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ABSTRACT

Small-scale dynamos play important roles in modern astrophysics, especially on Galactic and
extragalactic scales. Owing to dynamo action, purely hydrodynamic Kolmogorov turbulence
hardly exists and is often replaced by hydromagnetic turbulence. Understanding the size of
dissipative magnetic structures is important in estimating the time scale of Galactic scintillation
and other observational and theoretical aspects of interstellar and intergalactic small-scale
dynamos. Here we show that, during the kinematic phase of the small-scale dynamo, the
cutoff wavenumber of the magnetic energy spectra scales as expected for large magnetic
Prandtl numbers, but continues in the same way also for moderately small values – contrary
to what is expected. For a critical magnetic Prandtl number of about 0.3, the dissipative and
resistive cutoffs are found to occur at the same wavenumber. In the nonlinearly saturated
regime, the critical magnetic Prandtl number becomes unity. The cutoff scale now has a
shallower scaling with magnetic Prandtl number below a value of about three, and a steeper
one otherwise compared to the kinematic regime.
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1 INTRODUCTION

Since the early 1990s, we know that dissipative structures
in hydrodynamic turbulence are vortex tubes (She et al. 1990;
Vincent & Meneguzzi 1991). Their typical size is of the order of
the Kolmogorov length. In magnetohydrodynamics (MHD), the dis-
sipative structures are magnetic flux tubes (Nordlund et al. 1992;
Brandenburg et al. 1996; Moffatt et al. 1994; Politano & Pouquet
1998). Their thickness has been estimated to scale with the mag-
netic Prandtl number PrM = ν/η, i.e., the ratio of the kinematic
viscosity ν to the magnetic diffusivity η. Brandenburg et al. (1995),
hereafter BPS, estimated the typical coherence scale of magnetic
field vectors in terms of the gradient matrix ∇B̂ of the unit vector
B̂ = B/|B | of the magnetic field B and found that it scales like
Pr−1/2

M relative to the Kolmogorov length scale. The inverse length
scale of the magnetic structures can be calculated as the rms value
of ∇B̂, i.e., kB = 〈|∇B̂|2〉1/2. The simulations of BPS were for
the case of a convection-driven dynamo in the presence of rotation
and compressibility, but similar results were later also obtained by
Schekochihin et al. (2004) for a small-scale dynamo in homoge-
neous incompressible turbulence for PrM ≤ 1. They also empha-
sized that a steeper dependence on PrM is expected for PrM ≪ 1.

The mechanisms of the small-scale dynamo action are dif-
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ferent depending on the magnetic Prandtl number. For PrM ≫ 1,
self-excitation of magnetic fluctuations is caused by the random
stretching of the magnetic field by a smooth velocity field; see
the analytical studies by Kazantsev (1968), Zeldovich et al. (1990),
Kulsrud & Anderson (1992, hereafter KA), and Schober et al.
(2012). For PrM ≪ 1, the small-scale dynamo is driven by
velocity fluctuations at the resistive scale, which is located
in the inertial range (Kazantsev 1968; Rogachevskii & Kleeorin
1997; Boldyrev & Cattaneo 2004; Arponen & Horvai 2007;
Kleeorin & Rogachevskii 2012; Martins Afonso et al. 2019). In par-
ticular, KA found that, for large values of PrM, the magnetic energy
spectrum is expected to be of the form

EM(k, t) ∝ e2γt k3/2K0
(

k/kKA
η

)

, (1)

where K0 is the Macdonald function of order zero (or the modified
Bessel function of the second kind), and kKA

η is

kKA
η = (4γ/15η)1/2, (2)

where γ is the growth rate of the magnetic field.1 This provides
another very different method for calculating a relevant wavenumber
characterizing the scale of structures than kB .

1 Note that the symbol γ used in KA is 3/8th of the growth rate, while the
γ used here is the actual growth rate.
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The question of characteristic length scales in a small-scale
dynamo continued attracting attention and has been investigated in
more detail by Cho & Ryu (2009) with applications to the inter-
galactic medium. Much of this work concerns the saturated phase
of the dynamo, but Eq. (1) is then not applicable. More recently,
Kriel et al. (2022) confirmed the Pr−1/2

M scaling for 1 ≤ PrM ≤ 260
for the kinematic phase of the dynamo. The small-scale proper-
ties of interstellar turbulence can be assessed through interstellar
scintillation measurements of pulsars (Cordes et al. 1985; Rickett
1990; Armstrong et al. 1995; Bhat et al. 2004; Scalo & Elmegreen
2004). A particular difficulty is to explain what is known as extreme
scattering events (ESEs), which would require unrealistically large
pressures if the scattering structures were spherical (Clegg et al.
1998). This favors the presence of sheet- or tube-like structures
that could explain ESEs of those structures are oriented along the
line-of-sight (Pen & King 2012; Bannister et al. 2016). Scintillation
measurements suggest that the dissipative structures of MHD turbu-
lence are sheet-like with an inner scale down to 300 km (Bhat et al.
2004). However, more detailed measurements would be needed to
determine the precise nature of the smallest dissipative structures
(Xu & Zhang 2017).

