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Abstract
Mean-field dynamo theory has important applications in solar physics and galactic mag-
netism. We discuss some of the many turbulence effects relevant to the generation of large-
scale magnetic fields in the solar convection zone. The mean-field description is then used to
illustrate the physics of the α effect, turbulent pumping, turbulent magnetic diffusivity, and
other effects on a modern solar dynamo model. We also discuss how turbulence transport
coefficients are derived from local simulations of convection and then used in mean-field
models.
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1 Introduction

The problem of solar and stellar dynamos is still an open one. In spite of tremendous
progress over recent decades, we still do not understand with any degree of certainty the
reason behind the equatorward migration of solar activity belts, the dependence of cycle
frequency on rotation frequency, or the level of magnetic activity.1 All models of solar and
stellar magnetism rely on some assumptions. Even the most realistic simulations suffer from
finite resolution and the compromises in the physics that are made. The crucial question is
then, when and where we are allowed to make compromises and when not. Among those
approximations is the second-order correlation approximation (SOCA), also known as the
first-order smoothing approximation. These are nowadays either replaced by other approxi-
mations or by numerical techniques such as the test-field method (TFM), as will be explained
later in this review.

The Sun’s magnetic field exhibits a clear mean field with spatio-temporal order: antisym-
metry of radial and toroidal fields about the equator and the 11-yr cycle. This mean field can
well be described by an azimuthal average. The radial component of such an azimuthally
averaged mean field has a typical strength of ±10 G. This is not much compared with the

1The reader is referred to the review of Hazra et al. (2023) for a discussion of flux transport dynamos to
explain some of the outstanding questions of large-scale dynamos in the Sun and stars. We comment on the
main differences between the proposed models in Sects. 8.2 and 8.4 below.
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peak strength of ±2 kG in sunspots, but much of this is “lost” in the process of averaging.
Of course, whatever is lost corresponds to fluctuations, which actually play crucial parts and
correlations between different fluctuations lead to various mean-field effects.

Mathematically, once an averaging procedure has been defined, we have the mean field
B , indicated by an overbar. Then, the difference between the actual and the mean field,
B and B , gives the fluctuating field as b ≡ B − B . The same procedure also applies to
all other quantities. This formal distinction between mean and fluctuating fields, which are
sometimes also called large-scale and small-scale fields, is important in discussions with
observers. Coronal mass ejections, for example, are superficially reported as being part of a
large-scale field, but this may not be true anymore when we think of averaging over the full
solar circumference. Thus, paradoxically, even if something is large by some standards, it
may not qualify as large-scale under this formal definition of an azimuthal average.

Azimuthal averaging is not always a good recipe. Some stars have nonaxisymmetric
magnetic fields, and even the Sun is believed to have what is known as active longitudes – a
weak nonaxisymmetric magnetic field on top of a predominantly axisymmetric one. Those
nonaxisymmetric fields might best be described through low-order Fourier mode filtering.
This is probably completely fine, but slightly problematic at the formal level, because then
the average of the product of mean and fluctuating fields is no longer vanishing, as it would
be in the case of an azimuthal average. This mathematical property is one of several rules that
are called the Reynolds rules. However, as alluded to above, the violation of this particular
Reynolds rule is probably just a technicality that makes mean-field predictions less accurate.
We refer here to the work of Zhou et al. (2018) for a detailed investigation. There are a
number of other limitations in mean-field theories that will be discussed below.

The purpose of defining mean fields is twofold. On the one hand, they allow us to quantify
large-scale magnetic, velocity, and other fields that are observed or that are present in a sim-
ulation. On the other hand, they allow us to develop predictive theories for these averages.
In these theories, mean fields can sometimes emerge because of instabilities and/or because
of suitable boundary conditions. This is possible because of certain mean-field effects, by
which one usually means the relations between correlations of fluctuations and various mean
fields. Discussing those effects is an important purpose of this review. The ultimate goal of
mean-field dynamo theory is to understand and model the Sun and other stars. We therefore
also discuss in this review the status of such attempts. For a basic introduction to mean-field
theory, which is not the subject of this review, we refer to standard textbooks (Moffatt 1978;
Krause and Rädler 1980; Zeldovich et al. 1983) and other reviews (Brandenburg and Sub-
ramanian 2005a; Kulsrud and Zweibel 2008; Miesch and Toomre 2009; Charbonneau 2014,
2020; Brandenburg 2018a; Tobias 2021; Brandenburg and Ntormousi 2023; Karak 2023).

2 The Golden Years of Dynamo Theory

The first mean-field model was constructed by Parker (1955). In his model, the toroidal
magnetic field is generated from the dipole field by nonuniform rotation. To overcome the
restrictions of Cowling’s theorem (Cowling 1933), Parker suggested that the dipole magnetic
field can be regenerated by cyclonic convective motions which transform emerging toroidal
magnetic loops into poloidal magnetic field. The coalescing loops can amplify the dipole
magnetic field. Studying the combined action of differential rotation and cyclonic motions,
he found a solution in the form of a dynamo wave and formulated conditions for the equa-
torward propagation of dynamo waves. Steenbeck et al. (1966) and Steenbeck and Krause
(1969) constructed the theoretical basis of mean-field theory, introduced the notion of the
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mean electromotive force (MEMF) of the turbulence and showed that the Parker effect of the
cyclonic convective motions is equivalent to the effective MEMF along the large-scale field.
The 1970s can be considered the golden years of mean-field dynamo theory. Back then,
Schüssler (1983) stated: “dynamo theory reached the textbook state”, mentioning the fa-
mous monographs by Moffatt (1978), Parker (1979), Krause and Rädler (1980), Vainshtein
et al. (1980), and Zeldovich et al. (1983).

Indeed, intensive theoretical and observational studies led to the establishment of the ba-
sic solar dynamo scenario, identification of key dynamo parameters, and the formulation of
a general paradigm of the nature of solar and stellar magnetism. Schüssler (1983) summa-
rized that mean-field dynamo models can reproduce the “physics of solar activity to a great
extent” including:

• Hale’s polarity rule of sunspots groups,
• the time-latitude evolution of sunspot activity (“butterfly diagram”),
• reversals of the polar magnetic field,
• the phase relationship between the evolution of poloidal and toroidal magnetic fields and

their consistence with the observed butterfly diagrams (Stix 1976),
• rigid rotation of the magnetic sector structure and coronal holes (Stix 1974, 1977),
• chaotic variations of dynamo activity either due to a random α effect or the dynamo

nonlinearity from the Lorentz force (Leighton 1969; Yoshimura 1978; Ruzmaikin 1981),
and

• a quantitative understanding of the solar torsional oscillations (Schüssler 1981; Yoshimu-
ra 1981).

We note that the first and second items are based on the assumption that sunspot groups are
formed from the large-scale toroidal magnetic field. Already at the time it was recognized
that the mean-field models need to take into account the fibril state of the magnetic field
which we observed at the solar surface. We return to this point later.

Classical mean-field dynamo models utilize the α� scenario using the differential rota-
tion (� effect) as the source of the toroidal magnetic flux production and the α effect for the
poloidal magnetic field generation. Since the seminal work of Pouquet et al. (1976), it started
to become clear that the magnetic helicity results in an important nonlinear contribution to
the α effect and turbulent magnetic field generation (Kleeorin and Ruzmaikin 1982).

3 Mean-Field Theory and Avoiding Some of Its Limitations

We can never expect a mean-field theory to produce an accurate representation of reality.
One reason is the fact that the underlying turbulence has stochastic aspects, so each realiza-
tion with slightly different initial conditions would result in a somewhat different outcome.
However, there could be other reasons for discrepancies that we discuss next. Some of those
discrepancies can nowadays be avoided.

3.1 Mean-Field Electrodynamics

In mean-field theory, one derives evolution equations for the averaged fields, namely the
mean magnetic field B , the mean velocity U , and the mean thermodynamic variables such
as mean specific entropy S and the mean density ρ. Often, one neglects the evolution of U ,
S, and ρ, which is then already an important limitation.
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If one focuses on the evolution of the mean magnetic field only, one often talks about
the mean-fields electrodynamics or quasi-kinematic mean-field theory, which can still be
nonlinear if the various mean-field transport coefficients depend on the mean fields. If they
are unaffected, one talks about kinematic mean-field theory, which is linear. Of course, once
there is a dynamo, we have an exponentially growing solution, so the magnetic field would
grow without limit, i.e., it would not saturate within kinematic mean-field theory. Obviously,
a correct mean-field theory must be nonlinear, but even within the realm of linear theory,
there are important lessons to be learnt. Below, we discuss the aspects of nonlocality, which
were often omitted out of ignorance, but nowadays we know that this is often not possible
and this restriction can easily be relaxed.

3.2 Nonlocality

The mean magnetic field is governed by the mean induction equation, which is sometimes
also referred to as the mean-field dynamo equation. The most important term here is the
mean electromotive force,

E = u × b, (1)

i.e., the averaged cross product of velocity and magnetic fluctuations. In mean-field electro-
dynamics, it is often expressed as

E i = E0i + αijBj + ηijk∂Bj/∂xk + · · · , (2)

where the ellipsis denotes higher derivative terms, of which there should be infinitely many,
and there should also be time derivatives. The term E0i is a contribution that can exist already
in the absence of a mean field; see Brandenburg and Rädler (2013) for details and numerical
experiments. Including only a finite number of derivatives in Eq. (2) and ignoring time
derivatives is another important approximation. In fact, it is usually easier to express E as a
convolution between an integral kernel and the mean field. Furthermore, it is instructive to
split the integral kernel into two pieces and write

E i = E0i + α̂ij ∗ Bj + η̂ijk ∗ ∂Bj/∂xk, (3)

where the asterisks mean a convolution in space and time, and the hats denote integration
kernels. In principle, the spatial derivative can be absorbed as being part of the integral
kernel, but separating the kernel into α̂ij and η̂ijk has conceptual advantages, because they
preserve the similarity to Eq. (2). Note also that, unlike Eq. (2), where we allowed for ar-
bitrarily many derivatives, here, we have no other terms, because all even derivatives are
already absorbed in α̂ij and all odd derivatives are absorbed in η̂ijk . Time derivatives can
also be absorbed in both of them if the convolution with the kernels is also over time.

For the benefit of better interpretation, both αij and ηijk (and analogously also for α̂ij and
η̂ijk) can be broken down into further pieces. The αij tensor can be split into a symmetric
and an antisymmetric tensor. The latter is characterized by a vector, γi = − 1

2εijkαjk , which
corresponds to a pumping velocity. Having in mind that the magnetic gradient tensor can
also be split into symmetric and antisymmetric parts, where the latter is the mean current
density, J , with J i = − 1

2εijk∂Bj/∂xk , we can separate the rank-3 tensor, ηijk , into a rank-2
tensor operating only on J and the rest operating on the symmetric part of ∂Bj/∂xk .

The convolution can only be replaced by a multiplication, as in Eq. (2), if the mean field
is constant in time (which is normally never the case!) and if it varies at most linearly in
space (which is normally also not the case). We return to this point further below.
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3.3 Beyond SOCA and Scale Separation Limits

An important question concerns the calculation of the αij and ηijk coefficients or kernels.
A problem arises from the fact that the differential equations for these expressions are non-
linear and therefore hard to solve analytically. A commonly used approximation is SOCA.
It neglects triple (and higher) correlations in the evolution equations for the fluctuating ve-
locity and magnetic fields. This closure can be applied when either the magnetic Reynolds
number, ReM, or the Strouhal number, St, are much smaller than unity. These limits are
rather restrictive for astrophysical conditions. For example, the convection zones (CZs) of
the Sun and stars are in a turbulent state with huge values of the fluid Reynolds number
(Re � 1012), the magnetic Reynolds number (ReM � 108), Rayleigh number (Ra � 1020),
and an extremely low Prandtl number (Pr ∼ 10−4–10−7); see, e.g., Ossendrijver (2003).

