collide with probability136

pi j = λi jδ t , (3)

where δ t is the integration time step. A collision happens when pi j < η , where 0 ≤ η ≤ 1 is137

a uniformly distributed random number. To avoid a probability larger than unity, we limit the138

integration step through the condition δ t < 1/λi j. The collision rate is139

λi j = π
(
ri + r j

)2 |vi−v j|Ei j Np/s/δx3 , (4)
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where Ei j is the collision efficiency, Np/s is the larger initial number of droplets per superdroplet140

i or j (Table 1), and δx3 is the volume assigned to the superdroplet. To facilitate the comparison141

with the earlier work, we assume Ei j = 1 for most of our models.142

What happens when two superdroplets collide? To write down the rules, we denote the number143

of droplets in superdroplet i by Ni
p/s, while N j

p/s is the number of droplets in superdroplet j. Mi and144

M j are the corresponding droplet masses. The collision scheme suggested by Shima et al. (2009)145

amounts to the following rule. To ensure mass conservation between superdroplets i and j, when146

N j
p/s > Ni

p/s, droplet numbers and masses are updated such that147

Ni
p/s→ Ni

p/s , N j
p/s→ N j

p/s−Ni
p/s , (5)

Mi→Mi +M j , M j→M j .

When N j
p/s < Ni

p/s, the update rule is also given by equation (5), but with indices i and j ex-148

changed. In other words, the number of droplets in the smaller superdroplet remains unchanged149

(and their masses are increased), while that in the larger one is reduced by the amount of droplets150

that have collided with all the droplets of the smaller superdroplet (and their masses remain un-151

changed). This is illustrated in Figure 1. To ensure momentum conservation during the collision,152

the momenta of droplets in the two superdroplets are updated as153

viMi→ viMi +v jM j ,

v jM j→ v jM j , (6)

after a collision of superdroplets. Finally, when Ni
p/s = N j

p/s, droplet numbers and masses are154

updated as155

Ni
p/s→ Ni

p/s/2 , N j
p/s→ N j

p/s/2 , (7)

Mi→Mi +M j , M j→Mi +M j .
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The scheme illustrated in Figure 1 does not automatically prevent fractional numbers of droplets156

per superdroplet. It is then assumed that, when two superdroplets with less than one physical157

droplet collide, the superdroplet containing the smaller physical droplet is removed from the com-158

putational domain after the collision.159

b. Numerical setup160

In our superdroplet simulations, we consider droplets of radius 10 µm, randomly distributed in161

space, together with one droplet of twice the mass and radius 21/3×10 µm = 12.6 µm. The larger162

droplet has a higher settling speed than the 10 µm droplets and sweeps them up through collision163

and coalescence. Since the flow is not disturbed by the particles, we neglect two-way coupling.164

For each simulation, we track the growth history of the larger droplet until it reaches 50 µm in165

radius and record the time T it takes to grow to that size.166

In the superdroplet algorithm, one usually takes Np/s� 1, which implies that the actual number167

of lucky droplets is also more than one. This was not intended in the original formulation of168

the lucky droplet model (Telford, 1955; Kostinski and Shaw, 2005; Wilkinson, 2016) and could169

allow the number of superdroplets with heavier (lucky) droplets, N(luck)
s , to become larger than170

unity. This would manifest itself in the growth history of the lucky droplets through an increase171

by more than the mass of a background droplet. We refer to this as “jumps”. Let us therefore172

now discuss the conditions under which this would happen and denote the values of Np/s for the173

lucky and background droplets by N(luck)
p/s and N(back)

p/s , respectively. First, for N(luck)
p/s = N(back)

p/s , the174

masses of both lucky and background droplets can increase, provided their values of Np/s are above175

unity; see Figure 1(c). Second, even if N(luck)
p/s < N(back)

p/s initially, new lucky superdroplets could176

in principle emerge when the same two superdroplets collide with each other multiple times. This177

can happen for two reasons. First, the use of periodic boundary conditions for the superdroplets178
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(i.e., in the vertical direction in our laminar model with gravity). Second, two superdroplets can179

remain at the same location (corresponding to the same meshpoint of the Eulerian grid for the180

fluid) during subsequent time steps. (Our time step must be less than the time for a superdroplet181

to fall from one meshpoint to the next.) Looking at Figure 1, we see that N(back)
p/s can then decrease182

after each collision and potentially become equal to or drop below the value of N(luck)
p/s . This183

becomes exceedingly unlikely if initially N(back)
p/s � N(luck)

p/s , but it is not completely impossible,184

unless N(luck)
p/s is chosen initially to be unity.185

The initial value of N(back)
p/s can in principle also be chosen to be unity. Although such a case will186

indeed be considered here, it would defeat the purpose and computational advantage of the super-187