The goal of the present paper is to compare the relations be-
tween different length scales in small-scale dynamos. We mainly
focus here on the kinematic growth phase of the dynamo, but we
also consider some nonlinear models in Sects. 3.1 and 3.6. In addi-
tion to the values of kKA

η and kB discussed above, we also determine
a wavenumber kη that describes the resistive cutoff of the spectrum,
and is analogous to the wavenumber kν based on the Kolmogorov
(viscous) scale. Kriel et al. (2022) used a similar prescription, but
did not compare with other magnetic scales. Note that, contrary
to kKA

η , kη is not calculated from the dynamo growth rate. Fol-
lowing earlier work (Brandenburg et al. 2018), we consider weakly
compressible turbulence with an isothermal equation of state and a
constant sound speed cs, where the pressure is proportional to the
density ρ, i.e., p = ρc2

s .

2 THE MODEL

2.1 Basic equations

In this work, we are primarily interested in weak magnetic fields
and ignore therefore the Lorentz force in most simulations. The
magnetic field is given as B = ∇×A, where A is the magnetic vector
potential. We thus solve the evolution equations for the magnetic
vector potential A, the velocity u, and the logarithmic density ln ρ
in the form

∂A

∂t
= u × B + η∇2A, (3)

Du

Dt
= f − c2

s∇ ln ρ +
1
ρ
∇ · (2ρνS), (4)

D ln ρ
Dt

= −∇ · u, (5)

where D/Dt = ∂/∂t + u · ∇ is the advective derivative, f is a non-
helical forcing function consisting of plane waves with wavevector
k , and Si j = (∂iu j + ∂jui )/2 − δi j∇ · u/3 are the components of
the rate-of-strain tensor S. For the forcing, we select a k vector at
each time step randomly from a finite shell around kf/k1 = 1.5
with 1 ≤ |k |/k1 < 2. The components of k are taken to be integer

multiples of k1 ≡ 2π/L, where L is the side length of our Cartesian
domain of volume L3. This forcing function has been used in many
earlier papers (e.g. Haugen et al. 2004). We solve Eqs. (3)–(5) using
the Pencil Code (Pencil Code Collaboration et al. 2021).

2.2 Spectra and characteristic parameters

We normalize our kinetic and magnetic energy spectra such that
∫

EK(k) dk = 〈u2〉/2 and
∫

EM(k) dk = 〈B2〉/2µ0ρ0 ≡ EM,
respectively, where ρ0 is the mean density. Here, angle brackets
without subscript denote volume averages. We always present time-
averaged spectra. Since EM(k, t) increases exponentially at the rate
2γ, where γ is the growth rate of the magnetic field, we average the
compensated spectra, 〈e−2γtEM(k, t)〉∆t , over a suitable time inter-
val ∆t where the function e−2γtEM(k, t) is statistically stationary;
see also Subramanian & Brandenburg (2014). Our averaged mag-
netic energy spectra are normalized by EM, so that their integral is
unity.

Our governing parameters are the Mach number, and the fluid
and magnetic Reynolds numbers, defined here as

Ma = urms/cs, Re = urms/νkf, ReM = urms/ηkf, (6)

respectively, where urms is the time-averaged rms velocity. Thus,
the magnetic Prandtl number is PrM = ReM/Re. The value of γ
is computed as the average of d ln Brms/dt during the exponential
growth phase. We also give the kinetic dissipation wavenumber

kν =
(

ǫK/ρ0ν
3
)1/4
, (7)

where ǫK = 〈2ρνS2〉∆t is the time-averaged kinetic energy dis-
sipation rate. It obeys the expected Re3/4 scaling, here with
kν/kf ≈ 0.48 Re3/4; see Appendix A.

In fluid dynamics, to avoid discussions about different defi-
nitions of the Reynolds number, one commonly quotes the Taylor
microscale Reynolds number (Tennekes & Lumley 1972), which is
universally defined as Reλ = u′λTay/ν. Here, u′ = urms/

√
3 is

the one-dimensional rms velocity and λTay =
√

15νρ0/ǫK u′ is the
Taylor microscale.2 The values of Reλ are given in Table 1. They
are expected to be proportional to Re1/2, but the actual scaling is
slightly steeper; see the Supplemental Material (Brandenburg et al.
2022a).