Results of Schrinner et al. (2005) showed that SOCA does not work well when ReM ex-
ceeds unity and St is not small. There are analytical approaches, e.g., different variants of
the so-called τ approximation (Kleeorin et al. 1996; Field and Blackman 2002; Branden-
burg and Subramanian 2005a), which can be applied in the high Reynolds number limit.
The restrictions inherent to SOCA or the τ approximation no longer apply when calculat-
ing solutions of the underlying differential equations numerically. This is done in the TFM
(Schrinner et al. 2005, 2007).

Using a set of mean magnetic fields, the TFM allows one to determine the turbulent trans-
port coefficients for arbitrary velocity fields, provided they can be computed or otherwise
represented on the computer. The velocity field can be determined either as a solution of
the nonlinear Navier-Stokes equations for a forced turbulent flow or it can be obtained as a
results of global convective dynamo (GCD) simulations. To compute E , the solution for the
induction equation for the fluctuating magnetic field is needed as well. The original TFM of
Schrinner et al. (2005, 2007) adopts the scale-separation assumption. It was shown that the
TFM describes the dynamo processes for GCD simulations at moderate Reynolds numbers
of around 50 rather well (Schrinner 2011; Warnecke et al. 2018; Viviani et al. 2018). The
calculations within TFM have some technical restrictions and are currently unable to meet
the very high astrophysical limits of Re,ReM > 106. Nevertheless, the current applications
of the TFM concern cases with Re,ReM � 1, which is well beyond the SOCA limits. In
recent developments of the TFM, Käpylä et al. (2022) took compressibility effects into ac-
count. They also studied the effects of the small-scale dynamo on the turbulent electromotive
force (see also Rempel et al. 2023).

An alternative way of extracting the coefficients of the mean-electromotive force employs
a multi-dimensional regression method (Brandenburg and Sokoloff 2002; Racine et al. 2011;
Augustson et al. 2015; Simard et al. 2016). In this approach, instead of solving the equations
for the fluctuations in the presence of different mean magnetic fields, as it is done in the
TFM, the regression methods try to exploit the form of Eq. (2) for the dynamo-generated
large-scale magnetic field. Detailed comparisons of the above method with TFM were done
by Warnecke et al. (2018). It was found that the TFM gives a more accurate representation
of the mean-field coefficients than the multidimensional regression method. We encourage
the reader to consult this paper for further details. We return to the problem of extracting
turbulent transport coefficients from GCDs in Sect. 7.

The limitations discussed so far are in principle all avoidable: (i) The evolution equations
for U , S, and ρ can be (and have been) included (Brandenburg et al. 1992), in addition to
that for B , but in practice, even this is still an approximation in the sense that the full set
of coefficients for the equations is not (or only approximately) known. (ii) The electromo-
tive force can be (and has been) expressed as a convolution, which can most effectively be
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Fig. 1 Top: Dependences of the normalized α̃ and η̃t on the normalized wavenumber k/kf for isotropic
turbulence forced at wavenumbers kf/k1 = 5 with ReM = 10 (squares) and kf/k1 = 10 with ReM = 3.5
(triangles), all with ν/η = 1, using data from Brandenburg et al. (2008). The solid lines give the Lorentzian fits
(4). Bottom: Normalized integral kernels α̂ and η̂t versus kfζ for isotropic turbulence forced at wavenumbers
kf/k1 = 5 with ReM = 10 (squares) and kf/k1 = 10 with ReM = 3.5 (triangles), all with ν/η = 1. The solid
lines are defined by (5). Adapted from Brandenburg et al. (2008)

solved by rewriting the equations as a differential equation, as will be described below. (iii)
Numerical solutions can be employed to find specific values for αij and ηijk ; see Warnecke
et al. (2018, 2021) for doing this for solar simulations using the TFM. It often turns out
that analytical closure techniques are very useful as a first orientation and they are often
also accurate enough for a qualitatively useful model. In special cases, when a more accu-
rate solution is required, the answer may well be obtained numerically using the TFM. The
problem is then only that numerical solutions themselves are limited in just the same way as
those for a full numerical solution in the solar and stellar dynamo problems.

Figure 1 shows results for α̃(k) and η̃t(k) with ν/η = 1. Both α̃ and η̃t decrease
monotonously with increasing |k|. The functions α̃(k) and η̃t(k) are well represented by
Lorentzian fits of the form

α̃(k) ≈ α0

1 + (k/kf)2
, η̃t(k) ≈ ηt0

1 + (k/2kf)2
. (4)

Also shown in the lower part of Fig. 1 are the kernels α̂(ζ ) and η̂t(ζ ), obtained through
Fourier transforms of the Lorentzian fits,

α̂(ζ ) ≈ 1
2α0kf exp(−kf|ζ |) , η̂t(ζ ) ≈ ηt0kf exp(−2kf|ζ |) . (5)

We see that the profile of η̂t is half as wide as that of α̂, but it is not known whether this
is a general property. It is important to realize that the suggested mean-field modifications
employing the Lorentzian forms of the integral convolution kernels are based on empirical
results. Nevertheless, they are much more accurate than the approximation of replacing the
kernels by δ functions, which is done in conventional approaches.

Under suitable conditions, the accuracy of the TFM can be so high that discrepancies
become apparent that are solely the result of having made unjustified approximations in the
comparison. An example is the memory effect. Comparing the growth rate for a supercritical
dynamo with that obtained theoretically from the coefficient obtained from the TFM can
give noticeable discrepancies if the memory effect is neglected; see Fig. 1 of Hubbard and
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Brandenburg (2009). The combined Fourier transformed integral kernel is of the form

α̃(k,ω) ≈ α0

1 + (k/kf)2 − iωτ
, η̃t(k,ω) ≈ ηt0

1 + (k/2kf)2 − iωτ
, (6)

where τ is well approximated by the turbulent turnover time. Even for stationary flows, the
memory effect can be dramatically important (Rädler et al. 2011).

In practice, it is cumbersome to solve the integral equation in time. However, as alluded
to above, it is possible to approximate this integral equation by a differential equation for E
with respect to space and time t of the form

(
1 + τ

∂

∂t
− �2∇2

)
E i = αijBj + ηijk∂Bj/∂xk. (7)

This has been done in several papers (Rheinhardt and Brandenburg 2012; Rheinhardt et al.
2014; Brandenburg and Chatterjee 2018; Pipin 2023). We return to this in Sect. 5.3.

3.4 The Use of Mean-Field Theory

If mean-field theory cannot reliably be applied to a regime outside that of the direct numer-
ical simulations (DNS), one must ask what is then the use of mean-field theory. The answer
lies in the fact that mean-field theory provides us with an excellent diagnostic “tool” for
approaching the problem. Particular features of a solution can usually be attributed to par-
ticular terms in the mean-field equations. This would then allow us a more informed answer
by saying that the main dynamo mechanism is, for example, of α� type, or of a specific
type of a shear flow dynamo, for example. Thus, mean-field theory may be regarded as a
convenient tool for understanding what is going on rather than predicting what might be
going on.

4 The Catastrophic Quenching Problem

Since the 1990s, a problem emerged in that numerical dynamo solutions were found to
depend on the value of the microphysical magnetic diffusivity. Typically, the strength of
the mean-fields then decreases with increasing magnetic Reynolds number. This is unusual
and does not have any correspondence with ordinary hydrodynamics where the large-scale
dynamics is usually already captured at moderate fluid Reynolds numbers. In its original
form, the catastrophic quenching problem refers to the finding that the volume-averaged
electromotive force scales with the microphysical magnetic diffusivity, and thus goes to
zero when η → 0. To some extent, this is a problem related to the use of periodic boundary
conditions. However, even for astrophysically more realistic boundary conditions, numerical
simulations reveal that there is still a problem. Plasma relaxation experiments have identified
the role of magnetic helicity as the main culprit in causing η-dependent large-scale dynamics
and catastrophic quenching. We therefore begin by briefly reviewing the essential findings.

4.1 Lessons from Plasma Relaxation Experiments

The magnetic field is divergence-free and can therefore be written as B = ∇×A, where A is
the magnetic vector potential. The magnetic helicity density is defined as A ·B . Its evolution
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equation follows directly from the uncurled induction equation, ∂A/∂t = −E − ∇�, or,
using Ohm’s law, −E = U × B − ημ0J , so

∂A

∂t
= U × B − ημ0J − ∇�. (8)

It yields the evolution equation for the magnetic helicity density,

∂

∂t
(A · B) = −2ημ0 J · B − ∇ · (E × A + �B) . (9)

It must here be emphasized that there is an important difference to the equation for the
magnetic energy density,

∂

∂t

(
B2/2μ0

)= −U · (J × B) − 2ημ0 J 2 − ∇ · (E × B/μ0) . (10)

While both Eqs. (9) and (10) have analogous terms such as dissipation ∝ J · B versus
∝ J 2, respectively, and flux terms E × A versus Poynting vector E × B/μ0, respectively,
there is the work against the Lorentz force, −U · (J × B) in Eq. (10), which would be
U · (B × B) in Eq. (9), but it obviously vanishes. In statistical equilibrium, 〈2ημ0 J 2〉 must
balance −〈U · (J × B)〉, which implies that the current density diverges like |J | ∼ η−1/2.
By contrast, no magnetic helicity is being produced, and also its dissipation converges to
zero like ∝ η|J · B| → η1/2 as η → 0.

Already since the 1970s, we know of the conjecture of J. B. Taylor (1974, 1986) that
the magnetic field relaxes under the constraint of magnetic helicity conservation to a nearly
force-free field to minimize dissipation. The approximate conservation of magnetic helicity
has been verified experimentally in plasma relaxation experiments; see, e.g., Ji et al. (1995).
There are obviously some differences between the solar convection zone and laboratory
plasmas, for example, the role of the electron pressure in the generalized Ohm’s law could
play an important role in explaining why magnetic helicity changes are observed to be faster
in plasma experiments than what is predicted by Ohm’s law (Ji et al. 1995). Furthermore,
the α effect has been identified as the main agent for converting magnetic helicity from the
turbulent field to the mean field (Ji 1999).

In the context of plasma relaxation experiments, it is useful to distinguish between
electromagnetic and electrostatic turbulence. This distinction refers to the curl-free and
divergence-free parts of the electric field written as E = −∇� − ∂A/∂t . In plasma re-
laxation experiments, turbulence is mostly electrostatic. It can be affected by the electron
pressure gradient (ene)

−1∇pe in the generalized Ohm’s law, where e is the unit charge,
and ne and pe are the electron density and electron pressure, respectively; see Ji (1999) for
details. This leads to a battery term ∝ ∇ne × ∇pe in the equation for ∂B/∂t and to a mag-
netic helicity flux, which transports magnetic helicity across physical space, as opposed to
wavenumber space (Ji 1999).

There is the possibility that the divergence of a magnetic helicity flux, F f, itself can
constitute an α effect. This corresponds to α = − 1

2 B−2∇ ·F f; see Vishniac and Cho (2001),
who have derived a specific form for such a flux. The subscript ‘f’ indicates that the flux
originates from correlations of the fluctuating magnetic field. Mean-field models of the type
described below have shown that a dynamo can operate even without kinetic helicity, i.e.,
it is based only on shear and current helicity fluxes, provided a nondimensional scaling
factor in front of the magnetic helicity flux exceeds a certain critical value (Brandenburg
and Subramanian 2005c). However, there are so far no DNS that have supported this kind



Turbulent Processes and Mean-Field Dynamo Page 9 of 57    55 

of behavior, nor has the proposed flux been confirmed (Hubbard and Brandenburg 2012).
Nevertheless, the idea of an α effect being related to the magnetic helicity flux divergence
is certainly consistent with the laboratory experiment presented in Fig. 1 of Ji (1999).