droplet algorithm. Therefore, we also consider the case N(back)
p/s � N(luck)

p/s . As already mentioned,188

jumps are impossible if N(luck)
p/s is unity.189

Unless otherwise specified, the viscosity equals ν = 10−5 m2 s−1 and the initial droplet number190

density is set to n = 108 m−3. For orientation, we note that the speed of the lucky droplet prior191

to the first collision is about 3.5cms−1, the average time to the first collision is 490s, and thus, it192

falls over a distance of about 17m before it collides.193

The superdroplet algorithm is usually applied to three-dimensional (3-D) simulations. If there is194

no horizontal mixing, one can consider one-dimensional (1-D) simulations. Moreover, we are only195

interested in the column in which the lucky droplet resides. In 3-D, however, the number density196

of the 10 µm droplets beneath the lucky one is in general not the same as the mean number density197

of the whole domain. This leads to yet another element of randomness that we shall consider in198

this paper by studying the difference between 1-D and 3-D simulations, and fluctuations of the199

number density between columns.200
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3. Lucky-droplet models201

a. Basic idea202

In its simplest form, the LDM describes the collisional growth of a larger droplet that settles203

through a quiescent fluid and collides with smaller monodisperse droplets, that were initially ran-204

domly distributed in space. This corresponds to the setup described in the previous section. We205

begin by recalling the main conclusions of Kostinski and Shaw (2005). Initially, the lucky droplet206

has a radius corresponding to a volume twice that of the background droplets, whose radius was207

assumed to be r1 = 10 µm. Therefore, its initial radius is r2 = 21/3r1 = 12.6 µm. After the kth208

collision step with smaller droplets, it increases as209

rk ∼ r1k1/3. (8)

Fluctuations in the length of the time intervals tk between collision k−1 and k give rise to fluctu-210

ating growth histories of the larger droplet. These fluctuations are quantified by the distribution of211

the cumulative time212

T =
125

∑
k=2

tk, (9)

corresponding to 124 collisions needed for the lucky droplet to grow from 12.6 µm to 50 µm. The213

time intervals tk between successive collisions are drawn from an exponential distribution with a214

probability pk(tk) = λk exp(−λktk). The rates λk depend on the differential settling velocity |vk−215

v1| between the colliding droplets through equations (3) and (4). Here, however, the background216

droplets have always the radius r1, so λk ≡ λk1, i.e., the second index is here dropped, because it217

is always 1. Likewise, we also drop the second index on the collision efficiency, i.e., Ek ≡ Ek1.218

It is well known that Ek � 1 (Pruppacher and Klett, 1997). However, as an idealization, it is219

instructive to assume Ek = 1 for all k, so the collision rate (4) can be approximated as λk ∼ r4
k220

which is permissible when rk � r1. It follows that, in terms of the number of collisions k, the221
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collision frequency is222

λk = λ∗k4/3, (10)

where λ∗ = (2π/9)(ρd/ρ)(gn/ν)r4
1, and n is the number density of the 10 µm background223

droplets. This is essentially the model of Kostinski and Shaw (2005) and Wilkinson (2016), except224

that they also assumed Ek 6= 1. They pointed out that, early on, i.e., for small k, λk is small and225

therefore the mean collision time λ
−1
k is long. The actual time until the first collision can then226

be very long, but it can also be very short, depending on fluctuations. Therefore, at early times,227

fluctuations have a large impact on the cumulative collision time.228

b. The effects of various approximations229

We now discuss the significance of the various approximations being employed in the LDM. To230

relax the approximations made in equation (10), we now write it in the form231

λk = λ∗Ekr2
A(rk)r2

B(rk)/r4
1 (k ≥ 2), (11)

where232

r2
A = (rk + r1)

2, r2
B = r2

k − r2
1 (12)

would correspond to the expression equation (4) used in the superdroplet model. In equation (10),233

however, it was assumed that rA = rB = rk. To distinguish this approximation from the form used234

in equation (11), we denote that case by writing symbolically “rA 6= rk 6= rB”; see Figure 2.235

In equation (12), we have introduced rA and rB to study the effect of relaxing the assumption236

rA = rB = rk, made in simplifying implementations of the LDM. Both of these assumptions are237

justified at late times when the lucky droplet has become large compared to the smaller ones, but238

not early on, when the size difference is moderate.239
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By comparison, in mean-field theory (MFT), one assumes deterministic collision times that are240

given by tk = λ
−1
k . In Figure 3 we demonstrate the effect of the contributions from rA and rB on241

the mean cumulative collision time in the corresponding MFT,242

T MFT
k =

k

∑
k′=2

tMFT
k′ , (13)

where243

tMFT
k = λ

−1
k (14)

are the inverse of the mean collision rates. In the right-hand panel, we also see that the contri-244

butions to the two correction factors r2/r2
A and r2/r2

B have opposite trends, which leads to partial245

cancelation in their product.246

As already stated, we are interested in the distribution of cumulative collision times, P(T ). In247