A tilde on the growth rate denotes normalization with the
turnover rate and tildes on various wavenumbers denote normaliza-
tion with respect to k1, i.e.,

γ̃ = γτ, k̃ν = kν/k1, k̃f = kf/k1, etc, (8)

where τ = 1/urmskf is the turnover time. These parameters are
listed in Table 1 for our runs. For Runs A–K, we used a resolution
of 5123 mesh points, while we used 10243 mesh points for Runs L
and M, and 20483 mesh points for Run M’. The value of ǫK in
units of ρ0k1c3

s is obtained from the table entries as ǫK/ρ0k1c3
s =

k̃4
ν (Ma/Re k̃f )3. The calculation of the values of k̃η is discussed

below. Error bars are computed from time series as the largest
departure of any one third compared to the total.

In some cases, we examine the effects of nonlinear saturation.
We then include the Lorentz force and replace Eq. (4) by

Du

Dt
= f − c2

s∇ ln ρ +
1
ρ

[

∇ · (2ρνS) + J × B
]

. (9)

2 We correct herewith a typo in Haugen et al. (2022), where the u′ factor in
λTay was dropped in their definition, but it was included in their calculations.
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Figure 1. Nonlinear saturation (Run j of Sect. 3.6 below) compared with
the kinematic evolution for Run J (see Table 1). The red, orange, green, and
blue dots mark the times when Brms/Beq ≈ 0.07, 0.2, 0.3, and 0.4. The
inset shows scaled magnetic energy spectra, sEEM (k), where sE = 16,
0.45, 0.11, and 0.06, so as to make the spectra overlap near the smallest
wavenumber. The dashed and dotted lines give the time-averaged spectra
EK (k) and EM (k), respectively in the kinematic regime without the Lorentz
force.

Once the Lorentz force is included, the magnetic field is expected
to saturate near the equipartition magnetic field strength, Beq =√
µ0ρ0urms.

3 RESULTS

3.1 Growth phase of the dynamo

In most of this work, we analyze kinematic dynamo action, i.e.,
the Lorentz force is weak and can be neglected. This means that
the magnetic field of a supercritical dynamo grows exponentially
beyond any bound.

To quantify the point until when the Lorentz force can indeed
be neglected, we present in this section simulations with the Lorentz
force included; see Eq. (9). We then expect the magnetic field to sat-
urate near Beq. In Fig. 1, we show the evolution of Brms/Beq for cases
with and without Lorentz force included. We also mark four particu-
lar times for which we also show the magnetic energy spectra in the
nonlinear regime. We see that, when Brms/Beq ≈ 0.05, the magnetic
energy spectrum (red line) is still close to the time-averaged kine-
matic spectrum (dotted line). At the time when Brms/Beq ≈ 0.2, we
begin to see clear departures from the kinematic spectrum EM(k).
To see this more clearly, we have scaled the amplitude of the spectra
such that they agree with the kinematic one (dotted line) near the
smallest wavenumber. Finally, when Brms/Beq ≈ 0.3, a slow phase
of nonlinear saturation commences where the value of Brms/Beq
hardly changes, but the spectrum still changes in such a way that its
peak moves into the inertial range. This is an important difference
to the kinematic stage and was first report by Haugen et al. (2003).
The final value of Brms/Beq is about 0.4.

Figure 2. Dependence of kKA
η /kν (closed symbols) and kB/kν (open

symbols) on PrM. The dotted line shows the Pr1/2
M scaling for comparison.

3.2 Scalings of the KA and flux tube wavenumbers

Looking at Table 1, it is clear3 that the inverse flux tube thickness k̃B
does not change monotonically with PrM. The same is also true for
k̃KA
η . This is mostly because ReM was not kept constant for all runs.

For PrM ≥ 1, however, ReM varied only little and was in the range
from 1200 to 1700. In that range, k̃B showed a steady increase with
PrM. For smaller PrM, we decrease ReM so that Re did not become
too large. For Runs L and M, we used a resolution of 10243 and were
thus able to increase Re, which led to a slight increase of k̃B . For
Run M’, we used 20483 mesh points and find results comparable to
those of Run M, except for the larger statistical error. In most of the
plots, we normalize the characteristic wavenumbers by kν , which
resulted in a monotonic increase of the ratios kB/kν and kKA

η /kν .

In Fig. 2, we plot kKA
η /kν and kB/kν versus PrM. Both show

a Pr0.6M scaling for PrM ≥ 2, but they have a linear dependence for

PrM < 1. Thus, the expected Pr1/2M scaling is only approximately
confirmed.