The α effect reflects the physics of the inverse cascade of magnetic helicity (Pouquet
et al. 1976). In the absence of energy input, this is known to lead to a slower turbulent decay
of magnetic energy ∝ t−2/3 (Hatori 1984; Biskamp and Müller 1999). In hydrodynamics,
by comparison, the kinetic energy density decays like t−10/7 or t−6/5, depending on the ini-
tial subinertial range energy spectrum (Davidson 2000); see also Brandenburg and Larsson
(2023) for a comparison with the magnetic case.

In the presence of magnetic driving by applying a voltage drop along the magnetic field,
small-scale instabilities such as the tearing instability develop. This leads to a sawtooth-
like time dependence in the mean toroidal magnetic flux; see Ji and Prager (2002) for a
review. This can be associated with the resulting development of a mean electromotive force,
E = u × b, along with an α effect that accomplishes the helicity transport (Ji 1999).

Unlike astrophysical dynamos, which are generally understood as self-excited ones, the
plasma experiments operate in a regime where a magnetic field is always present, but it is
then redistributed by the α effect. The conceptional similarities and differences have been
discussed in detail by Blackman and Ji (2006). In the following, we discuss in more detail
the consequences imposed by magnetic helicity evolution in astrophysical dynamos. It is
important to emphasize, however, that the same physics that is used to explain the catas-
trophic quenching phenomenology also applies to plasma experiments such as the reversed
field pinch, as was shown in corresponding mean-field simulations by Kemel et al. (2011).

4.2 Mean Fields in Periodic Domains

Under astrophysical conditions of interest, η is so small that the volume-averaged electro-
motive force would be negligibly small. If this result was actually astrophysically relevant, it
would be a “catastrophe,” i.e., it would not be possible to understand astrophysical magnetic
fields as mean-field dynamos. The solution to this particular problem turned out to be that re-
lating the volume-averaged electromotive force to the volume-averaged mean magnetic field
is only of limited relevance to the problem of α effect dynamos. Any dynamo would pro-
duce a non-uniform field. Especially in a periodic domain, the mean magnetic flux through
any of the faces of the periodic domain is constant in time, so if it was zero to begin with, it
would always remain zero. A dynamo problem can therefore not be formulated in that case.

A proper dynamo problem should always allow for the possibility of the magnetic field to
decay to zero if there is sufficient magnetic diffusivity. Simple examples of nontrivial mean
fields in a periodic domain are Beltrami fields of the form

B(x) ∝
⎛
⎝ 0

sinkx

coskx

⎞
⎠ , B(y) ∝

⎛
⎝cos ky

0
sinky

⎞
⎠ , or B(z) ∝

⎛
⎝ sinkz

cos kz

0

⎞
⎠ , (11)

which can be solutions of the simple α2 dynamo problem, ∂B/∂t = α∇ × B + ηT∇2B .
Nevertheless, there is still a problem of catastrophic nature because it turned out that the
time required to reach the final solution scales inversely with η. This is demonstrated in
Fig. 2, where we show the evolution of one of the three planar averages. In the beginning,
all three mean fields grow in a similar fashion, but at some point, only one of the three
reaches a significant amplitude. Note, however, that the ultimate saturation takes a resistive
time, τres = 1/(2ηk2

1).
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Fig. 2 Evolution of the normalized 〈B2〉 and that of 〈B2〉+τdiffd〈B2〉/dt (dotted), compared with its average
in the interval 1.2 ≤ t/τdiff ≤ 3.5 (horizontal blue solid line), as well as averages over three subintervals
(horizontal red dashed lines). The green dashed line corresponds to Eq. (14) with tsat/τdiff = 0.54. Adapted
from Candelaresi and Brandenburg (2013)

4.3 Quenching Phenomenology

To understand the reason for the catastrophically slow saturation, it suffices to consider
Eq. (9) for the magnetic helicity density. For periodic domains, we just have

d

dt
〈A · B〉 = −2ημ0〈J · B〉. (12)

This equation is gauge-independent, because the gauge transformation A → A′ +∇� yields
〈A · B〉 = 〈A′ · B〉, with 〈B · ∇�〉 = 〈∇ · (�B)〉 − 〈�∇ · B〉 = 0, because ∇ · B = 0 and
the domain is periodic, so the average of a divergence vanishes.

For fully helical large-scale and small-scale magnetic fields of opposite magnetic helicity,
Eq. (12) becomes (Brandenburg 2001)

d

dt
〈B2〉 = 2ηk1kfB

2
eq − 2ηk2

1〈B2〉, (13)

with the solution

〈B2〉 = B2
eq

kf

k1

[
1 − e−2ηk2

1 (t−tsat)
]
. (14)

This agrees with the slow saturation behavior seen first in the simulations of Brandenburg
(2001); see Fig. 2. Here, tsat is the time when the slow saturation phase commences; see the
crossing of the green dashed line with the abscissa. Interestingly, instead of waiting until full
saturation is accomplished, one can obtain the saturation value already much earlier simply
by differentiating the simulation data to compute (Candelaresi and Brandenburg 2013)

B2
sat ≈ 〈B2〉 + τres

d

dt
〈B2〉. (15)

Since τres involves the microphysical magnetic diffusivity, the quenching is still in that sense
catastrophic.

4.4 The α Quenching Formula

A more complete description is in terms of kinetic and magnetic α effects, i.e.,

α = αK + αM ≈ −τ

3

(
ω · u − j · b/ρ

)
, (16)
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and observing the fact that the magnetic helicity evolution of averages and fluctuations is
given by

d

dt
〈A · B〉 = +2〈E · B〉 − 2ημ0〈J · B〉, (17)

d

dt
〈a · b〉 = −2〈E · B〉 − 2ημ0〈j · b〉. (18)

Equation (17) allows for the possibility that magnetic helicity can be produced by the mean
electromotive force, because, in general, E · B ≡ u × B · B �= 0. (By contrast, of course,

(u × B) · B = 0.) In particular, if E = αB − ηtμ0J , then, E · B = αB
2 − ηtμ0J · B , which

produces positive (negative) magnetic helicity of the mean field when α > 0 (α < 0)
Equation (18) is constructed such that the sum of Eqs. (17) and (18) yields Eq. (12).

Given that 〈a · b〉 is related to 〈j · b〉, which, in turn, is related to a magnetic contribution to
the α effect (Pouquet et al. 1976), Eq. (18) can be rewritten as an evolution equation for the
total α (Brandenburg 2008),

dαM

dt
= −2ηt0k

2
f

(
αB

2 − ηtμ0J · B
B2

eq

+ αM

ReM

)
, (19)

which can also be expressed in the form

α(B) = α0 + ReM ×“extra terms”

1 + ReM B
2
/B2

eq

(20)

where

“extra terms” = ηt
μ0J · B

B2
eq

− ∇ ·F f

2k2
f B

2
eq

− ∂α/∂t

2k2
f B

2
eq

. (21)

Note that the last term is here a time derivative. Equation (20) resembles the catastrophic
quenching formula of Vainshtein and Cattaneo (1992), but it also shows that it needs to be
extended in several important ways: when the mean field is no longer defined as a volume
average, extra terms emerge that are of the same order as those in the denominator. They can
therefore potentially offset the catastrophic quenching. In practice, this is only partially true,
because there are also other terms, for example the aforementioned time derivative term. It
is responsible for the fact that a strong field state is only reached after a resistively long time.

4.5 Magnetic Helicity Fluxes and Helicity Reversals

Magnetic helicity fluxes could in principle remove the catastrophic quenching problem, but
only if preferentially small-scale magnetic helicity is being removed (Kleeorin et al. 2000).
To see this, let us first consider the problem of an α2 dynamo in insulating boundaries using
the Weyl gauge, i.e.,

∂

∂t
A = αB − ηTμ0J , with ∂zAx = ∂zAy = Az = 0. (22)

The boundary condition implies that Bx = By = 0, and is therefore also referred to as the
vertical field condition. In this 1-D problem, however, this boundary condition is equivalent
to a proper vacuum boundary condition.
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The α2 dynamo with this boundary condition was first considered by Gruzinov and Dia-
mond (1994), who found that the saturation field strength of such a dynamo decreases with
ReM. This was later confirmed by Brandenburg and Dobler (2001). In Fig. 3, we show the
profiles of magnetic helicity, current helicity, and the magnetic helicity fluxes for Runs A
of Brandenburg (2018b) with ReM = 180. The computational domain is 0 ≤ z ≤ π/2 with
a perfect conductor boundary condition on z = 0 and a vertical field condition on z = π/2;
see Brandenburg (2017) for the relevant mean-field models. For normalization purposes, he
defined the reference values

Cf0 = kfB
2
eq and Fm0 = ηt0k

2
1

∫ π/2

0
B

2
dz. (23)

He emphasized that the largest contribution to the magnetic helicity density comes from
the large-scale field. Near the surface (z = π/2), the (negative) magnetic helicity flux from
small-scale fields is only about 0.02Fm0, which explains why they are not efficient enough
to alleviate the catastrophic dependence of the resulting mean magnetic field (Del Sordo
et al. 2013; Rincon 2021).

Subsequent simulations with an outside corona indicated that the magnetic helicity
changes sign at or near the outer surface (Brandenburg et al. 2009). This was just a specu-
lation and needs to be reconsidered with the help of global models of the type considered
by Warnecke et al. (2011, 2012) and Brandenburg et al. (2017a). This is shown in Fig. 4,
where we present the line-of-sight averaged current helicity density, 〈J · B〉 in the plane of
the sky using a simulation of Brandenburg et al. (2017a). The quantity 〈J · B〉 is a proxy of
magnetic helicity at small scales and shows clearly the reversal of sign between the dynamo
interior and the exterior.

4.6 Radial Magnetic Helicity Reversal in the Solar Wind

If the idea of alleviating catastrophic quenching by magnetic helicity fluxes is to make sense,
we would expect to see signs of the expelled magnetic helicity in the solar wind. The mag-
netic helicity spectrum can be measured in the solar wind by determining the parity-odd
contribution to the magnetic correlation tensor, which, in Fourier space, takes the form

〈B̃i(k)B̃∗
j (k)〉 =

(
δij − k̂i k̂j

)
2E(k) − ik̂kεijkH(k). (24)

This would allow one to compute H(kz) = Im(B̃xB̃
∗
y ) and E(kz) = 1

2 (|B̃x |2 + |B̃y |2), which
also obeys the realizability condition kz|H(kz)| ≤ 2E(kz).

