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We perform fully kinetic simulations of flows known to produce dynamo in magnetohydrodynam-
ics (MHD), considering scenarios with low Reynolds number and high magnetic Prandtl number,
relevant for galaxy cluster scale fluctuation dynamos. We find that Landau damping on the elec-
trons leads to a rapid decay of magnetic perturbations, impeding the dynamo. This collisionless
damping process operates on spatial scales where electrons are non-magnetized, reducing the range
of scales where the magnetic field grows in high magnetic Prandtl number fluctuation dynamos.
When electrons are not magnetized down to the resistive scale, the magnetic energy spectrum is
expected to be limited by the scale corresponding to magnetic Landau damping or, if smaller, the
electron gyro-radius scale, instead of the resistive scale. In simulations we thus observe decaying
magnetic fields where resistive MHD would predict a dynamo.

The energy density corresponding to the microgauss
(10−10 T) magnetic field permeating the universe at
galaxy [1] and galaxy cluster [2] scales is comparable to
that of the turbulent flows [3] on these scales. This ap-
proximate equipartition of magnetic and directed kinetic
energies is consistent with the field being generated and
maintained by a turbulent dynamo (see [4] and refer-
ences therein). Small seed fields are amplified by the
dynamo until they become dynamically significant, after
which the field strength nonlinearly saturates in a self-
consistent turbulent state. Due to the multi-scale and in-
herently three-dimensional [5, 6] nature of dynamos, they
have almost exclusively been studied within the frame-
work of magnetohydrodynamics (MHD). Although MHD
is well justified for the modeling of dynamos in dense and
collisional stellar interiors, it breaks down when the mean
free path of the plasma particles becomes comparable
with the scales of interest, such as in galaxy clusters.

Recent efforts have started to shed light on turbu-
lent dynamos in the collisionless regime. Using kinetic
tools for the ion dynamics and isothermal fluid mod-
els for the electrons, dynamo amplification of magnetic
fields has been demonstrated [7]. The role of pressure
anisotropy instabilities, such as firehose and mirror in-
stabilities, have been shown to be critical for dynamo
amplification [8], leading to the development of sharp
magnetic field line features, thereby breaking magnetic
moment conservation and alleviating the issue of related
stringent constraints [9] on field growth. While the role
of kinetic ions in the context of the dynamo is only just
beginning to be explored, what effects, if any, kinetic

electrons have on the dynamo have yet to be studied.

In this Letter, we consider a kinetic electron effect on
dynamos: the Landau damping of magnetic fluctuations.
This enhances the decay of magnetic perturbations com-
pared to resistive diffusion, thereby reducing the range of
scales where field amplification occurs. We also show that
this effect impedes dynamo field amplification in fully
kinetic simulations of weakly collisional non-magnetized
hydrogen plasmas. The possibility of Landau damping of
magnetic fields has not received wide attention in the lit-
erature, except for a few sporadic applications, affecting,
e.g., the persistence of magnetic fluctuations downstream
of ultrarelativistic pair-plasma shock waves with con-
sequences on synchroton emission in gamma-ray bursts
[10].

The turbulent dynamo is a multiscale problem: Ki-
netic energy injected into flows at the outer scale l0, non-
linearly cascades down to viscous scales lν ∼ Re−3/4l0,
where the energy is dissipated. The scale separation,
l0/lν , is characterized by the fluid Reynolds number,
Re = u0l0/ν, where ν is the kinematic viscosity and u0

is the characteristic flow velocity at scale l0. The dis-
sipation scale of magnetic fluctuations, below which re-
sistive diffusion of the fields dominates, is the resistive
scale lη. A key dimensionless quantity in dynamo the-
ory is the magnetic Reynolds number, Rm = u0l0/η, as
dynamo field amplification requires a minimum Rm that
depends on the properties of the flow. Here η = (σµ0)−1

is the magnetic diffusivity, with the Spitzer conductivity
σ, and the magnetic permeability µ0. When the mag-
netic Prandtl number, Pm = Rm/Re = ν/η is large,
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as in galaxies, galaxy clusters, the intracluster medium,
and in some hot accretion disks [11], then lη � lν , and
magnetic field growth mostly takes place in the range be-
tween the lν and lη scales [4]. In astrophysical systems
of interest, Pm can be extremely large.

The physics is kinetic for scales comparable to or
smaller than the Coulomb mean free path λ. Using
lν ∼ Re−3/4l0 and λ ∼ Re−1l0M0, where M0 is the Mach
number corresponding to u0, for a moderate Re and an
M0 ∼ 1, we see that λ and lν are comparable. Therefore,
the scales of interest for Pm� 1 are kinetic.