3.3 Resistive cutoff wavenumbers

Important characteristics of MHD turbulence are the kinetic and
magnetic energy spectra. Focussing on the viscous and resistive
dissipation subranges, it makes sense to normalize k by kν , as
discussed above. We recall that the quantity kν is usually defined as
in Eq. (7), i.e., without any prefactors. The point when the spectrum
drops significantly is typically at k/kν ≈ 0.1 rather than at unity,
as one might have expected. This should be kept in mind when
discussing values of cutoff wavenumbers in other definitions. We
return to this at the end of the paper.

The functional forms of EM(k) and EK(k) are rather different
at small values of k, but near the viscous cutoff wavenumber they are
more similar to each other. In Fig. 3, we compare EK(k) and EM(k)

for a few values of PrM. We clearly recognize the EK(k) ∝ k−5/3

Kolmogorov scaling and the EM(k) ∝ k3/2 spectrum of the small-
scale dynamo (Kazantsev 1968); see also KA. For different values
of PrM, however, the slopes of EM(k) are quite different near the
resistive cutoff wavenumber: steeper for small values of PrM and

3 Note that γ/ηk2
1 = γ̃ReM k̃2

f is related to values given in Table 1.
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Table 1. Summary of the kinematic simulations presented in this paper.

Run Ma Reλ Re ReM PrM γ̃ k̃ν k̃B k̃KA
η k̃η ∆t/τ N

A 0.096 13 12 1240 100 0.076 ± 0.014 5.9 ± 0.1 127 ± 2 7.7 ± 0.7 109 ± 4 31 512
B 0.113 30 36 1460 40 0.090 ± 0.006 11.7 ± 0.1 128 ± 4 9.1 ± 0.3 129 ± 4 62 512
C 0.120 50 78 1560 20 0.110 ± 0.002 19.7 ± 0.2 139 ± 3 10.4 ± 0.2 156 ± 6 87 512
D 0.127 70 165 1650 10 0.135 ± 0.006 34.1 ± 0.2 156 ± 3 11.8 ± 0.2 187 ± 8 98 512
E 0.130 120 420 1680 4 0.159 ± 0.007 68 ± 2 185 ± 3 13.0 ± 0.3 248 ± 10 75 512
F 0.128 170 830 1660 2 0.172 ± 0.014 113 ± 5 209 ± 6 13.4 ± 0.5 293 ± 15 62 512
G 0.129 250 1670 1670 1 0.157 ± 0.016 185 ± 7 237 ± 4 12.9 ± 0.6 358 ± 15 43 512
G’ 0.131 250 1700 1700 1 0.144 ± 0.020 188 ± 10 ... 12.5 ± 0.6 358 ± 15 54 1024
H 0.132 260 1710 850 0.5 0.079 ± 0.006 187 ± 6 147 ± 4 6.5 ± 0.3 260 ± 15 101 512
I 0.134 260 1740 580 0.33 0.042 ± 0.010 189 ± 5 114 ± 3 3.9 ± 0.5 216 ± 15 78 512
J 0.130 260 1680 420 0.25 0.029 ± 0.001 185 ± 3 92 ± 1 2.8 ± 0.3 189 ± 20 712 512
K 0.130 250 1680 340 0.20 0.019 ± 0.004 186 ± 5 82 ± 4 2.0 ± 0.2 168 ± 20 99 512
L 0.132 420 4270 427 0.10 0.020 ± 0.003 368 ± 10 107 ± 2 2.3 ± 0.3 249 ± 18 193 1024
M 0.132 650 8300 430 0.05 0.013 ± 0.008 575 ± 17 103 ± 4 1.8 ± 0.4 332 ± 15 61 1024
M’ 0.131 590 8500 430 0.05 0.020 ± 0.009 616 ± 30 104 ± 5 2.3 ± 0.4 332 ± 15 26 2048

Figure 3. Magnetic energy spectra (solid lines) for PrM = 1/5 (Run K, red),
1/4 (Run J, orange), 1/3 (Run I, black), and 1/2 (Run H, blue) along with the
corresponding kinetic energy spectra (dashed lines).

shallower for larger values of PrM. For PrM = 1/4 = 0.25, the
shapes of EM(k) and EK(k) are most similar to each other at large
k, although EM(k) is just slightly too steep, while for PrM ≥ 1/3, it
is already clearly too shallow. Thus, we expect there to be a critical
value, Prcrit

M of about 0.3, where EM(k) and EK(k) are most similar
to each other near the cutoff wavenumber.

The spectral behavior near the resistive cutoff can be compared
with Eq. (1) using an empirical fit parameter through

k1EM(k)/EM = A0
(

k/kfit
η

)3/2
K0
(

k/kfit
η

)

, (10)

where kfit
η is now treated as an adjustable parameter. In Fig. 3, we

have already compared with Eq. (10), although the match is not very
good. This is mostly because the model applies to large values of
PrM, and then the fit improves, as we will see below.