Fig. 3 Magnetic helicity, current helicity, and magnetic helicity fluxes for Run A of Brandenburg (2018b)
with ReM = 180. The kinetic helicity is shown in green and is found to be of similar magnitude as the current
helicity of the small-scale field. The second panel shows E × A near zero. The green line denotes φb, which
is seen to fluctuate around zero
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Fig. 4 Current helicity 〈J · B〉 in the plane of the observer at four different times. Yellow and white shades
denote positive values and blue and black shades denote negative values; adapted from Brandenburg et al.
(2017a)

Fig. 5 Magnetic energy and magnetic helicity spectra for southern latitudes (a) at the solar surface in active
region AR 11158, and (b) in the solar wind at ∼ 1 AU distance (1 AU ≈ 149,600 Mm). Positive (negative)
signs are shown as red open (blue filled) symbols. Positive signs are the solar surface at intermediate and
large k correspond to positive values in the solar wind at small k. Note that 1 G = 10−4 T = 105 nT

The Ulysses spacecraft was the only one to cover high heliographic latitudes, where a
non-vanishing sign of magnetic helicity can be expected. It turned out that H(k) has, as
expected from dynamo theory, different signs in the northern and southern hemispheres. It
also has different signs at small and large wavenumbers. This, in itself, is also expected
from an α2 dynamo, because the α effect produces no net magnetic helicity, but it separates
magnetic helicity in wavenumber space. However, the signs are opposite to what is seen at
the solar surface, where the helicity in the north is negative at small length scales. In the
solar wind, however, it is positive in the north and at small scales. Of course, the meaning of
small is here relative and has to be with respect to larger scales, where a sign change in k has
been seen. If one just assumed a linear expansion of all scales from the solar surface (radius
r = 700 Mm, to the location of the Earth at 1 AU, we expect a corresponding expansion
ratio so that a wavenumber of 1 Mm−1 corresponds to 1/700 AU−1. In particular, 20 Mm−1

corresponds to 2/70 AU−1, which is close to the wavenumber where we see a sign-change
in Fig. 5. It is unexpected, however, that at the solar surface (Fig. 5b), the sign in the northern
hemisphere changes from minus to plus as k increases, while in the solar wind, it changes
from plus to minus. This apparent mismatch may not just be a measurement error, but it
may actually be a real result and would tell us that the simpleminded picture of expelling
magnetic helicity of one sign all the way to infinity may not be accurate.
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When the domain is inhomogeneous, and especially when there are boundaries, magnetic
helicity fluxes are possible and Eq. (18) takes the form

∂

∂t
a · b = −2E · B − 2ημ0 j · b − ∇ ·F f. (25)

In the steady state, we have

∇ ·F f = −2αB
2 + 2ηtμ0J · B︸ ︷︷ ︸

−2E·B

−2ημ0 j · b. (26)

In the dynamo interior at the northern hemisphere, α > 0, and, assuming αB2 to dominate
the EMF, we expect −2E · B to be negative. However, a negative flux divergence of a nega-
tive quantity would eventually make this quantity positive, which is what has been observed.

Whether or not this is really the right interpretation remains still an open question. It
would clearly be useful to have an independent assessment of this interpretation.

4.7 Nonlocal Effects of E and Catastrophic Quenching

Catastrophic quenching in large-scale dynamos is a rather general property. It is a conse-
quence of the build-up of magnetic helicity of the mean magnetic field. It has been conjec-
tured that catastrophic quenching would be prevented if the sources of toroidal field gen-
eration are spatially separated from the sources of the poloidal field; see, e.g., Tobias and
Weiss (2007). This would be the case in what is known as interface dynamos (Parker 1993).
It could also be through a nonlocal α effect. Such a nonlocal α effect is an essential ingre-
dient of the Babcock–Leighton and flux-transport dynamo models; see, Hazra et al. (2023).
The studies of Brandenburg and Käpylä (2007) and Chatterjee et al. (2010) showed that a
spatial separation between shear and α effects does in general not help to avoid catastrophic
quenching for such types of dynamo models. It is interesting, however, that Kitchatinov and
Olemskoy (2011) and later also Brandenburg et al. (2015) found that the inclusion of dia-
magnetic downward pumping of the toroidal magnetic field can alleviate the catastrophic
quenching in the Babcock–Leighton dynamo model with a strongly nonlocal α.

The catastrophic quenching models are reasonably well reproduced by DNS when the
geometries of the setups are sufficiently simple. It would therefore be worthwhile to apply
DNS to conditions where turbulent pumping and a strongly nonlocal mean electromotive
force can be expected. At present, however, even just the physical reality of a nonlocal α

effect of Babcock–Leighton type through the decay of active regions rests mainly on the
interpretation of solar observations. Turbulence simulations have so far not been able to
make contact with such concepts.

5 Alternative Large-Scale Dynamo Effects

Given the difficulties encountered with α effect dynamos, there have been various attempts
to construct large-scale dynamos that are not based on the α effect. A common misconcep-
tion here is the idea that catastrophic quenching would not apply just because there is no
α effect. This is not true, because an αM term can always emerge regardless of whether or
not there existed an original α effect. An example is the shear–current effect. It is due to
the presence of shear and boundaries that a helicity can be introduced. Shear of the form
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U = (0, Sx,0) implies a finite vorticity, ∇ × U = (0,0, S) and boundaries would lead to
a gradient vector of turbulent intensity near the boundaries. Thus, while there can be hope
that catastrophic quenching may not be as strong, this may turn out not to be the case. An
example of this was presented in Brandenburg and Subramanian (2005c).

5.1 Rädler and Shear–Current Effects

The Rädler effect is another large-scale dynamo effect (Rädler 1969). In the simplest repre-
sentation it leads to an EMF proportional to �×J . It is similar to the shear–current effect. In
this case it cannot change the magnetic energy of the mean field. Indeed, the energy equation
for the mean field is given by

d

dt
〈B2

/2〉 = J · (� × J )︸ ︷︷ ︸
=0

+〈∇ · [(� × J ) × B]〉︸ ︷︷ ︸
=0 under periodicity

. (27)

In the general case, the generation effects due to global rotation and mean currents can be
written as follows (see Krause and Rädler 1980; Kitchatinov et al. 1994a; Rädler et al. 2003;
Pipin 2008):

E(δ) = δ1� × J + δ2∇
(
� · B)+ δ3

�
[
� · ∇ (

� · B)]
�2 , (28)

where the coefficients δ1,2,3 depend on the spatial profiles of the turbulent parameters such
as the typical convective turnover time, the convective velocity urms, etc. The last two terms
in this equation may lead to an δ2 dynamo (Pipin and Seehafer 2009). For the solar case, the
δ effect can provide an additional non-helical source of poloidal magnetic field generation.
Interestingly, Pipin and Seehafer (2009) found that for the solar-type dynamos, i.e., those
with equatorward propagation of the dynamo waves, the δ dynamo effect does not dominate
the contributions of the α-effect. We will discuss the available scenario in the next section.

5.2 Dynamos from Negative Turbulent Magnetic Diffusivity

There are two other effects that are noteworthy, although it is not clear that either of them
can play a role in stellar convection zones. One is the negative turbulent magnetic diffusivity
and the other is the memory effect in conjunction with a pumping effect.

When modeling a negative turbulent magnetic diffusivity dynamo, high wavenumbers
must not be destabilized at the same time. Brandenburg and Chen (2020) studied classes of
dynamos with a very low critical ReM. The Willis dynamo (Willis 2012) has a critical ReM

of 2.01, which is small compared to 6.3 for the Roberts flow and 17.9 for the ABC flow. In
this dynamo, one of the two horizontally averaged field components grows exponentially,
because the total magnetic diffusivity in that direction is negative (Brandenburg and Chen
2020). The other component decays and is not coupled to the former one.

As we see from Fig. 6, ηt is negative only for k � 1.5. The k dependence of the turbulent
magnetic diffusivity can be expanded up to second order as

η̃yy(k) = η̃(0)
yy + η̃(2)

yy k2 + · · · , (29)

where the tildes indicate Fourier transformed quantities. In the proximity of k = 1, which
corresponds to the largest scale in the computational domain of 2π , we have η̃(0)

yy ≈ −0.233
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Fig. 6 Dependence of η̃xx (blue)
and η̃yy (red) on k for the Willis
flow in the marginally exited case
with η = 0.403. The red dashed
line denotes the fit
−0.233 + 0.11k2. Adapted from
Brandenburg and Chen (2020)

and η̃(2)
yy ≈ 0.11. In addition, there is still the microphysical magnetic diffusivity, which is

positive (η = 0.403). To a first approximation, one can just consider the equation for Ayy ,
which can then be written as

∂Ayy

∂t
= [

η + η̃(0)
yy

] ∂2Ayy

∂z2
− η̃(2)

yy

∂4Ayy

∂z4
. (30)

We recall that the minus sign in front of the fourth derivative corresponds to positive diffu-
sion if η̃(2)

yy is positive, and so does the plus sign in front of the second derivative, unless the
term in squared brackets is negative, which is the case we are considering here.

5.3 Dynamos from Pumping and Memory Effects

Pumping effects alone cannot usually lead to interesting dynamo effects, unless there is also
a memory effect. This effect means that the mean electromotive force depends not just on the
instantaneous mean magnetic field at that time, but also on the mean magnetic field at earlier
times. It is therefore described as a convolution between a pumping kernel and the mean
magnetic field. This can lead to dynamo action, as has been demonstrated by Rheinhardt
et al. (2014) for the case of two of the four flow fields studied by Roberts (1972). These are
flows II and III with U II(x, y) and U III(x, y), respectively, and are given by

U II =
⎛
⎝ u0 sinKx cosKy

−u0 cosKx sinKy

u0 cosKx cosKy

⎞
⎠ , U III =

⎛
⎝ u0 sinKx cosKy

−u0 cosKx sinKy
1
2u0(cos 2Kx + cos 2Ky)

⎞
⎠ , (31)

where K is the wavenumber of the flow. Both flows have zero kinetic helicity and no α

effect, but flow II is also pointwise nonhelical. A supercritical three-dimensional magnetic
field with growth rate γ and wavenumber k in the z direction of the form B = b0(x, y) eγ t+ikz

is possible when ReM ≡ u0/ηK > 4.58 and 2.9 for flows II and III, respectively; see Rhein-
hardt et al. (2014). Here, b0(x, y) is the eigenfunction.

For both flows, there are xy-averaged mean fields Bx(z, t) and By(z, t), with waves
traveling in opposite directions for flow II and in the same direction for flow III; see Figs. 6
and 8 of Rheinhardt et al. (2014), respectively. These dynamos appear to be atypical, because
there is so far no other known example of a flow where pumping produces a memory effect
that is strong enough to lead to dynamo action. This may well be due to the absence (until
recently) of computational tools for determining the memory effect. Indeed, it was only
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with the development of the TFM (Schrinner et al. 2005, 2007) that the importance of the
memory effect was noticed (Hubbard and Brandenburg 2009) and applied to pumping.

The dispersion relation for a problem with turbulent pumping γ and turbulent magnetic
diffusion ηt is given by λ = −ikγ − ηtk

2. Since Reλ < 0, the solution can only decay, but
it is oscillating with the frequency ω = Imλ = γ . In the presence of a memory effect, γ is
replaced by γ /(1 − iωτ), where τ is the memory time. Then, λ ≈ −ikγ (1 − iωτ) − ηtk

2,
and Reλ can be positive. This is the case for the Roberts flows II and III.

We return to nonlocality and memory effects further below in this article when we dis-
cuss concrete solar models; see Pipin (2023). One of the most obvious consequences of
the memory effect is a lowering of the critical excitation conditions for the dynamo, which
was already reported by Rheinhardt and Brandenburg (2012). Interestingly, for the nonlo-
cal mean electromotive force, the lowering of the critical threshold can be accompanied by
multiple instabilities of different dynamo modes that have different frequencies and spatial
localization; see Pipin (2023).