Figure 4 we show a comparison of the distribution of cumulative collision times for various repre-248

sentations of rk. The physically correct model is where rA 6= rk 6= rB (black line). To demonstrate249

the sensitivity of P(T ) to changes in the representation of rk, we show the result for the approxi-250

mations rA = rk = rB (red line) and rA 6= rk = rB (blue line). The P(T ) curve is also sensitive to251

changes in the collision efficiency late in the evolution. To demonstrate this, we assume Ek ∝ r2
k252

when rk ≥ r∗ (Lamb and Verlinde, 2011). To ensure that Ek ≤ 1, we assume253

Ek = E∗ max
(
1, (r/r∗)2) , (15)

where E∗ ≤ 1 has been introduced to ensure Ek ≤ 1. However, the normalized P(T ) curves are254

independent of the choice of the value of E∗. In Figure 5, we show the results for rA 6= rk 6= rB using255

r∗ = 40 µm and 30 µm (red and blue lines, respectively) and compare with the case Ek = const.256

The more extreme cases with r∗ = 20 µm and 10 µm are shown as gray lines. The latter is similar257

to the case λk ∼ r6
k considered by Kostinski and Shaw (2005) and Wilkinson (2016).258
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As anticipated by Kostinski and Shaw (2005), P(T ) can be approximated by a lognormal distri-259

bution in all cases, as can be seen from the approximately inverted parabolic shape in the double-260

logarithmic representation in Figure 4. When rA = rk = rB, or only rk = rB, the P(T ) curves261

exhibit smaller widths. By contrast, when the collision efficiency becomes quadratic later on262

(when r > r∗ ≡ 30 µm or 40 µm), the P(T ) curves have larger widths; see Figure 5.263

To quantify the shape of P(T ), we give in Table 2 the average of X ≡ ln(T/〈T 〉), its stan-264

dard deviation σ = 〈x2〉1/2, where x ≡ X −〈X〉, its skewness skew X = 〈x3〉/σ3, and its kurtosis265

kurt X = 〈x4〉/σ4. The main conclusion that can be drawn form the investigation mentioned above266

is that it does not result in any significant error to assume rk � r1. The value of σ is only about267

10% smaller if rA = rk = rB is used (compare the red dashed and black solid lines in Figure 4).268

This is because the two inaccuracies introduced by rA and rB almost cancel each other. When269

r∗ = 40 µm or 30 µm, for example, the values of σ increase by 3% and 15%, respectively; see270

Table 2, where we also list the corresponding values of T MFT
k .271

A straightforward extension of the LDM is to take horizontal variations in the local column272

density into account. Those are always present for any random initial conditions, but could be273

larger for turbulent systems, regardless of the droplet speeds. Indeed, in our 3-D superdroplet274

simulations, large droplets can fall in different vertical columns that contain different numbers of275

small droplets, a consequence of the fact that the small droplets are initially randomly distributed.276

To describe the results of our 3-D simulations, it is necessary to solve for an ensemble of columns277

with different number density of the 10 µm background droplets and compute the distribution of278

cumulative collision times. We present a corresponding comparison with our superdroplet model279

at the end of this paper.280
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c. Relation to the superdroplet algorithm281

To understand the nature of the superdroplet algorithm, and why it captures the lucky droplet282

problem accurately, it is important to realize that the superdroplet algorithm is actually a combina-283

tion of two separate approaches, each of which turns out to be able to reproduce the lucky droplet284

problem to high precision. In principle, we can distinguish four different approaches to obtaining285

the collision time interval tk. In the LDM, tk was taken from an exponential distribution of random286

numbers (approach I). Another approach is to use a randomly distributed set of 10 µm background287

droplets and then to solve for the collisions between the lucky droplets and the background explic-288

itly (approach II). A third approach is to use a Monte-Carlo method to solve for the time evolution289

to decide whether at any time there is a collision or not (approach III). This is actually what is done290

within each grid cell in the superdroplet algorithm; see equations (3) and (4). The fourth approach291

is the superdroplet algorithm discussed extensively in section 2a (approach IV). It is essentially a292

combination of approaches II and III. We have compared all four approaches and found that they293

all give very similar results. In the following, we describe approaches II and III in more detail,294

before focussing on approach IV in section 4.295

d. Solving for the collisions explicitly296

A more realistic method (approach II) is to compute random realizations of droplet positions in297

a tall box of size L2
h×Lz, where Lh and Lz are the horizontal and vertical extents, respectively. We298

position the lucky droplet in the middle of the top plane of the box. Collisions are only possible299

within a vertical cylinder of radius rk + r1 below the lucky droplet. Next, we calculate the distance300