By choosing suitable values of kη for PrM , Prcrit
M , we can

now try to collapse the curves EM(k/kη ) on top of each other. This
is done in Fig. 4, where we use Run I with PrM = 0.33 as references
run, because this value is close to Prcrit

M . The collapse is good near
and above the peak of the spectra, but there are departures for small
values of k, where the spectra become shallower than the classical
Kazantsev slope for smaller values of PrM. In the opposite limit of
PrM ≪ 1, the spectral slope may be smaller. For PrM = 0.1, a k7/6

Figure 4. Magnetic energy spectra collapsed on top of each other by
choosing suitable values of kη for each value of PrM. The dotted line shows
Eq. (10) with kfit

η = 0.13 kη .

Figure 5. Similar to Fig. 4, but for PrM = 0.05 (black line), 0.1 (red line),
and 0.2 (blue line).
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Figure 6. Dependence of kη/kν (closed symbols) on PrM.

Figure 7. Magnetic energy spectra versus k/kKA
η for PrM = 100 (black

solid line) and collapsed on top of it the result for PrM = 40 (blue line), as
well as PrM = 20 (orange line, having scaled kKA

η by a factor 1.05), and

PrM = 10 (red line, having scaled kKA
η by a factor 1.1). The dotted line

shows Eq. (10) with kfit
η = 1.32 skKA

η .

scaling was previously discussed by Subramanian & Brandenburg
(2014) and confirmed by Brandenburg et al. (2018). For PrM ≤ 0.2,
the quality of the collapse onto Eq. (1) becomes rather poor, which
is why we plot the results for smaller values separately; see Fig. 5.

The collapse for each value of PrM results in a value of kη ,
which we have listed in Table 1. A plot of kη/kν versus PrM is given

in Fig. 6. We see that the ratio kη/kν does obey the expected Pr1/2M
scaling rather well. In this figure, we have also highlighted the value
of PrM = Prcrit

M ≈ 0.3 where kη/kν = 1, so

kη/kν =
(

PrM/Prcrit
M

)1/2
. (11)

For PrM ≪ 1, a steeper scaling is numerically obtained at very high
resolution simulations (Warnecke et al. 2022), but in our simula-
tions, such a trend cannot yet be seen for PrM ≥ 0.05.

3.4 Comparison with the Kazantsev cutoff wavenumber

We have already discussed the differences in the PrM scaling be-
tween the measured kη and the theoretically expected kKA

η from
the work of KA based on the numerically determined growth rate.

Table 2. Values of kKA
η and adjustment factors to the KA values for PrM ≤

20.

PrM 100 40 20 10 4

k̃KA
η 7.7 9.1 10.4 11.9 13.0
s 1 1.00 1.05 1.1 1.3

1.3 sk̃KA
η 10.0 11.8 14.1 16.9 21.9

kfit
η /kν 2.87 1.44 0.56 0.38 0.25

Here, however, the scales are rather different in an absolute sense.
This is primarily caused by the large departure between the values
of kKA

η and the location where the magnetic energy spectrum be-
gins to drop rapidly. The apparent discrepancy can be alleviated by
redefining kν such that the drop occurs closer to unity. Thus, there is
otherwise no physical significance in the difference of the absolute
wavenumbers.

To clarify this point, we now plot k1EM(k)/EM versus k/kKA
η

for PrM = 100 and 40. For smaller values of PrM, we have scaled
kKA
η by a factor s = 1.05 for PrM = 20 and by a factor s = 1.1 for

PrM = 10; see Fig. 7. Those coefficients are also listed in Table 2.
The result for PrM = 4 is not plotted because of a poor collapse at
small k. Here, the adjustment factor is 1.3, as listed in Table 2. This
lack of collapse for PrM ≤ 4 illustrates that only for large values of
PrM, the Kazantsev model reproduces the numerical data related to
kKA
η sufficiently well.

In absolute terms, the value of kKA
η given by Eq. (2) underes-

timates the position of the peak by a factor of about 1.3 = 1/0.77.
This factor was obtained empirically by having overplotted in Fig. 7
the graph of Eq. (10) with

kfit
η ≈ 0.093 kη ≈ 1.32 skKA

η . (12)

The agreement with the numerical solutions is generally good, but
deteriorates for PrM < 10, especially for small k, where the sim-
ulation results predict less power than the Kazantsev model. On
the other hand, the discrepancy with the estimate of kKA

η decreases
owing to the increase of the correction factor s, which is caused
by the Pr0.6M scaling found in Fig. 6 for PrM >∼ 0.2, instead of the

expected Pr1/2M scaling of Eq. (11). This is illustrated in the third

line of Table 2, where we have listed the values of 1.3 sk̃KA
η . As

before, the tilde denotes normalization by k1. Finally, we also list
in Table 2 the ratios kfit

η /kν .