5.4 Dynamos from Cross-Helicity

An alignment of velocity and magnetic field, i.e., cross helicity, plays a key role in numer-
ous processes and phenomena of astrophysical plasmas. Krause and Rädler (1980) showed
that the saturation stage of the turbulent generation is characterized by an alignment of the
turbulent convective velocity and the magnetic field. This consideration does not account
for the effects of cross-helicity that take place in the strongly stratified subsurface layers of
the stellar convective envelope. For example, the direct numerical simulations of Matthaeus
et al. (2008) showed a directional alignment of velocity and magnetic field fluctuations in
the presence of gradients of either pressure or kinetic energy.

The mean electromotive force in this case is along to the mean vorticity,

Eϒ = ϒ∇ × U + · · · , (32)

where, ϒ = τc

〈
u(0) · b(0)

〉
is the cross helicity pseudoscalar, and τc is the turbulent turnover

time. The superscripts (0) indicate quantities of the background turbulence, which exists in
the absence of a mean magnetic field and a mean flow; see our comment after Eq. (2) about
the E0 term. In the standard mean-field framework, it is assumed that ϒ = 0; see Krause and
Rädler (1980). Yoshizawa and Yokoi (1993) generalized the framework assuming ϒ �= 0, see
the comprehensive review of Yokoi (2013).

Dynamo scenarios based on cross helicity have been suggested in a number of papers
(Yoshizawa and Yokoi 1993; Yoshizawa et al. 2000; Yokoi 2013). Pipin and Yokoi (2018)
showed that the large-scale dynamo instability does not require the existence of a global
axisymmetric mean. The mix of axisymmetric and nonaxisymmetric magnetic fields can
be produced even in the case ϒ = 0, where the overbar means azimuthal averaging. The
surface magnetic field of the Sun and other similar stars tends to be organized in sunspots,
plagues, ephemeral regions, super-granular magnetic network, etc. These structures tend
to demonstrate the alignment of local velocity and magnetic fields (Rüdiger et al. 2011).
Therefore, the cross helicity dynamo instability can contribute to dynamo generation effects
that operate near the stellar surface. Stellar observations, for example those of Katsova et al.
(2021), require such dynamo effects to be working in situ at the stellar surface. The solar
analogs show an increase of the spottiness with an increase of the rotation rate (Berdyugina
2005). In that case, cross helicity dynamo effects can be considered as a relevant addition to
the standard turbulent generation by means of convective helical motions. Rapidly rotating
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Fig. 7 Normalized spectra of Bz

from a simulation of MHD
turbulence with strong gravity at
turbulent diffusive times
tηt/H

2
ρ ≈ 0.2, 0.5, 1, and 2.7

with kfHρ = 10 and
k1Hρ = 0.25. Adapted from
Brandenburg et al. (2014)

M-dwarfs show the highest level of magnetic activity (Kochukhov 2021). There is a popula-
tion of rapidly rotating M-dwarfs that show a rather strong dipole type magnetic field. These
stars show a rather small level of differential rotation. For solid body rotation, an α2 dynamo
generates a nonaxisymmetric magnetic field (Chabrier and Küker 2006; Elstner and Rüdi-
ger 2007). At high rotation rates, the α effect is highly anisotropic (Rüdiger and Kichatinov
1993). It cannot employ the component of the large-scale magnetic field along the rotation
axis for the generation of an axial electromotive force. Results of Pipin and Yokoi (2018)
show that the α2ϒ2 scenario can produce a strong constant dipole magnetic field. The model
predicts the existence of large-scale cross helicity patterns occupying the stellar surface. We
hope that this can be tested either in observations or in GCDs.

The nonlinear theory for the cross helicity effect is not yet developed. Sur and Bran-
denburg (2009) showed that the turbulent generation due to ϒ is quenched by large-scale
vorticity in a way that is similar to catastrophic quenching given by Eq. (20), i.e.,

ϒ ∼ 1

1 + ReM τ 2
c (∇ × U)2

. (33)

One should remember that for the initialization of the cross-helicity dynamo instability we
have to seed both the cross helicity and the magnetic field. The solar type model scenarios
based on cross helicity require an α effect, which produces poloidal magnetic field and cross
helicity at the top of the dynamo domain (Yokoi et al. 2016).

Given that cross helicity is an ideal invariant of the MHD equations, it is natural to ask
whether systems with strong cross helicity exhibit inverse cascading. The answer seems to
be yes; see Brandenburg et al. (2014). In Fig. 7 we demonstrate the gradual build-up of
magnetic fields in the vertical direction when the system has significant cross helicity owing
to the presence of a magnetic field along the direction of gravity (Rüdiger et al. 2011).

6 Mean-Field Dynamo Models

In general, the α effect, as well as any other turbulent generation effect, including the δ

effect (Rädler 1969), the shear-current effect (Kleeorin et al. 2000), and the cross-helicity
effect (Yokoi 2013) can generate both toroidal and poloidal magnetic fields. Therefore there
can be a number of possibilities for solar-types dynamo models Krause and Rädler (1980),
Yokoi et al. (2016), Pipin and Kosovichev (2018). Some of them skip the α effect altogether.
For example, Seehafer and Pipin (2009) studied δ�� and δW� scenarios, where turbulent
generation of the poloidal magnetic field is due to � × J and shear-current effect, respec-
tively. These scenarios show oscillating solutions and the correct time-latitude diagram of
the toroidal magnetic field if the meridional circulation is included. A similar possibility
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was mentioned earlier by Krause and Rädler (1980) for the δ� scenario. However, the given
scenarios result in an incorrect phase relation between activity of the toroidal and poloidal
magnetic fields. The aim to search for α effect alternatives pursues double benefits. First, the
nonhelical source of dynamo generations avoids the above mentioned catastrophic quench-
ing problem. This issue is less important currently. Secondly, and it was already mentioned
earlier by Köhler (1973) as well as Steenbeck and Krause (1969), the mixing length estimate
of the α effect for the solar convection zone parameters results in a very strong α effect with
a magnitude as strong as the convective velocity rms. Solar observations of the ratio be-
tween the typical strength of the toroidal and poloidal fields and the solar cycle period, favor
an order of magnitude smaller α effect. In addition, the turbulent generation sources in the
α� scenario help reduce the given constraints. We must stress that the GCD simulations
of Schrinner (2011), Schrinner et al. (2011), and Warnecke et al. (2021) showed that the
mean-field models need a full spectrum of turbulent effects to describe DNS.

In the case of a solar-like star, i.e., with solar-like stratification, differential rotation, and
meridional circulation profiles, the turbulent sources of the poloidal magnetic field gener-
ation due to δ, shear-current, and cross-helicity effects are likely complimentary to the α

effect.
We thus arrive at the conclusion that the α2� dynamo is, probably, the simplest scenario

for the solar dynamo. Also, this scenario seems to fit well with observations of stellar activity
of young solar-type stars.

6.1 Basic Model

We discuss some results of the state-of-the-art mean-field dynamo model of a solar dynamo
developed recently by Pipin and Kosovichev (2019) (hereafter PK19). The magnetic field
evolution is governed by the mean-field induction equation:

∂B

∂t
= ∇ × (

E + U × B − ημ0J
)
. (34)

The expression for the components of E reads

E i = (
αij + γij

)
Bj − ηijk∇jBk. (35)

Here, αij describes the turbulent generation by the α effect, γij represents turbulent pump-
ing, and ηijk is the eddy magnetic diffusivity tensor. The α effect tensor includes the small-
scale magnetic helicity density contribution, i.e., the pseudoscalar 〈a · b〉,

αij = Cαψα(β)αK
ij + αM

ij ψα(β)
〈a · b〉 τc

4πρ�2
c

, (36)

where Cα is the dynamo parameter characterizing the magnitude of the kinetic α effect, and
αK

ij and αM
ij are the anisotropic versions of the kinetic and magnetic α effects, as described in

PK19. Note that, unlike Eq. (16), where the two α contributions are pseudoscalars and have
the same dimension, they are here tensorial where only αK

ij is a pseudotensor, but αM
ij is not,

and they have here different dimensions.
The radial profiles of α

(H)
ij and α

(M)
ij depend on the mean density stratification, the profile

of the convective velocity urms, and on the Coriolis number,

Co = 2�0τc, (37)
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where �0 is the global angular velocity of the star and τc is the convective turnover time.
The magnetic quenching function ψα(β) depends on the parameter β = |B|/(√4πρurms).
In this model the magnetic helicity is governed by the global conservation law for the total
magnetic helicity, 〈A · B〉 = 〈a · b〉+A ·B (see Hubbard and Brandenburg 2012; Pipin et al.
2013):

(
∂

∂t
+ U · ∇

)
〈A · B〉 = − 〈a · b〉

ReM τc

− 2ηB · J − ∇·Ff, (38)

where we have used 2η〈j · b〉 = 〈a · b〉/ReM τc (Kleeorin and Rogachevskii 1999). Also,
we have introduced a diffusive flux of the small-scale magnetic helicity density, Ff =
−ηχ∇ 〈a · b〉, and ReM is the magnetic Reynolds number, for which we employ ReM = 106.
Following results of Mitra et al. (2010a), we put ηχ = 0.1ηT . Here, the turbulent fluxes of
the magnetic helicity are approximated by the only term which is related to the diffusive
flux. Besides the diffusive helicity flux, the other turbulent fluxes of the magnetic helicity
can be important for the nonlinear dynamo regimes and the catastrophic quenching problem
(Kleeorin et al. 2000; Vishniac and Cho 2001; Pipin 2008; Chatterjee et al. 2011; Bran-
denburg and Subramanian 2005a; Kleeorin and Rogachevskii 2022; Gopalakrishnan and
Subramanian 2023). The relative importance of different kinds of magnetic helicity fluxes
for the dynamo should be studied further.

The above ansatz for the helicity evolution differs from that given by Eq. (18); see also
papers by Kleeorin and Ruzmaikin (1982) and Kleeorin and Rogachevskii (1999). Hubbard
and Brandenburg (2012) had studied the magnetic helicity evolution for shearing dynamos.
They found that employing Eq. (18) in the dynamo problem can result in nonphysical fluxes
of magnetic helicity over spatial scales. For the ansatz given by Eq. (18), the nonlinear
dynamo models can show sharp magnetic structures inside the dynamo domain. Such struc-
tures are connected with concentrations of the magnetic helicity; see, e.g., Chatterjee et al.
(2011) and Brandenburg and Chatterjee (2018). Even a strong diffusive helicity flux does
not seem to correct for those irrelevant features from the numerical solution. The technical
point is that the helicity fluxes, which are omitted in Eq. (18), should be consistent with
the turbulent effects involved in the mean electromotive force, e.g., the rotationally induced
anisotropy of the α effect, the magnetic eddy diffusivity, etc. Such calculations are currently
absent. Also, we have to take into account the modulation of the magnetic helicity density
by the magnetic activity. On the other hand, with the magnetic helicity evolution equation
Eq. (38), Pipin et al. (2013) found that magnetic helicity density follows the large-scale dy-
namo wave. This alleviates the catastrophic quenching of the α effect. They showed that if
we write the Eq. (38) in the form of Eq. (18), we get an additional helicity flux due to the
global dynamo, Rewriting Eq. (38) in the form of Eq. (18) we get

∂ 〈a · b〉
∂t

= −2
(
E · B)− 〈a · b〉

ReM τc

+ ∇ · (ηχ∇ 〈a · b〉)− ηB · J − ∇ · (E × A
)+ · · · , (39)

where the ellipsis refers to additional helicity transport terms due to the large-scale flow.
The term E × A consists of the counterparts of the sources of magnetic helicity, which are
represented by −2E · B, and the fluxes which result from pumping of the large-scale mag-
netic fields. The sources of magnetic helicity in the term −2E · B are partly compensated in
Eq. (39) by the counterparts in E × A. This results in the spatially homogeneous quenching
of the large-scale magnetic generation and alleviation of the catastrophic quenching prob-
lem. The effect of E × A was not unambiguously confirmed in DNS because of limited
numerical resolution; see Del Sordo et al. (2013) and Brandenburg (2018b).
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The turbulent pumping is expressed by the antisymmetric tensor γij . The tuning of γij

for the solar-type mean-field dynamo model was discussed by Pipin (2018). We define it as
follows,

γij = γ
(�ρ)

ij + αMLTurms

γ
H (β) r̂nεinj, (40)

γ
(�ρ)

ij = 3νT f
(a)

1

{(
� · �(ρ)

) �n

�2
εinj − �j

�2
εinm�n�

(ρ)
m

}
, (41)

where �(ρ) = ∇ logρ, αMLT = 1.9 is the mixing-length theory parameter, γ is the adiabatic
law constant. In Eq. (40), the first term takes into account the mean drift of large-scale field
due the gradient of the mean density, and the second one does the same for the mean-field
magnetic buoyancy effect. The function H (β) takes into account the effect of the magnetic
tensions. It is H (β) ∼ β2 for small β and it saturates as β−2 for β � 1; see P22.