∆z to the first collision partner within the cylinder. We assume that both droplets reach their301

terminal velocity well before the collision. This is an excellent approximation for dilute systems302

such as clouds, because the droplet response time τk of equation (2) is much shorter than the mean303
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collision time. We can then assume the relative velocity between the two as given by the difference304

of their terminal velocities as305

∆vk = (τk− τ1)g. (16)

The time until the first collision is then given by t2 = ∆z/∆v2. This collision results in the lucky306

droplet having increased its volume by that of the 10 µm droplet. Correspondingly, the radius307

of the vertical cylinder of collision partners is also increased. We then search for the next colli-308

sion partner beneath the position of the first collision, using still the original realization of 10 µm309

droplets. We continue this procedure until the lucky droplet reaches a radius of 50 µm.310

e. The Monte-Carlo method to compute tk311

In the Monte-Carlo method (approach III) we choose a time step δ t and step forward in time. As312

in the superdroplet algorithm, the probability of a collision is given by pk = λkδ t; see equation (3).313

We continue until a radius of 50 µm is reached.314

Approach III also allows us to study the effects of jumps in the droplet size by allowing for315

several lucky droplets at the same time and specifying their collision probability appropriately.316

These will then be able to interact not only with the 10 µm background droplets, but they can also317

collide among themselves, which causes the jumps. We will include this effect into the LDM and318

compare with the results of the superdroplet algorithm.319

4. Results320

a. Agreement with the LDM321

We now want to determine to what extent the fluctuations are correctly represented by the su-322

perdroplet algorithm. For this purpose, we now demonstrate the degree of quantitative agreement323

between the LDM and the corresponding solution with the superdroplet algorithm. This is done by324
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tracking the growth history of each lucky droplet. As the first few collisions determine the course325

of the formation of larger droplets, we also use the distribution P(T ) of cumulative collision times326

T . We perform Nreal superdroplet simulations with different random seeds using Np/s = 1.327

We begin by looking at growth histories for many individual realizations obtained from the328

superdroplet simulation. Figure 6 shows an ensemble of growth histories (thin gray lines) obtained329

from Nreal ≈ 103 independent simulations, as described above. The times between collisions are330

random, leading to a distribution of cumulative growth times to reach 50 µm. Also shown is the331

mean growth curve (thick black line), obtained by averaging the time at fixed radii r. This figure332

demonstrates that the fluctuations are substantial. We also see that large fluctuations relative to the333

average time are rare.334

To quantify the effect of fluctuations from all realizations, we now consider the corresponding335

P(T ). It is normalized such that
∫

P(T )dT = 1 and is shown in Figure 7, where we have divided336

T by its average, 〈T 〉 ≡ ∫ ∞

0 T P(T )dT . We recall that Np/s = 1 for our superdroplet simulation in337

Figure 7. However, a simulation with Np/s = 50 yields almost the same result; see Appendix A1.338

The comparison between LDM and the superdroplet algorithm shows small differences. The339

width of the P(T ) curve is slightly larger in the LDM than in the superdroplet simulations. This340

suggests that the fluctuations, which are at the heart of the LDM, are slightly underrepresented in341

the superdroplet algorithm.342

In the following, we discuss how our conclusions relate to those of earlier work. We then343

discuss a number of additional factors that can modify the results (jumps in r or the effects of 3-D,344

for example). Those additional factors can also be taken into account in the LDM. Even in those345

cases, it turns out that the differences between the LDM and the superdroplet algorithm are small.346
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b. The occurrence of jumps347

One of the pronounced features in our superdroplet simulations with Np/s > 1 is the possibility348

of jumps. We see examples in Figure 8 where N(luck)
p/s = N(back)

p/s = 2 and the jumps are visualized349

by the red vertical lines. Those jumps are caused by the coagulation of the lucky droplet with350

droplets of radii larger than 10 µm that were the result of other lucky droplets in the simulations.351

What is the effect of these jumps? Could they be responsible for the behavior found by Dziekan352

and Pawlowska (2017) that the difference in their t10% between the numerical and theoretical353

calculation decreases with the square root of the number of physical droplets, as discussed in354

Sec. 1?355

It is clear that those jumps occur only at late times when there has been enough time to grow356

several more lucky droplets. Because the collision times are so short at late times, the jumps are357

expected to be almost insignificant. To quantify this, it is convenient to use approach III, where358

we allow for N(luck)
p = 3 superdroplets simultaneously. They can grow through collisions with the359

10 µm background droplets and through mutual collisions between lucky droplets. The collision360

rate between lucky droplets i and j is, analogously to equation (11), given by361