Several processes have been proposed to generate the
seed field for dynamos (see [12] and references therein).
One of the leading candidates is the Biermann battery
[13] at ionization fronts in the early Universe, thought
to produce a typical seed field of B ∼ 10−24 T [14–16].
While galaxy clusters are magnetized down to the resis-
tive scale at current magnetic field levels, at the time
when the field was comparable to that of seed fields, the
electron Larmor radius was comparable to the mean free
path. That is, electrons were not magnetized on kinetic
scales for the Biermann seed case, allowing for magnetic
perturbations to be Landau damped.

We consider here fully kinetic simulations of spatially
periodic flows, which are known to produce a dynamo in
MHD simulations. As has been done in several dynamo
studies [4, 8, 17], we sacrifice the fluid cascade for numer-
ical feasibility and focus on sub-viscous scales. Accord-
ingly, l0 and lν are comparable to our simulation box size
L0. The simulations employ the kinetic-Maxwell solver
[18] of the Gkeyll [19] plasma physics simulation frame-
work, which applies a discontinuous Galerkin method to
solve the kinetic equation

∂tfa+v ·∇fa+(ea/ma)(E+v×B) ·∇vfa = C[fa], (1)

for all species a, with mass ma, charge ea, and distri-
bution function fa. Inter- and intra-species Coulomb
collisions are modeled by a conservative Dougherty (or
Lenard-Bernstein) operator [20, 21], C[fa]. The sim-
ulations are initialized with Maxwellian electrons (e)
and protons, (i), with temperature Ta = 1 keV, den-
sity na = 2.3 · 1028 m−3, and a flow with a character-
istic speed u0 = M0

√
Te/mi and M0 = 0.35. Our base-

line plasma parameters are not representative of astro-
physical plasmas, rather they are chosen to give esti-
mated values of Rm ≈ 13 (with Spitzer resistivity) and
Re ≈ 0.64 (with non-magnetized Braginskii viscosity),
thus Pm ≈ 20 for a box size of L0 = 9.73µm and an
assumed Coulomb logarithm of 10. The collisional mean
free path is λ = 1.25µm.

First, we consider the time-dependent Galloway-
Proctor (GP) flow [22] that produces a fast dynamo (Rm-
independent, for Rm� 1) and requires a low critical Rm,

uGP(x, t) =u0{sin(kz + sinωt) + cos(ky + cosωt),

cos(kz + sinωt), sin(ky + cosωt)}, (2)
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FIG. 1. Volume integrated magnetic energy. Solid lines: ki-
netic simulation; dashed lines: resistive MHD induction equa-
tion. Red/blue/green/black corresponds to the x/y/z/trace
field components. For reference, (3/2)niTiL

3
0 = 5.1 · 10−3 J.

where k = 2π/L0, ω = 2π/tt, and tt = L0/u0 is
the turnover time. The flow is sustained by exerting
a force density of f(x, t) = Cfmiu(t)/ti on the ions,

with the thermal ion passing time ti = L0/
√

2Ti/mi;
we set Cf = 1. The magnetic field is initialized as Bi =
B0

∑
j 6=i,n bij,n cos[nk(xi + ϕij,n)], where bij,n and ϕij,n

are uniform random numbers on [0, 1], n = 1, 2, ..., N
with N = 4, and B0 = 40 (the thermal electron Larmor
radius at this field strength is 2.7µm). In addition to
uGP, the initial electron flow velocity also has a compo-
nent producing a current consistent with the magnetic
seed field.

The value Rm ≈ 13 is sufficiently large for the GP
flow to produce magnetic field growth in resistive MHD.
Indeed, solving the MHD induction equation ∂tB =
∇ × (u × B) + η∇2B with u = uGP, using the high
order finite-difference MHD solver Pencil Code [23] at
spatial resolutions between 123 and 323, we find that,
after a slight decay, the magnetic field starts to grow
exponentially, as shown in Fig. 1 (dashed). However,
in the kinetic simulation, the field energy is observed to
monotonically decay (solid). These simulations used 12
grid cells in each direction of the configuration space,
10 in velocity space extending between −3 and 3 times
the thermal speed of each species, and employed a set
of basis functions of polynomial order 1, i.e., a resolu-
tion equivalent to 24 and 20 grid points, respectively, in
a finite-difference scheme.