We employ an anisotropic diffusion tensor following the formulation of Pipin (2008)
(hereafter, P08):

ηijk = 3ηT

{(
2f

(a)

1 − f
(d)

2

)
εijk + 2f

(a)

1

�i�n

�2
εjnk

}
, (42)

where the functions f
(a,d)

1,2 (�∗) are determined in P08. Analytical calculations of E in the
above cited paper includes the effects of a small scale dynamo. In the above expressions
for E , we assume equipartition between kinetic energy of the turbulence and magnetic fluc-
tuations which stem from the small-scale dynamo. It was found that for the case of slow
rotation (Co � 1), the part of E that depends on the gradients of B consists of an isotropic
eddy diffusivity and Rädler’s � × J effect due to the small-scale dynamo (see also Rädler
et al. 2003). In the case of rapid rotation, the fluctuating magnetic fields from the small-
scale dynamo contribute both to isotropic and anisotropic parts of the diffusivity. The effect
appears already in the terms of order �2 in the global rotation rate (Rädler et al. 2003). In
particular, the part of EMF which corresponds to Eq. (42) can be written as

Eη = −3ηT

(
2f

(a)

1 − f
(d)

2

)
J + 6ηT f

(a)

1 �
� · J
�2

. (43)

It is noteworthy that the full expression for E obtained in P08 is complicated and includes
other contributions due to the effects of global rotation �, mean shear, mean current density
J , and the magnetic deformation tensor (∇B). We skip them in the application to the solar
dynamo model. The analytical results about the relations of the specific effects of E and the
global rotation rate show qualitative agreement with the DNS of Käpylä et al. (2009a) and
Brandenburg et al. (2012). Yet, a more detailed comparison of the analytical results and the
GCD simulations is needed; for further discussions, see Sect. 7.

We assume that the large-scale flow is axisymmetric. It is decomposed into the sum
of meridional circulation and differential rotation, U = U

m + r sin θ�(r, θ) φ̂, where r is
the radial coordinate, θ is the polar angle, φ̂ is the unit vector in the azimuthal direction,
and �(r, θ) is the angular velocity profile. The angular momentum conservation and the
equation for the azimuthal component of large-scale vorticity, ω = (∇ × U

m
)φ , determine

the distributions of differential rotation and meridional circulation:

∂

∂t
ρr2 sin2 θ� = − ∇·

[
r sin θρ

(
T̂φ + r sin θ�U

m
)]

+ ∇·
[
r sin θ

BBφ

4π

]
, (44)
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∂ω

∂t
= r sin θ∇ ·

[
φ̂ × ∇·ρT̂
rρ sin θ

− U
m
ω

r sin θ

]
+ r sin θ

∂�2

∂z
− g

cpr

∂s

∂θ

+ 1

4πρ

(
B·∇) (∇ × B

)
φ

− 1

4πρ

[(∇ × B
) ·∇]

Bφ,

where T̂ is the turbulent stress tensor:

T̂ij = 〈
uiuj

〉− 1

4πρ

(〈
bibj

〉− 1

2
δij

〈
b2
〉) ; (45)

see the detailed description in Pipin and Kosovichev (2018) and PK19. Also, ρ is the mean
density, s is the mean entropy; ∂/∂z = cos θ∂/∂r − sin θ/r · ∂/∂θ is the gradient along the
axis of rotation. The mean heat transport equation determines the mean entropy variations
from the reference state due to the generation and dissipation of the large-scale magnetic
field and large-scale flows:

ρT

[
∂s

∂t
+
(

U · ∇
)

s

]
= −∇ · (Fc + Fr ) − T̂ij

∂Ui

∂rj

− E · J , (46)

where T is the mean temperature, Fr is the radiative heat flux, Fc is the anisotropic convec-
tive flux; see PK19. The last two terms in Eq. (46) take into account the convective energy
gain and loss caused by the generation and dissipation of large-scale magnetic fields and
large-scale flows. The reference profiles of mean thermodynamic parameters, such as en-
tropy, density, and temperature are determined from the stellar interior model MESA (Pax-
ton et al. 2015). The radial profile of the typical convective turnover time, τc , is determined
from the MESA code, as well. We assume that τc does not depend on the magnetic field and
global flows. The convective rms velocity is determined from the mixing-length approxima-
tion,

uc = �c

2

√
− g

2cp

∂s

∂r
, (47)

where �c = αMLTHp is the mixing length, αMLT = 1.9 is the mixing length parameter, and
Hp is the pressure height scale. Equation (47) determines the reference profiles for the eddy
heat conductivity χT , eddy viscosity νT , and eddy magnetic diffusivity ηT ,

χT = �2

6

√
− g

2cp

∂s

∂r
, (48)

νT = PrT χT, (49)

ηT = PmT νT. (50)

It should be noted that stellar convection might well have convection zones with slightly
subadiabatic stratification in some layers. In those cases, the enthalpy flux can no longer
be transported entirely by the mean entropy gradient, but there can be an extra term that is
nowadays called the Deardorff term; see Deardorff (1972). Such convection can be driven
through the rapid cooling in the surface layers and is therefore sometimes referred to as
entropy rain Brandenburg (2016). It is useful to stress that the Deardorff term is distinct
from the usual overshoot, because there the enthalpy flux points downward, while entropy
rain still produces an outward enthalpy flux. It is instead more similar to semiconvection.
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Boundary conditions. At the bottom of the tachocline, ri = 0.68R, we assume solid body
rotation and perfect conductor boundary conditions. Following to the MESA solar interior
model, we put the bottom of the convection zone to rb = 0.728R. At this boundary we fix the
total heat flux, F conv

r + F rad
r = L�(rb)/4πr2

b . We introduce the decrease by exp (−100 z/R)

for all turbulent coefficients (except the eddy viscosity and eddy diffusivity), where z is the
distance from the bottom of the convection zone. The decrease of the eddy viscosity and
eddy diffusivity is at most one order of magnitude for numerical stability. The meridional
circulation is restricted to the convection zone. Therefore, we put the azimuthal component
of the large-scale vorticity to zero, i.e., we set ω = 0 at rb. At the top, rt = 0.99R, we employ
a stress free and black body radiating boundary. Following ideas of Moss and Brandenburg
(1992), we formulate the top boundary condition in a form that allows penetration of the
toroidal magnetic field to the surface:

δ
ηT

rtop
B

[
1 +

( |B|
Besq

)]
+ (1 − δ)Eθ = 0, (51)

Free parameters. The model employs a number of free parameters, including Cα , the tur-
bulent Prandtl numbers PrT and PrM,T, δ, Besq, and the global rotation rate �0. For the solar
case we use a period of rotation of the solar tachocline determined from helioseismology,
�0/2π = 434 nHz (Kosovichev et al. 1997). The best agreement of the angular velocity
profile with helioseismology results is found for PrT = 3/4. Also, the dynamo model re-
produces the solar magnetic cycle period, ∼ 20 years, if PmT = 10. Results of Pipin and
Kosovichev (2011) showed that the parameters δ and Besq affect the drift of the equatorial
drift of the toroidal magnetic field in the subsurface shear layer and magnitude of the surface
toroidal magnetic field. Solar observations show the magnitude of the surface toroidal field
to be about 1-2 G (Vidotto et al. 2018). To reproduce it, we use δ = 0.99 and Besq = 50 G.
In what follows, we present the results of the solar dynamo model for a slightly supercritical
parameter Cα (10% above the threshold). Further details of the dynamo model can be found
in PK19.

Figure 8 shows profiles of the basic turbulent effects and large-scale flow distributions for
the nonmagnetic case. The amplitude of the meridional circulation on the surface is about

Fig. 8 (a) Streamlines of
meridional circulation and the
angular velocity distribution; the
magnitude of circulation velocity
is of 13 m/s on the surface at the
latitude of 45◦ . (b) Radial
profiles of ηT + η||, the
rotationally induced part η||, as
well as νT. (c) Radial profiles of
the α tensor at 45◦ latitude. (d)
Streamlines of effective drift
velocity from magnetically
affected pumping and meridional
circulation. Reproduced by
permission from Pipin (2022)
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13 m s−1. In the lower part of the convection zone, the equatorward flow is about 1 m s−1.
The angular velocity profile is in agreement with helioseismology data.

Interestingly, the stagnation point of the meridional circulation is near the lower boundary
of the subsurface shear layer, i.e., at r = 0.9R. This is in agreement with observations of
Hathaway (2012) and the helioseismic inversions of Stejko et al. (2021). The structure of
meridional circulation and turbulent pumping promotes an effective equatorward drift of the
toroidal magnetic field below the subsurface shear layer; see Fig. 8(d).

6.2 Parker–Yoshimura Dynamo Waves and Extended Cycle

The dynamo shown in Fig. 9 demonstrates the numerical solution of the dynamo system
including Eqs. (34) and (44)–(46). The time latitude diagrams of the surface radial magnetic
field and the toroidal magnetic field in the upper part of the convection zone show agreement
with observations of the evolution of the large-scale magnetic field of the Sun (Hathaway
2015; Vidotto et al. 2018, see also the review of Righmire in this volume). The dynamo
waves propagate to the surface- and equatorward. The radial direction of propagation fol-
lows the Parker–Yoshimura rule because of the positive sign of the α effect in the main part
of the convection zone and a positive latitudinal shear. It is noteworthy that at high latitude
the model shows another dynamo wave family which propagates poleward along the con-
vection zone boundary. This family follows the Parker–Yoshimura rule as well. Further we
will see that the latitudinal shear plays a dominant role in this dynamo model and perhaps

Fig. 9 a) The surface radial
magnetic field evolution (color
image) and the toroidal magnetic
field at r = 0.9R (contours in
range of ±1kG); b) snapshots of
the magnetic field distributions
inside the convection zone for
half dynamo cycle, color shows
the toroidal magnetic field and
contours show streamlines of the
poloidal field; c) snapshots of the
dynamo induced variations of
zonal acceleration (color image)
and streamlines of the meridional
circulation variations (contours);
d) variations of zonal velocity
acceleration at the surface. This
Figure was prepared using the
data of the dynamo model of
PK19
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in the solar dynamo as well (see also Cameron and Schüssler 2015). The latitudinal drift
of the toroidal magnetic field in this model results from turbulent pumping and meridional
circulation; see Fig. 8(d). The GCD simulations of Warnecke et al. 2018, 2021 show the
crucial role of turbulent pumping in the solar type dynamo model, as well. The extended
mode of the dynamo cycle is another feature of their model. The toroidal magnetic dynamo
wave starts at the bottom of the convection zone at around 50◦ latitude (see the marks in
Fig. 9). It disappears near the solar equator after a full dynamo cycle. On the surface, the ex-
tended mode of the solar cycle is seen in the radial magnetic field evolution, in the torsional
oscillations of zonal flow, and in the variations of the meridional circulation as well (Getling
et al. 2021). The origin of the extended mode of the dynamo cycle is due to the distributed
character of the large-scale dynamo and the interaction of the global dynamo modes, where
the low order dynamo modes, e.g., dipole and octupole modes, are mainly generated in the
deep part of the convection zone. The high order modes are predominantly generated in the
near surface level. The phase difference between the models results in a dynamo mode of
the extended length (Stenflo 1992; Obridko et al. 2021).