λ
(luck)
i j = π

(
ri + r j

)2 |vi− v j| nluck, (17)

where nluck = εn/N(luck)
p with ε being the ratio of the physical number of lucky droplets, N(luck)

p ,362

to the physical number of background droplets, N(back)
p , i.e.,363

ε =
N(luck)

p

N(back)
p

=
N(luck)

p/s N(luck)
s

N(back)
p/s N(back)

s

. (18)

In the first case, where N(luck)
p/s = N(back)

p/s ≡ Np/s = 1 (see Figure 6), we used Ns = 256 super-364

droplets, of which one contained the lucky droplet, so N(luck)
s = 1, and the other 255 superdroplets365

contained a 10 µm background droplet each. In our superdroplet solution, the ratio was therefore366
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ε = 1/255 = 0.004. Using Approach III, however, ε enters simply as an extra factor in the colli-367

sion probability between different lucky droplets; see section 3e. The effect on P(T ) is shown in368

Figure 9, where we present the cumulative collision times for models with three values of ε using369

approach II. We see that this model does indeed have the same cumulative distribution function as370

with approach III, so the effect of jumps is very small (compare the black solid and the red dashed371

lines of Figure 9). More significant departures due to jumps can be seen in P(T ) when ε = 0.02372

and larger.373

The jumps in the growth histories cause the droplets to grow faster. As expected, however, the374

jumps do not have a noticeable effect upon P(T ) in the superdroplet simulations we conducted;375

see Figure 10. By comparing P(T ) for N(back)
p/s = 40 (blue crosses in Figure 10) with that for376

N(back)
p/s = 2 (black circles), while keeping N(luck)

p/s = 2 in both cases, hardly any jumps occur and377

the lucky droplet result remains equally accurate.378

For larger values of ε , jumps occur much earlier, as can be seen from Figure 11, where we show379

30 growth curves for the cases ε = 0.004, which is relevant to the simulations of Figure 7, as380

well as ε = 0.02, and 0.05. We also see that for large values of ε , the width in the distribution of381

arrival times is broader and that both shorter and longer times are possible. This suggests that the382

reason for the finite residual error in the values of t10% found by Dziekan and Pawlowska (2017)383

for Np/s > 9 could indeed be due to jumps. In our superdroplet simulations, by contrast, jumps384

cannot occur when Np/s = 1 or N(back)
p/s � N(luck)

p/s .385

c. The two aspects of randomness386

Let us now quantify the departure that is caused by the use of the Monte-Carlo collision scheme.387

To do this, we need to assess the effects of randomness introduced through equations (3) and (4)388
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on the one hand and the random distribution of the 10 µm background droplets on the other. Both389

aspects enter in the superdroplet algorithm.390

We recall that in approach II, fluctuations originate solely from the random distribution of the391

10 µm background droplets. In approach III, on the other hand, fluctuations originate solely from392

the Monte-Carlo collision scheme. By contrast, the LDM is different from either of the two, be-393

cause it just uses the exponential distribution of the collision time intervals, which is indirectly re-394

produced by the random initial droplet distribution in approach II and by the Monte-Carlo scheme395

in approach III.396

In Figure 12, we compare approaches I, II, and III. The differences between them are very minor,397

and also the first few moments are essentially the same; see Table 3. We thus see good agreement398

between the different approaches. This suggests that the fluctuations introduced through random399

droplet positions is not crucial and that it can be substituted by the fluctuations of the Monte-Carlo400

scheme alone.401

It is worth noting that we have been able to perform 108 realizations with Approaches II and402

III, and 1010 realizations with Approach I, while in the superdroplet algorithm (Approach IV), we403

have only been able to run 103 realizations. This may be the reason why fluctuations appear to404

be slightly underrepresented in the superdroplet algorithm. Nevertheless, the agreement between405

the LDM and the superdroplet simulations demonstrates that the superdroplet approach does not406

contain mean-field elements. This can be further evidenced by the fact that the results of Ap-407

proaches II and III agree perfectly with those of Approach I, and the superdroplet approach is just408

the combination of Approaches II and III.409
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d. The effects of fluctuations in 3-D simulations410

One might have expected that a 3-D simulation could be more realistic and perhaps more accu-411

rate than a 1-D simulation. In Figure 13 we compare the resulting P(T ) for 3-D and 1-D cases.412