3.5 Different viscous cutoff wavenumbers

The absolute scale of characteristic and cutoff wavenumbers is a
matter of convention. The value of kν , as defined in Eq. (7), plays
an important role in that it is needed to collapse the kinetic energy
spectra on top of each other; see Appendix B. For kη , one could
determine empirically the effective wavenumber kKA

η in Eqs. (1)
and (10), as we have done. This value turned out to be 1.3 times
smaller than that proposed by KA. One would then define 1.3 kKA

η

as a new resistive cutoff wavenumber. Given that the 1/2 scaling in
Eq. (11) is well obeyed, one could even redefine kν correspondingly.
Looking at Table 1, we see that for PrM = Prcrit

M , we have kν/k1 ≈
200. Furthermore, we see that 1.3 skKA

η = 10. Thus, since 10/200 =

0.05, we could define a magnetically motivated value as k
mag
ν =

0.05 kν . The motivation for defining k
mag
ν in terms of the magnetic

energy spectrum was because EM(k) had a well defined peak, which

MNRAS 000, 1–9 (2022)
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Table 3. Summary of the different characteristic wavenumbers used in the
paper.

Quantity Definition Equation

kν (ǫK/ρ0ν
3)1/4 Eq. (7)

kNL
η (ǫM/ρ0η

3)1/4 Eq. (18)
kKA
η (4γ/15η)1/2 Eq. (2)

kfit
η collapse in Fig. 4 Eq. (10)

kfit
ν EK (k) ∝ k−5/3 exp(−k/kfit

ν ) Eq. (13)
kdis
η fit in Fig. B1(b) Eq. (15)

kNLfit
ν/η

EK/M (k) ∝ k−1 exp(−k/kNLfit
ν/η

) Eq. (19)

kB 〈 |∇B̂ |2〉1/2 BPS

is not the case for EK(k). However, one could compare with

EK(k) ∝ k−5/3 exp(−k/kfit
ν ). (13)

This is the approach chosen by Kriel et al. (2022), who found kfit
ν ≈

0.025 kf Re3/4
KBSF ≈ 0.1 kf Re3/4, where ReKBSF = 2πRe is the

Reynolds number based on the characteristic length scale rather
than the characteristic wavenumber kf . Here, we find

kfit
ν ≈ 0.5 kν ≈ 0.24 kf Re3/4; (14)

see Appendix A. This is about twice as large as their value.
A problem with Eq. (13) is that it lacks a description of the

bottleneck. She & Jackson (1993) showed that experimental data
can best be fit with an additional k−1 piece, while Qian (1984)
proposed a formula based on a closure model of the form

EK(k) ∝ k−5/3
[

1 +
(

k/kbot
ν

)nbot
]

exp
[

−
(

k/kdis
ν

)ndis
]

, (15)

with adjustable coefficients kbot
ν and kdis

ν , and exponents nbot = 2/3
and ndis = 4/3, which implies a k−1 scaling of the bottleneck. His
formula was also confirmed by Dobler et al. (2003) using the Pencil

Code. A better fit is shown in Appendix B, were nbot = 1.8 and
ndis = 0.86 with kbot

ν ≈ 0.056 kν and kdis
ν ≈ 0.073 kν were found,

which would motivate another definition; see Table 3 for a summary
of the different cutoff wavenumbers discussed in this paper.

In a recent paper, Kriel et al. (2022) determined both kfit
η and

kfit
ν and found their ratio to obey

kfit
η /k

fit
ν = C Pr1/2M , (16)

where C ≈ 0.88±0.23; see their Eq. (16). Using our scaling relations
Eqs. (11) and (12), we find

kfit
η ≈ 0.093 kν (PrM/Prcrit

M )1/2 ≈ 0.17 kν Pr1/2M , (17)

and, using Eq. (14), we have C = 0.17/0.5 = 0.34, which is smaller
than their value.

3.6 Prandtl number dependence in the nonlinear regime

We repeat a sequence of runs similar to that presented in Fig. 3,
where we show that the shapes of EK(k) and EM(k) are similar for
PrM = Prcrit

M ≈ 0.3. In the nonlinear regime, the situation is more
complicated in that now also EK(k) changes near saturation. The
nonlinear runs are denoted analogously to the kinematic case using,
however, lowercase letters. They are summarized in Table 4, where
all data are averaged over a statistically steady interval of length ∆t.
Here we also define a magnetic dissipation wavenumber analogous
to Eq. (7), i.e.,

kNL
η =

(

ǫM/ρ0η
3
)1/4
, (18)

Figure 8. Magnetic energy spectra (solid lines) for nonlinearly saturated
runs with PrM = 0.25 (Run K, red), 0.5 (Run J, orange), 1 (Run I, black),
and 2 (Run H, blue) along with the corresponding kinetic energy spectra
(dashed lines).