6.3 Torsional Oscillations

Solar zonal variations of the angular velocity (“torsional oscillations”) were discovered by
Howard and Labonte (1980). Since that time it was found that torsional oscillations repre-
sent a complicated wave-like pattern which consists of alternating zones of accelerated and
decelerated plasma flows (Snodgrass and Howard 1985; Altrock et al. 2008; Howe et al.
2011). Ulrich (2001) found two oscillatory modes of these variations with periods of 11 and
22 years. Torsional oscillations were linked to ephemeral active regions that emerge at high
latitudes during the declining phase of solar cycles, but represent the magnetic field of the
subsequent cycle (Wilson et al. 1988). It is interesting that in their original paper, Howard
and Labonte (1980) conjectured that the solar torsional oscillation can shear magnetic fields
and induce the dynamo cycle. This idea was further elaborated upon in a number of papers.
However, the idea looks unreasonable because it conflicts with Cowling’s theorem. Also,
the magnitude of the torsional oscillations of 3–6 m s−1 is too small in comparison with
the magnitude of the magnetic field generated by a dynamo. The first papers by Schüssler
(1981) and Yoshimura (1981) suggested that the 11-year solar torsional oscillation can be
explained by the mechanical effect of the Lorentz force. The double frequency of the zonal
variation results from the B2 modulation of the large-scale flow due to the dynamo activ-
ity. On the basis of a flux-tube dynamo model, Schüssler (1981) used the simple estimate
of a large-scale Lorentz force and found both the 11 and 22 year mode of the torsional
oscillations. This result was further elaborated upon by Kleeorin and Ruzmaikin (1991).
The further development of the mean-field theory of the solar differential rotation showed
that, in addition to the large-scale Lorentz force, the dynamo induced B2 modulation of the
turbulent angular momentum fluxes is also an essential source of the torsional oscillations
(Rüdiger and Kichatinov 1990; Kitchatinov et al. 1994b; Kleeorin et al. 1996; Küker et al.
1996; Rüdiger et al. 2012). Global convective dynamo simulations (e.g., Beaudoin et al.
2013; Käpylä et al. 2016; Guerrero et al. 2016) confirmed this conclusion. The strength
of the solar torsional oscillations is more than two orders of magnitude less than the dif-
ferential rotation. It looks like the theory of the torsional oscillations can be constructed
using perturbative approximations. Models of this type (see, e.g., Tobias 1996, Covas et al.
2000, Bushby and Tobias 2007, Pipin 2015, Hazra and Choudhuri 2017) were inspired by
results of Malkus and Proctor (1975). Yet, the constructed models are incomplete because
they ignored the Taylor-Proudman balance, which is a key ingredient of solar differential
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rotation theory (see Kitchatinov 2013, and also the contribution of Hazra et al, this vol-
ume). Complete mean-field dynamo models, which take into accounts the Taylor-Proudman
balance (hereafter TPB), were constructed by Brandenburg et al. (1992), Rempel (2007),
and PK19. Figure 9 shows variations of the zonal acceleration for our mean-field model
in following the PK19 line of work. Similar to the results of helioseismology (Howe et al.
2011; Kosovichev and Pipin 2019) and the results of Rempel (2007), snapshots of the model
show that in the main part of the convection zone, the acceleration patterns are elongated
along the rotation axis. This is caused by the Taylor-Proudman balance. Near the convection
zone boundaries, these patterns deviate in the radial direction, which is in agreement with
the above cited helioseismology results, as well. The given observation on the role of TPB
shows the importance of the meridional circulation and the dynamo-induced heat transport
perturbation (Spruit 2003; Rempel 2007) in the theory of torsional oscillations. This fact
does not deny the importance of the large-scale Lorentz force and the magnetic modulation
of the turbulent angular momentum transport. Results of Figs. 9(b) and (c) show that the
positive sign of the zonal acceleration propagates from high latitudes at the bottom of the
convection zone toward the equator, sticking to the equatorial edge of the dynamo wave. The
torsional oscillation wave is accompanied by corresponding variations of the meridional cir-
culation. These variations are induced by magnetic perturbations of the heat transport (see
details in PK19). We emphasize that the given dynamo models also show overlapping mag-
netic cycles; see Fig. 9(b), similarly to what was originally proposed by Schüssler 1981]. In
this case, the B2 effect of the dynamo on the heat transport and the TPB results in about 4
to 5 meridional circulation cells along latitude. This tracks the zonal variations of angular
velocity, which are caused by the mechanical action of the large-scale Lorentz force and
magnetic quenching of the turbulent stresses, from polar regions to the equator. PK19 found
that the induced zonal acceleration is ∼ (2–4) × 10−8 m s−2, which is in agreement with
the observational results of Kosovichev and Pipin (2019). However, the individual forces in
the angular momentum balance such that the large-scale Lorentz force, the variations of the
angular momentum transport due to meridional circulation, the inertial forces, and others
are by more than an order of magnitude stronger than their combined action and can reach
a magnitude of ∼ 10−6 m s−2. Therefore, the resulting pattern of the torsional oscillations
forms in nonlinear balance, which includes the forces driving the angular momentum trans-
port, the TPB, and heat perturbations due to magnetic activity in the convection zone (see
details in PK19).

7 Mean-Field Models Based on the EMF Obtained from DNS

Here we provide an example of how the mean-field theory is utilized as a tool for under-
standing what is going on (see Sect. 3.4). We discuss recent studies of mean-field dynamo
models constructed based on the electromotive force (EMF) obtained from direct numeri-
cal simulation (DNS) of rotating stratified convection, especially focusing on “semi-global”
models. The properties of solar and stellar convection, and the various methods for extract-
ing the information of the EMF from DNS are also summarized.

7.1 Properties of Solar and Stellar Convection

A quantitative physical description of solar and stellar dynamos, which should be the result
of the nonlinear interaction of turbulent flows and magnetic fields, is a great challenge for us
and constitutes a significant milestone on the long way to a full understanding of turbulence.
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Even with state-of-the-art supercomputers, it is impossible to numerically simulate solar
and stellar convection and its interaction with the magnetic field and to observe/analyze
numerical data in detail with realistic parameters. Therefore, to say with confidence that one
has fully understood the solar and stellar dynamo problem, it should be necessary to find a
universal law of magneto-hydrodynamic (MHD) turbulence, build a reliable sub-grid scale
(SGS) turbulence model, and then reproduce the magnetic activities of the Sun and stars
quantitatively in an integrated framework by numerical models with incorporating the SGS
model. This is because fluid quantities that may be verified in future observations should
include the meridional distributions of fluid velocity, vorticity, kinetic helicity, and thus the
turbulence model constructed on the basis of these profiles (e.g., Hanasoge et al. 2016).
Only when the correctness of the turbulence model is observationally validated should our
understanding of the solar and stellar dynamos as a consequence of the turbulent dynamo
process be completed. In the near future, a very exciting time may come when we will be
able to test and verify various turbulence models under extreme conditions inside the solar
and stellar interiors.

What physical characteristics should be taken into account when constructing a turbu-
lence model of thermal convection in the Sun and stars? Let us summarize some essential
features:

1. Extremely low dissipation: turbulent state with Re � 1012, ReM � 108, and a large Pè-
clet number, Pe ∼ 106–109 (where Pe = Re · Pr).

2. Huge separation of dissipation scales: Pr ∼ 10−4–10−7, PrM ∼ 104

3. Compressibility: high Mach number O(1) in the upper convection zone makes the con-
vective motion compressible.

4. Anisotropy: spin of stars (i.e., Coriolis force in a rotating system) makes fluid motions
anisotropic.

5. Inhomogeneity: density contrast of 106 between top and bottom CZs results in multi-
scale properties of fluid motion.

6. Non-locality: Radiative energy loss at the CZ surface (open system), allowing the growth
of cooling-driven downflow.

In view of these features, it can be seen that the characteristics of thermal convection operat-
ing inside the Sun and stars are quite different from those of isotropic turbulence. Those can
be considered to some extent in DNS even with the current computing performance, as listed
under 3–6, while the others, (items 1 and 2) are unreachable with current grid-based simu-
lations. It should be emphasized, however, that higher resolution simulations using state-of-
the-art supercomputers is a classical way forward in turbulence research, and the knowledge
obtained from such studies in unexplored low-dissipation regimes will greatly expand the
horizon of our understanding of turbulence (e.g., Kaneda et al. 2003; Hotta and Kusano
2021). Moreover, if sufficient scale separation between the turbulent and mean fields is en-
sured and the inertial range of the turbulent cascade is captured appropriately, there is the
possibility that the evolution of mean-field components, such as large-scale flow and large-
scale magnetic field, can be approximately reproduced even by simulations with enhanced
dissipation compared to the actual solar and stellar values (e.g., Ossendrijver 2003). It should
be remembered, however, that in spite of the rapid increase in computing power, some rather
basic questions about the solar dynamo still remain, for example the equatorward migration
of the sunspot belts and the formation of sunspots themselves.
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Fig. 10 Numerical setup typical for semi-global simulation of rotating stratified convection. Since the CZs
of the Sun and stars are strongly stratified, there is a large separation of time scales from minutes (upper CZs)
to months (bottom CZs)

7.2 Semi-Global Simulation of Rotating Stratified Convection

On our way toward a reliable SGS turbulence model for solar and stellar interiors, numerical
models of convection and its dynamo should be studied, while keeping the characteristic
features of solar and stellar convection, as listed under items 3–6 above, in mind. It should
be noted that the underlying necessity for numerical modeling is an important component of
earlier studies that applied mixing-length type concepts to the dynamo theory, which never
successfully explained the magnetic activities of the Sun and stars (e.g., Brandenburg and
Tuominen 1988).

In recent years, significant progress has been made in GCD simulations (e.g., Browning
et al. 2006; Ghizaru et al. 2010; Käpylä et al. 2012; Masada et al. 2013; Fan and Fang 2014;
Augustson et al. 2015; Hotta et al. 2016; Warnecke 2018), there is also a growing effort
to extract the information of turbulent transport processes from so-called “semi-global” (or
local model) MHD convection simulations with the aim of quantifying the dynamo effect of
rotational stratified convection (e.g., Brandenburg et al. 1990, 1996; Nordlund et al. 1992;
Brummell et al. 1998, 2002; Ossendrijver et al. 2001; Käpylä et al. 2006a, 2009b; Masada
and Sano 2014b,a, 2016; Bushby et al. 2018; Masada and Sano 2022). A typical numer-
ical setup of the semi-global model is shown in Fig. 10 schematically. In this setting, the
gas is gravitationally stratified in the vertical direction, while periodicity is assumed in the
horizontal directions. The governing equations (mostly compressible MHD equations) are
solved in a rotating Cartesian frame, and the rotation axis is usually set to be parallel or
anti-parallel to the gravity vector. Several studies have simulated the model with the tilt of
the rotation axis with respect to the gravity vector, and the latitudinal dependence of the
convection has been investigated (e.g., Ossendrijver et al. 2001; Käpylä et al. 2004, 2006a).