The result is surprising in that the P(T ) curves from the two cases are rather different. The P(T )413

curve from the 1-D case agrees well with the LDM using approaches I–III. In the 3D case, the414

fluctuations appear to be vastly exaggerated, similarly to the blue line in Figure 4. This will be415

discussed next.416

An important difference between 1-D and 3-D is the fact that in 3-D, we accumulate statistics417

for lucky droplets that fall through vertical columns whose mean droplet number density fluctuates418

from one column to another. These fluctuations lead to a broadening of P(T ), but it is a priori not419

evident that this explains the 3-D results quantitatively.420

In Figure 14, we compare the results from our 3-D superdroplet simulations with the LDM where421

the relevant fluctuations in droplet number density have been taken into account; see Appendix A2422

for details. The lateral fluctuations are quantified by the relative dispersion δnmax/n0. We see423

that there is a close match between the two lines. This suggests that the superdroplet algorithm424

is accurate and reproduces the results of the LDM, provided all known corrections are applied425

to it. It also appears that the additional fluctuations introduced in 3-D compensate for the slight426

underrepresentation of fluctuations in 1-D.427

5. Discussion428

Fluctuations play a central role in the LDM. We have therefore used it as a benchmark for our429

simulation. It turns out that the superdroplet algorithm is able to reproduce the growth histories430

qualitatively and the distribution of cumulative collision times quantitatively. The role of fluctu-431

ations was also investigated by Dziekan and Pawlowska (2017), whose approach to assessing the432
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fluctuations is different from ours. Instead of analyzing the distribution of cumulative collision433

times, as we do here, their primary diagnostics is the time t10%, after which 10% of the mass of434

cloud droplets has reached a radius of 40 µm. In the LDM, such a time would be infinite, because435

there is only one droplet that is allowed to grow. They then determined the accuracy with which the436

value of t10% is determined. The accuracy increases with the square root of the number of physical437

droplets, provided that the ratio Np/s is kept below a limiting value of about 9. For Np/s > 9, they438

found that there is always a residual error in the value of t10% that no longer diminishes as they in-439

crease the number of physical droplets. They argue that this could be a consequence of introducing440

unrealistic correlations between different droplet sizes. The nature of such correlations remained,441

however, unclear. We have demonstrated that, when Np/s > 1, jumps in the growth history tend to442

occur. Those jumps can lead to shorter cumulative collision times, which could be the source of443

the residual error they find.444

For a given fraction of droplets that first reach a size of 40 µm, they also determined their av-445

erage cumulative collision time. They found a significant dependence on the number of physical446

droplets. This is very different in our case where we just have to make sure that the number of447

superdroplets is large enough to keep finding collision partners in the simulations. However, as448

the authors point out, this is a consequence of them having chosen an initial distribution of droplet449

sizes that has a finite width. This implies that for a larger number of droplets, there is a larger450

chance that there could be a droplet that is more lucky than for a model with a smaller number451

of droplets. In our case, by contrast, we always have a well-known number of superdroplets of452

exactly 12.6 µm, which avoids the sensitivity on the number of droplets.453

The Np/s = 9 limit of Dziekan and Pawlowska (2017) may not be as stringent as originally454

believed. In this context we need to recall that their criterion for acceptable quality concerned the455
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relative error of the time in which 10% of the total water has been converted to 40 µm droplets. In456

our case, we have focussed on the shape of the P(T ) curve, especially for small T .457

6. Conclusions458

We have investigated the growth histories of droplets settling under gravity using superdroplet459

simulations. The goal was to determine how accurately these simulations represent the fluctua-460

tions of the growth histories. This is important because the observed formation time of drizzle-461

sized droplets is much shorter than the one predicted based on the mean collisional cross section.462

The work of Telford (1955), Kostinski and Shaw (2005), and Wilkinson (2016) have shown that463

this discrepancy can be explained by the presence of stochastic fluctuations in the time intervals464

between droplet collisions. By comparing with the lucky droplet model (LDM) quantitatively, we465

have shown that the superdroplet simulations can capture fluctuations reasonably well.466

An accurate tool to quantify the significance of fluctuations on the growth history of droplets is467

the distribution of cumulative collision times. The present results have shown that the superdroplet468

algorithm reproduces the distribution of cumulative collision times that is theoretically expected469

based on the LDM (approaches I, II, and III). In 3-D, there are additional fluctuations in the system470

owing to the fact that the mean column density of droplets varies in the horizontal plane. Again,471

this effect is reproduced by the superdroplet algorithm, where the size distribution is computed472

from an ensemble with different number densities.473

The approximation λk ∝ r4/3
k is not accurate and must be relaxed for a useful benchmark exper-474

iment. The superdroplet algorithm demonstrates clear differences between 1-D and 3-D simula-475

tions. The broader P(T ) distribution can be explained by an extension to any of the approaches I,476

II, or III that takes horizontal droplet fluctuations into account.477
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In summary, the superdroplet algorithm appears to take fluctuations reasonably well into ac-478

count, at least in the context of the problem of coagulation from gravitational settling. Computing479

the distribution of cumulative collision times in the context of turbulent coagulation would be480

rather expensive, because one would need to perform many hundreds of fully resolved 3-D simu-481

lations. Our study suggests that fluctuations are correctly described for collisions between droplets482

settling in quiescent fluid, but we do not know whether this conclusion carries over to the turbulent483

case.484
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A1. P(T ) for different Ns/Ngrid and Nd/Ns498