The decay of the magnetic field energy in the kinetic
simulation is caused by Landau damping of the mag-
netic fluctuations. To elaborate on this effect, we per-
formed decaying magnetic field simulations in 1 spatial
and 2 velocity coordinates, initialized withBz(x, t = 0) =
B0 cos(kx), and the corresponding current deposited as
a flow of Maxwellian electrons in the y direction. The
plasma parameters are similar to the GP flow simula-
tion, and the simulations use up to 40 spatial and 20
velocity cells, with a polynomial order of 2. For an
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FIG. 2. Effective resistivity, 1/σeff , as a function of collision
scaling factor Cν , for four values of the wavelength of the
current perturbation, increasing from L0/8 to L0 = 9.73µm
(solid lines darkening). The Spitzer resistivity (dotted line),
and the collisionless, unmagnetized theoretical limits (dashed
lines) are also indicated.

elementary magnetic perturbation of this form, resis-
tive magnetic diffusion ∂tB = η∇2B leads to a decay
Bz ∝ exp(−γt) = exp(−k2ηt). In a weakly collisional
plasma, i.e., νei → +0, where νei is the electron-ion col-
lision frequency, such a fluctuation decays due to Lan-
dau damping with a decay rate γ = |k|3c2ve/(

√
πω2

pe) =

|k|3veme/(
√
πµ0nee

2) [24], where ωpe =
√
nee2/(ε0me),

ve =
√

2Te/me is the electron thermal speed, −e and
ne are the electron charge and density, and ε0 denotes
the vacuum permittivity. We would get this decay rate
from resistive diffusion, if we replaced σ−1 with a scale-
dependent effective resistivity σ−1

eff = |k|veme/(
√
πnee

2),
which corresponds to an effective magnetic diffusivity
ηeff ∼ ηλ/l, where λ = ve/νei, and 2π/l = |k|.

Fig. 2 shows σ−1
eff as a function of an overall colli-

sionality scaling factor Cν . The σ−1
eff is calculated as

an instantaneous value of jy/Ey, and is consistent with
the exponential decay rate of current perturbations. At
the longest wavelength considered (L0 = 9.73µm, dark
solid curve) the effective resistivity starts deviating from
Spitzer below Cν = 0.5, and for Cν → +0 it asymp-
totes to a collisionality independent value determined
by Landau damping. As the wavelength of the pertur-
bations is decreased (lighter curves) the effective resis-
tivity increases; in particular already when k = 2k0,
σ−1

eff remains above the Spitzer level over the collision-
ality range plotted. We note that perfectly collisionless
simulations exhibit an echo-like recurrence of the mag-
netic field energy, unlike the weakly collisional simula-
tions shown here, where a simple exponential decay is
observed.

The simple physical picture behind the magnetic field
decay in the collisionless regime is the following. A cur-
rent perturbation of wave number k would, without the
self-consistent electromagnetic fields, decay on a time
scale ∼ (vek)−1 due to free streaming; however, the cor-
responding ∂tB induces an electric field that inhibits this
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FIG. 3. The ratio of the relevant component of the electron
viscous stress and the electric field force as a function of colli-
sion scaling factor Cν , for four values of the wavelength of the
current perturbation, increasing from L0/8 to L0 = 9.73µm
(solid lines darkening).

current decay. The induced electric field being propor-
tional to the current can be thought of as an effective re-
sistivity, which leads to a diffusion, and thus a decay, of
the magnetic field perturbation. In a collisional plasma,
the electric field is balanced by collisional friction, result-
ing in a Spitzer response. In the weakly collisional case,
however, the electric field is balanced by a viscous stress
corresponding to an off-diagonal element of the electron
pressure tensor, analogously to collisionless reconnection
[25–27]. This viscous balance is illustrated in Fig. 3,
where the ratio of the relevant viscous stress component
to the electric force is shown as a function of Cν for var-
ious wavelengths. In all cases, the small Cν limit is close
to unity, within a small difference due to electron inertia.
The contribution from the viscous stress monotonically
decreases with Cν as the friction on ions becomes more
important in balancing the electric field; at the longest
wavelength (darkest curve) the viscous stress contribu-
tion is negligibly small for Cν = 1, consistently with the
Spitzer response observed in Fig. 2.

Free streaming of electrons across the current pertur-
bation is inhibited when the electrons are magnetized and
are thus confined to magnetic field lines. Therefore, the
Landau damping of magnetic field fluctuations becomes
unimportant with increasing magnetic field strength, as
illustrated in Fig. 4, showing the reduction of the effective
resistivity with increasing B0 (ρe0 is the electron thermal
Larmor radius at B0). For low L0/ρe0, the σ−1

eff is com-
parable to the theoretical collisionless value from Landau
damping, and it drops rapidly with increasing L0/ρe0. As
for its relevance in dynamos, when the magnetic field en-
ergy grows, the range of scales where Landau damping of
magnetic fluctuations are important decreases with the
electron Larmor radius.