Figure 9. Similar to Fig. 4, but for the nonlinearly saturated case.

where the superscript NL should remind us that this quantity can
only be defined in the nonlinear regime (because otherwise ǫM → 0)
and that kNL

η is different from the kη defined by collapsing the curves
EM(k/kη ) on top of each other, as in Fig. 4. In Fig. 8, we compare
the shapes of EM(k) and EK(k) after having scaled them such that
their values agree near k = kν . This scaling allows us to see more
readily the relative change of slopes between EM(k) and EK(k). We
see that their profiles now agree with each other for PrM = 1. For
larger values of PrM, the slope of the magnetic spectrum is smaller
than that of the kinetic energy spectrum, while for smaller values
of PrM, the magnetic slopes are steeper. From this, we conclude
that there is a critical value of the magnetic Prandtl number in the
nonlinear regime that is of the order of unity. This result agrees with
that of Kriel et al. (2022).

The two green lines represent the fits with Eq. (19) using the
parameters in Eq. (20). In Fig. 9, we show the results of collapsing
the nonlinearly saturated spectra on top of each other. Here, we use
Run g with PrM = 1 as reference run, because this value is close to
the nonlinear value of Prcrit

M . The resulting values of kη are listed
in Table 4. In this nonlinear case, Eq. (10) no longer provides a
useful description of the magnetic energy spectrum. Instead, the
dissipative subrange can well be described by a formula similar to

MNRAS 000, 1–9 (2022)
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Table 4. Summary of the nonlinearly saturated runs presented in this paper.

Run Ma Reλ Re ReM PrM k̃ν k̃B k̃η k̃NL
η ∆t/τ N

a 0.068 9 9 900 100 5.2 ± 0.2 70 ± 3 95 ± 10 150 ± 2 60 512
b 0.075 19 24 960 40 9.8 ± 0.2 75 ± 2 95 ± 10 157 ± 2 70 512
c 0.080 32 52 1100 20 16 ± 1 77 ± 2 100 ± 10 162 ± 1 106 512
d 0.087 57 110 1100 10 26 ± 1 80 ± 1 105 ± 10 163 ± 4 106 512
e 0.093 110 300 1200 4 51 ± 1 80 ± 2 120 ± 10 165 ± 2 116 512
f 0.095 170 615 1230 2 113 ± 3 83 ± 1 125 ± 5 167 ± 2 643 512
g 0.095 260 1230 1230 1 132 ± 3 77 ± 3 132 ± 5 168 ± 3 191 512
g’ 0.101 270 1310 1310 1 139 ± 3 78 ± 4 139 ± 5 174 ± 2 185 1024
h 0.103 330 1340 670 0.5 128 ± 1 59 ± 4 105 ± 5 103 ± 1 700 512
j 0.111 400 1440 360 0.25 126 ± 3 47 ± 2 85 ± 5 62 ± 1 493 512
l 0.125 460 4000 400 0.1 329 ± 24 89 ± 6 210 ± 30 46 ± 2 33 1024

Figure 10. Similar to Fig. 2, showing the dependence of kη/kν (diamonds
symbols), the dependence of kNL

η /kν (closed symbols), and kB/kν (open

symbols) on PrM. The dashed-dotted lines show Pr0.3M and Pr0.7M scalings for
comparison.

Eq. (13), but with a k−1 inertial range, i.e.,

EK/M(k) ∝ k−1 exp(−k/kNLfit
ν/η

), (19)

where we find

kNLfit
ν ≈ 0.22 kη, kNLfit

η ≈ 0.20 kη (for PrM = 1). (20)

As in the kinematic case, kη depends on kν and PrM, as will be
discussed next.

In Fig. 10, we plot the dependence of kη/kν , kNL
η /kν , and

kB/kν on PrM. We see that now the slopes are different from those
in the kinematic case. Specifically, we find kη/kν ≈ 0.95 Pr0.63

M for

PrM > 3 and kη/kν ≈ 0.97 Pr0.25
M for PrM < 3. Furthermore, we

find kNL
η /kν ≈ 0.57 Pr0.7M for PrM > 3 and kNL

η /kν ≈ 0.59 Pr1/3M for
PrM < 3. The relations in Eq. (20) remain approximately valid in the
neighborhood of PrM = 1, but deteriorate significantly for PrM ≫ 1.
This is because the functional form of Eq. (19) no longer provides a
good description. We refer here to earlier work (Brandenburg 2009,
2011, 2014), where the PrM dependence in the nonlinear regime
has been studied in much more detail.