This appendix is to demonstrate the statistical convergence of P(T ) for different values of499

Ns/Ngrid and Nd/Ns. As shown in Figure 15(a), P(T ) converges even at Ns/Ngrid = 1. More impor-500

tantly, Figure 15(b) shows that P(T ) is insensitive to Nd/Ns, which suggests that the superdroplet501

approach can capture the effects of fluctuations regardless of the value of Nd/Ns. This is different502

from Dziekan and Pawlowska (2017), who found that the approach can represent fluctuations only503

if Nd/Ns ≤ 9.504

A2. The 3-D LDM505

In this appendix, we describe in more detail the 3-D LDM used in Sec. 4d. The usual LDM506

applies to a given value of the number density. Other columns have somewhat different number507

densities and therefore also different mean cumulative collision times. The LDM with approaches508

I–III can be extended to include this effect by computing cases with different number densities and509

then combining P(T ) and normalizing by the 〈T 〉 for the combined P(T ). This can be formulated510

by introducing the column density as511

Σ(x,y) =
∫ z2

z1

n(x,y,z)dz, (A1)

where z1 and z2 denote the vertical slab in which the first collision occurs, and using this Σ(x,y)512

as a weighting factor for the 1-D distribution functions P1D(T ) to compute the 3-D distribution513

functions as514

P3D(T ) =
∫

Σ(x,y)P1D(T )dxdy
/∫

Σ(x,y)dxdy. (A2)

Since the first collision matters the most, we choose z2 = zmax (where the lucky droplet is released)515

and z1 = zmax− v2/λ2 (where it has its first collision).516
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Our reference model had a number density of n0 = 108 m−3. We now consider composi-517

tions of models with different values, where we include the densities (i) 0.9× 108 m−3 and518

1.1×108 m−3, as well as (ii) 0.8×108 m−3 and 1.2×108 m−3, and finally also (iii) 0.7×108 m−3
519

and 1.3×108 m−3. All these compositions have the same mean droplet number density but differ-520

ent distributions around the mean. We first average the distribution function and then normalize521

with respect to the mean collision time for the ensemble over all columns. The parameters of the522

resulting distributions are listed in Table 4 for three compositions with different density disper-523

sions. We see that, as we move from composition (i) to compositions (ii) and (iii), the dispersion524

(δnrms/n0) increases from 0.08 to 0.14 and 0.20, the distribution P(T ) extends further to both the525

left and right. The reference model is listed as (o). Here we give the rms value of the column-526

averaged densities, 〈n〉i, as527

δnrms =

[
Ni

∑
i=0

(
〈n〉2i −n2

0
)]1/2

, (A3)

where i denotes the column and Ni is the number of columns. We also give the maximum difference528

from the average density,529

δnmax = max
i

(〈n〉i−n0) , (A4)

for families (i) with Ni = 2, (ii) with Ni = 4, and (iii) with Ni = 6. We also list in Table 4 several530

characteristic times in seconds. The quantity Tmin is the shortest time in which the lucky droplet531

reaches 50 µm, TMFT denotes the value based on MFT, 〈T (nmax)〉 is the mean value based on the532

column with maximum droplet density and 〈T 〉 is the mean based on all columns. It turns out that533

for the models of all three families, the value of Tmin agrees with that obtained solely from the534

model with the highest density, which is 1.3×108 m−3 for composition (ii), for example.535

The quantity 〈T (nmax)〉, i.e., the average time for all of the columns with the largest density, is536

shorter than the 〈T 〉 for all the columns, especially for composition (iii) where the largest densities537
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occur. For the model (o), there is only one column, so 〈T (nmax)〉 is the same as 〈T 〉. The value538

TMFT based on MFT is always somewhat shorter than 〈T (nmax)〉. Finally, we give in Table 4 the539

ratios Tmin/〈T 〉 and TP=0.01/〈T 〉, where the subscript P = 0.01 indicates the argument of P(T )540

where the function value is 0.01.541
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TABLE 1. Definition of variables in superdroplet algorithm.

Ns Number of ‘superdroplets’

Np/s Number of droplets in a superdroplet

Np = Np/sNs Total number of droplets (or particles)

Nreal number of independent simulations (realizations)
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TABLE 2. Moments of X = ln(T/〈T 〉) computed from 1010 realizations for different values of r∗ (in µm]),

and different prescriptions of rA and rB. The corresponding values of T MFT
k are also given and are normalized to

unity for rA 6= rk 6= rB with r∗ ≥ 50 µm.