Note that accurate interpretation of fully kinetic dy-
namo simulations is made difficult by currents unavoid-
ably driven by the forcing. Even exerting a force density
on ions and electrons appropriately scaled by their masses
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FIG. 4. Effective resistivity (solid curve, normalized to its
highest value, 1.65 · 10−8(Ωm)−1) and the ratio of the rele-
vant component of the electron viscous stress and the electric
field force (dashed) as functions of the electron magnetiza-
tion L0/ρe0, where ρe0 is the electron Larmor radius at a
field strength of B0. The wavelength is L0, and Cν = 0.05.

leads to a current, as the momentum transport proper-
ties of the two species are different (and magnetization-
dependent); in weakly collisional plasmas, the corre-
sponding driven current is comparable to that when forc-
ing only acts on the ions. Therefore, a magnetic field is
being generated that may be larger than the initial seed
fields. This effect is illustrated in Fig. 5, which shows the
magnetic field energy in a simulation with a driven, time
independent Roberts flow [28]

uR(x, t) = u0{cos(ky)− cos(kz), sin(kz), sin(ky)}. (3)

In these simulations, L0 = 1.22µm, B0 = 10 T, the
collisionality is scaled as Cν = 0 (solid) and Cν = 0.3
(dashed), and the flow is more strongly forced Cf = 3,
otherwise the parameters are similar to those of the
Galloway-Proctor flow simulation. The magnetic field
energies level off after an initial growth phase in both
cases. We find that the final field strength is of the size
∼ eu0niµ0L0, which is expected to arise from the forcing
of the ion flow. Indeed, at the end of the simulations, the
current density has a form close to uR (as does B, since
the field is essentially force free). When simulations are
started from a higher initial B0, the magnetic energy de-
cays down to the same level, where the continuous drive
is balanced by the effect of Landau damping and colli-
sions. For these parameters no dynamo amplification is
observed in the simulation.

Finally, we consider the implication of Landau damp-
ing on fluctuation dynamos with asymptotically large
Pm. In the MHD framework, lη is estimated by balancing
the rate of stretching of magnetic fluctuations at the vis-
cous scale uν/lν with the dissipation rate at the resistive

scale η/l2η, yielding lη ∼ l0Re−3/4Pm−1/2 ∼ lνPm−1/2

[4]. In a weakly collisional plasma, we may introduce
the analogous Landau dissipation scale lL, where mag-
netic field growth due to stretching at the viscous scale
balances decay due to Landau damping. Thus, we bal-
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FIG. 5. Volume integrated magnetic energy in a forced
Roberts flow simulation, for Cν = 0 (solid) and 0.3
(dashed). Red/blue/green corresponds to the contributions
from x/y/z field components to the total (black). For refer-
ence, (3/2)niTiL

3
0 = 9.94 · 10−6 J.

ance uν/lν and ηλ/l3L. This result, combined with λ ∼
l0M0/Re, yields the estimate

lL ∼ l0
M

1/3
0

Re5/6Pm1/3
∼ lν

M
1/3
0

Re1/12Pm1/3
. (4)

When Re1/2/M2
0 � Pm, as for instance in galaxy clus-

ters, lη � lL, implying that the range of scales over which
magnetic field growth can occur is reduced compared to
the prediction of resistive diffusion.

In conclusion, considering weakly collisional, non-
magnetized initial conditions, we have performed fully
kinetic continuum simulations of model flows known to
produce dynamo amplification of the magnetic field in
resistive MHD. The magnetic field energy (apart from
that corresponding to a current caused by the forcing
of the ion flow) in these cases is observed to decay due
to the Landau damping of the magnetic perturbations.
The effect of the Landau damping is similar to that of
a magnetic diffusivity that scales with the wave number
of the perturbation |k|. In high magnetic Prandtl num-
ber plasmas (such as on galactic scales and above), the
damping is expected to lead to a peak of the magnetic
spectrum at lL, a scale larger than that given by resis-
tive diffusion, lη, potentially reducing the total energy in
magnetic fluctuations. As the magnetic field grows dur-
ing the dynamo process, the scale at which electrons de-
magnetize decreases, shrinking the region where this pro-
cess is operational. While the maximum of the saturated
magnetic energy spectrum in kinetic ion hybrid simula-
tions appears to be linked to the ion gyroradius scale [8],
our results suggest that a resolved and saturated fully
kinetic dynamo simulation would produce a magnetic
spectrum peaked around the electron gyroradius scale,
or lL, whichever is smaller. On scales where electrons
are magnetized, the issue of magnetic moment conser-
vation potentially impeding dynamo growth [9] becomes
relevant. It is possible that, similarly to ions [29], elec-
trons develop their own instabilities and corresponding
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sharp phase space structures, leading to breaking mag-
netic moment conservation, and alleviating this problem.
This remains to be demonstrated.
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