4 CONCLUSIONS

In this paper, we have determined the magnetic Prandtl number
dependence for three rather different scales characterizing the dis-
sipative magnetic structures in a kinematic small-scale dynamo:
their diameter, their theoretical cutoff wavenumbers based on the
growth rate, and the actual spectral cutoff. For a magnetic Prandtl
number of about 0.3, viscous and resistive cutoff scales are found
to be approximately equal. This is different from the results in the
nonlinear regime, where a critical value of unity is found. A scal-
ing of the cutoff wavenumber proportional to Pr1/2M is found for
0.05 ≤ PrM ≤ 100. A change of such a scaling is expected for very
small values of PrM, but this cannot be confirmed for moderately
small values.

For the actual thickness of flux tubes, we do find a break
in the scaling for PrM ≈ 1, but it is now steeper than expected
both for small and large values of PrM. For the scale based on the
theoretically expected eigenfunction of the Kazantsev small-scale
dynamo, we also found a slightly steeper scaling, but no breakpoint
for smaller values of PrM close to PrM = 0.05.

For the large values of PrM that are expected to occur in
the interstellar medium and in galaxy clusters, the viscous scale
is much larger than the resistive one and it may be observation-
ally accessibility through an excess of the parity-even E polar-
ization over the party-odd B polarization in synchrotron emission
(Brandenburg et al. 2022b). The resistive scale, on the other hand,
may be accessible through interstellar scintillation measurements of
pulsars (Cordes et al. 1985; Rickett 1990; Bhat et al. 2004), as dis-
cussed in the introduction. Thus, there may be ways of comparing
theory with observations in the not too distant future.

It would also be interesting to extend the present study to other
measures of magnetic structures. One such possibility is the use
of Minkowski functionals (Sahni et al. 1998). Wilkin et al. (2007)
have used this method to show that the thickness, width, and length
of magnetic structures from a small-scale dynamo scale differently
with magnetic Reynolds number. In their case, however, the value
of Re was held constant, so PrM and ReM did not vary indepen-
dently. Furthermore, they did not actually solve the momentum
equation and considered instead a prescribed flow with a given
power spectrum. Subsequent work by Seta et al. (2020) demon-
strated, however, that both the thickness and width of the structures
show Re−1/2

M scaling. Furthermore, the structures are more space
filling (Seta & Federrath 2021).

MNRAS 000, 1–9 (2022)
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Figure A1. Dependence of kν on Re with kν/kf ≈ 0.48 Re3/4. For Re ≈ 10,
there is no longer a proper turbulent cascade and the 3/4 scaling is expected
to become invalid. We have therefore excluded this point from the fit and
have only drawn this point so that one can see that the departure is not very
large yet. The error bars can hardly be noticed.

APPENDIX A: VISCOUS CUTOFF SCALING

In Sect. 2.2 we discussed the expected Re3/4 scaling of the viscous
cutoff wavenumber. This scaling was also verified by Kriel et al.
(2022), but they did not actually compute ǫK, nor did they use
Eq. (7). To verify that kν obeys this scaling, we show in Fig. A1
the dependence of kν on Re. Quantitatively, we have kν/kf ≈
0.48 Re3/4. Small departures are seen for very small and very large
values of Re. The latter could be related to insufficient resolution
for such a high value of Re, while the former could indicate that the
3/4 scaling is not yet applicable.

Our coefficient in the relation between kν/kf is larger than that
found by Kriel et al. (2022). They found kν/kf ≈ 0.025 Re3/4

KBSF,
where ReKBSF = 2πRe. Thus, their relation corresponds to kν/kf ≈
0.10 Re3/4. However, if their effective kf was also 1.5 k1, as in our
case, then the prefactor would be 0.07 instead of 0.1.

APPENDIX B: VISCOUS CUTOFF WAVENUMBER

In Sect. 3.5, we discussed different variants of kν . In Fig. B1(a),
we plot kinetic energy spectra for Runs A, D, G, and M’, together
with the fit given by Eq. (13) with kfit

ν ≈ 0.5 kν and Eq. (15) with
nbot = 1.8, ndis = 0.86, kbot

ν ≈ 0.056 kν , and kdis
ν ≈ 0.073 kν .

The latter corresponds to another definition of the viscous cutoff
wavenumber as kdis

ν . To demonstrate more clearly the existence
of the bottleneck effect in our simulations, we show in Fig. B1(b)
compensated kinetic energy spectra, ǫ−2/3

K k5/3EK(k), and compare
with the fit given by Eq. (15).

This paper has been typeset from a TEX/LATEX file prepared by the author.

Figure B1. Kinetic energy spectra for Runs A, D, G, and M’. together
with the fits given by Eqs. (13) and (15). Panel (b) shows the compensated
version of the spectrum shown in panel (a). No adjustable parameters are
used, except for the fits with Eqs. (13) and (15).
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