678

679

680

r∗ rA rB T MFT
k 〈X〉 σ(X) skew X kurt X

— — rk 0.67 −0.020 0.21 0.22 0.08

— rk rk 1.49 −0.033 0.25 0.25 0.05

— — — 1 −0.040 0.28 0.34 0.10

40 — — 0.99 −0.041 0.28 0.33 0.09

30 — — 0.93 −0.046 0.30 0.28 0.05

20 — — 0.79 −0.063 0.35 0.18 −0.04

10 — — 0.34 −0.111 0.47 0.16 −0.17
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TABLE 3. Comparison of the moments of X = ln(T/〈T 〉) for approaches I–III.

Approach 〈X〉 σ(X) skew X kurt X

I −0.040 0.279 0.34 0.10

II −0.039 0.275 0.35 0.11

III −0.040 0.279 0.34 0.11
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TABLE 4. Results for approach II using 30,000 realization showing the effects of lateral density fluctuations

in 3-D, and comparison with MFT.

681

682

Composition δnrms/n0 δnmax/n0 Tmin [s] TMFT [s] 〈T (nmax)〉 [s] 〈T 〉 [s] Tmin/〈T 〉 TP=0.01/〈T 〉

(0) 0 0 782 1969 2117 2117 0.37 0.44

(i) 0.08 0.10 795 1790 1923 2126 0.37 0.42

(ii) 0.14 0.20 767 1641 1758 2155 0.36 0.40

(iii) 0.20 0.30 631 1515 1628 2203 0.29 0.36
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FIG. 1. Collision outcomes when two superdroplets collide and droplet collisions occur. Time increases
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p/s large droplets of mass Mi, superdroplet j

contains N j
p/s small droplets of mass M j < Mi.
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FIG. 2. Contributions to the two correction factors r2/r2
A (red) and r2/r2

B (blue), as well as their product. The

discrete radii rk for k ≥ 2 are shown in a horizontal line of dots. The vertical dash-triple-dotted lines denote the

radius r = 50 µm.
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FIG. 3. Cumulative mean collision times, T MFT
k , for rA 6= rk 6= rB (solid black line), compared with the

approximations rA = rB = rk (red dashed line) and only rB = rk (blue dash-dotted line).

728

729

FIG. 4. Comparison of P(T ) in a double-logarithmic representation for the LDM appropriate to our benchmark

(black solid line) with various approximations where rA = rB = rk (red dashed line) along with a case where

only rB = rk is assumed (blue dash-dotted line).
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FIG. 5. Comparison of P(T ) in a double-logarithmic representation for the LDM for r∗ = 40 µm and 30 µm

using rA 6= rk 6= rB. The black line agrees with that in Figure 4, and the two gray lines refer to the cases with

r∗ = 20 µm and 10 µm.

733

734

735

0 50 100 150

t [s]

20

30

40

50

r
[µ
m
]

Histories

Average

FIG. 6. 98 growth histories of lucky droplets obtained from 98 independent superdroplet simulations, as

described in the text. All superdroplets have initially the same number of droplets, Np/s = 1 with Ns = 256. The

mean number density of droplets is n0 = 2.28× 109 m−3. The fat solid line shows the average time for each

radius.
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FIG. 7. P(T ) obtained with the superdroplet algorithm (blue dots), the LDM with rA 6= rk 6= rB (red solid line).
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FIG. 8. Same as Figure 6 but with initial condition Np/s = 2 initially. Note the occurrence of jumps, indicated

in red.
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FIG. 9. Comparison of models with ε = 0 (no jumps), 0.004 (the value expected for the simulations), 0.02,

and 0.05.
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FIG. 10. Simulations with initially N(back)
p/s = 40 (blue crosses) and N(back)

p/s = 2 (black circles), and N(luck)
p/s = 2

in both cases. The red line denotes the relevant LDM.
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FIG. 11. Growth histories for ε = 0.004 (very few jumps, relevant to the simulations of Figure 7), as well as

ε = 0.02, and 0.05, where jumps are more frequent. The thick solid line gives the average collision time and

cannot be distinguished from that of MFT, which is shown as a thick dotted line.
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FIG. 12. Comparison of P(T ) for approaches I, II, and III.
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FIG. 13. Comparison of the 3-D case (solid black line) with the 1-D case (dotted black line) with Np/s = 2.

The red curve shows the result for the LDM with rA 6= rB 6= rk.
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FIG. 14. Comparison between the 3-D superdroplet simulation of Figure 13 and approach II evaluated with a

dispersion of δnmax/n0 = 0.2, corresponding to composition (iii); see Table 4 for details.
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FIG. 15. Comparison of P(T ) for different Ns/Ngrid with fixed Np/s = 1 (left panel) and for different Np/s with

fixed Ns/Ngrid = 4. Same simulation as in Figure 7(a).
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