7.3 Extraction of Information of Dynamo Effects

In the semi-global studies, four-types of approaches have been used typically to extract the
information of dynamo effects veiled in the convective motion. The starting point of all
the four methods is common, the decomposition of the flow field (U ) and magnetic field
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(B) into a spatially large-scale, slowly-varying mean-component, and a small-scale, rapidly
varying fluctuating component, as introduced in § 1, i.e., U = U + u and B = B + b,
where the lower-case represent the fluctuating component and the overbars denote the mean
component. In the case of a semi-global model, a temporal and horizontal average is often
used for deriving the mean component. Then, the equation of mean-field electrodynamics
can be derived

∂B

∂t
= ∇ × (U × B + E − η∇ × B) , (52)

where E = u′ × b′ is the mean electromotive force (EMF) due to the fluctuation of the flow
and the magnetic field. The mean EMF can be described as a power series about the large-
scale magnetic component and its derivatives as

E = u × b = α · B + γ × B − β · (∇ × B) + · · · , (53)

where α represents (tonsorial form of) the α-effect, γ is the turbulent pumping, and β de-
notes the turbulent diffusion.

To obtain the information of the dynamo coefficients, such as α, γ , and ηT , from the
MHD convection simulation, there are the following four methods (see general discussion
in Sect. 3.3):

(i) Methods based on results of analytical theories, e.g., SOCA (or first-order smoothing
approximation, FOSA) expressions

(ii) Imposed-field method
(iii) Test-field method
(iv) The multi-dimensional regression method based on the dynamo generated magnetic

field

Method (i) involves the estimation of dynamo coefficients based on results of analytical
theory. It also exploit the mixing-length approximation in final results. There, the distribu-
tions of, for example, the fluctuating components of the convection velocity (u), vorticity
(ω = ∇ × u), and the resulting kinetic helicity (H = ω · u), are directly extracted from the
simulation results and used to reconstruct the turbulent α and β via their analytic forms,
derived under SOCA, such as Eq. (16) and β = (τ/3)u2, where τ is the correlation time of
the turbulence and is often replaced by the convective turnover time, τc . Note that anisotropy
effects are often neglected in the expressions above, but see Brandenburg and Subramanian
(2007), who included them.

Method (ii) is mainly used in the analysis of the numerical results without self-sustained
magnetic field. In this method, a uniform external magnetic field is imposed as the mean
component to the computational domain, artificially. The α effect and turbulent pumping
are then inferred from E = u × b by directly calculating from simulation data

α = E · B/B
2
, γ = −E × B/B

2
. (54)

Furthermore, one might be tempted to compute ηt = E · J/(μ0J
2
), but this would assume

that J · B is vanishing, which is generally not the case for α-effect dynamos; see Hubbard
et al. (2009) for details.

Method (iii) utilizes a so-called test field, as introduced by Schrinner et al. (2005, 2007)
for the spherical case and Brandenburg et al. (2008) for the Cartesian case, allowing for
scale dependence. In this method, the evolution equation of b′

T, the fluctuating component
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of the test field BT, which are passive to the velocity field taken from the simulation, is
solved additionally to the basic (MHD) equations. From the linear evolution of the test-
field, the mean EMF is evaluated and then the full set of turbulent transport coefficients can
be obtained. For example, in the case without the large-scale flow, the test-field equation is,
for bT,

∂bT

∂t
= ∇ × (u × BT + u × bT − u × bT − η∇ × bT) , (55)

with a chosen test field BT while taking u from the MHD simulation. The original method
does not work in cases when magnetic fluctuations are driven through an artificially added
electromotive force. In such cases, one needs to use a more general nonlinear method ex-
plored by Rheinhardt and Brandenburg (2010) and Käpylä et al. (2022). Theses magnetically
driven systems are also examples where the imposed-field method gives reliable results in
two dimensions with volume averaged mean fields, where no turbulent diffusion can act.

Method (iv) can be used only in the analysis of the numerical results with self-sustained
magnetic fields. Since the fluctuating and mean components are all known quantities in
such simulations, the mean emf, E = u × b, and the mean magnetic component, B , can be
directly calculated from the simulation data. Then, the mean profiles of dynamo coefficients
are inferred based on a fitting procedure via the relationship,

Ei = αijBj + εijkγjBk + higher derivative terms . (56)

Given Ei and Bi which are calculated from simulation data, and then find αij and γi such
that the residual of Eq. (56) is minimized. In the equation above, the contributions from the
derivatives of the mean magnetic component to the mean emf are neglected (see, e.g., Racine
et al. 2011; Simard et al. 2013, 2016; Shimada et al. 2022, for the fitting based analysis of
the dynamo coefficient with including the contribution from the first-order derivative of the
mean magnetic component). As we have mentioned in Sect. 3.3, the results of Warnecke
et al. (2018) show that the TFM is more accurate compared to the regression method in
obeying Eq. (56); see the detailed comparison in above cited paper.

In all cases, however, the first (and often higher) derivative terms are of the same order
as the first term and can therefore not be neglected. This was already done in the work of
Brandenburg and Sokoloff (2002), who typically found small diffusion coefficients in the
cross-stream direction. This, however, turned out to be a shortcoming of the method and has
not been borne out by more advanced measurements (Karak et al. 2014).

7.4 Transport Coefficients from Semi-Global Turbulence Simulations

Here, we briefly review the results of previous semi-global simulations, with a particular
focus on the studies that have been dedicated for extracting information about dynamo co-
efficients.

Brandenburg et al. (1990), hereafter B90, performed turbulent 3-D magneto-convection
simulations under the influence of the rotation for the semi-global model whose depth is
equivalent to about one pressure scale height. They found that, due to the effect of the rota-
tion, a systematic separation of positive and negative values of the kinetic helicity was devel-
oped in the vertical direction of the CZ, i.e., in the upper CZ, negative (positive) helicity in
the northern (southern) hemisphere, while positive (negative) helicity in the northern (south-
ern) hemisphere. Using the imposed field method, they evaluated the magnitude of the tur-
bulent α-effect with anisotropic properties as αV /(τH) ∼ O(0.1) and αH /(τH) ∼ O(0.01),
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where H = ω ·u and E = αHBH +αVBV. It is interesting to note that these values are about
one to two orders of magnitude smaller than α ∼ �d , which is the estimation based on the
mixing-length theory. Additionally, it was also suggested that the magnetic helicity showed
a similar depth variation, but the sign was opposite to that of the kinetic helicity.

While αH had the expected sign (opposite to that of the kinetic helicity), αV was found to
have the ‘wrong’ sign (same as that of the kinetic helicity). Such a result was subsequently
also obtained by Ferriere (1993). The theoretical possibilities for such effects should be
studied further. For example, Rüdiger and Pipin (2000) found that large-scale shear can
affect both the sign of the α effect and kinetic helicity in magnetically driven compressible
turbulence in such a way that they have the same sign, e.g., for Keplerian accretion disks.
These ideas were also applied to understanding the finding of a negative α effect in stratified
accretion disk simulations (Brandenburg 1998).

Ossendrijver et al. (2001) also performed the semi-global simulation with a similar model
as B90. They showed that, even in the regime where the condition justifying the FOSA
(or SOCA) is not satisfied, i.e., in the situation where St = urmsτ/d � 1 and Re > 1, the
kinetic helicity was clearly separated into positive and negative values at the lower and
upper CZs when taking temporal average of the convective motion over sufficiently long
time. Using the imposed field method, they also measured the magnitude of the turbulent α-
effect and obtained similar values to B90 in terms of αH and αV . The rotational dependence
of the α-effect was also investigated in this work for the first time. They showed that, in
the larger Co regime, the αV underwent a rotational quenching, while the αH was saturated,
where Co is the Coriolis number [see Eq. (37)]. The turnover time was defined, in this work,
as τ = d/urms. While the depth-dependence or rotational dependence of the α, which was
obtained from the simulation, agreed, to some extent, with a theoretical model based on
the mixing-length theory (Rüdiger and Kichatinov 1993), their amplitudes were one to two
orders of magnitude smaller than those predicted from the theoretical model. Noteworthy,
the critical threshold of the α effect parameter in mean-field dynamo models (see Sect. 6.1)
is about same magnitude less than the mixing-length models of the solar convection zone
predicts; see Sect. 6.

In Käpylä et al. (2004, 2006a), additionally to the rotational dependence, the latitudinal
dependence of the turbulent α-effect was studied in the semi-global convection simulations
with varying the inclination of the rotation axis with respect to the gravity vector. With the
imposed field method, they found that, for slow and moderate rotation with Co < 4, the
latitudinal dependence of the α followed cos θ profile with a peak at the pole (see also,
Egorov et al. 2004), while, in the rapid rotation regime with Co ≈ 10, it rather peaked much
closer to the equator at θ � 30◦. Additionally, the vertical profile of the α directly evaluated
from simulation was found to be qualitatively consistent with analytic expression derived
under the FOSA even when changing the latitude. A practical application of these results was
the development of a kinematic mean-field solar dynamo model in Käpylä et al. (2006b). In
it, the rotation profile deduced from the helioseismic observation and the meridional profiles
of the α-effect and turbulent pumping obtained with the semi-global simulation of Käpylä
et al. (2006a) are integrated into the framework of the α–� dynamo, and then the solar
dynamo mean-field model was constructed. It is interesting that their kinematic dynamo
model correctly reproduced many of the general features of the solar magnetic activity, for
example realistic migration patterns and correct phase relation.

The existence of large-scale dynamo, i.e., self-excitation of the mean magnetic compo-
nent, in rigidly-rotating convection was demonstrated for the first time in the semi-global
simulation by Käpylä et al. (2009b). By changing the angular velocity, they showed that the
large-scale dynamo could be excited only when the rotation is rapid enough, i.e., Co � 60,
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with Eq. (37) as the definition of Co which is same as that used in Ossendrijver et al. (2001)
and Käpylä et al. (2006a); see, e.g., Tobias et al. (2008) and Cattaneo and Hughes (2006),
and Favier and Bushby (2013), for unsuccessful large-scale dynamo in rigidly-rotating con-
vection probably due to slow rotation, and/or short integration time. From the measurements
of the turbulent α-effect and the turbulent diffusivity by the TFM, they also suggested that
while the magnitude of the α-effect stayed approximately constant as a function of rotation,
the turbulent diffusivity decreased monotonically with increasing the angular velocity, re-
sulting in the excitation of the large-scale dynamo in the higher Co. The reliability of the
dynamo coefficients extracted with the test-field method from the simulation was validated
with the one-dimensional mean-field dynamo model in which the test-field results for α

and β were used as input parameters by studying the excitation of the large-scale magnetic
field at the linear stage. Note that the oscillatory properties of the large-scale dynamo in
rigidly-rotating convection and its possible relationship with α2 dynamo mode with inho-
mogeneous α profile were also found in Käpylä et al. (2013); see, e.g., Baryshnikova and
Shukurov (1987) and Mitra et al. (2010b) for the oscillatory α2 dynamo.

7.5 Mean-Field Dynamo Models Linked with DNSs

7.5.1 Weakly-Stratified Model

Below we review recent mean-field dynamo models linked with semi-global MHD convec-
tion simulations, where the large-scale dynamo is successfully operated; see Masada and
Sano (2014a,b, 2016, 2022) for a series of numerical studies.

While Käpylä et al. (2009b, 2013) were the first to demonstrate that rigidly-rotating con-
vection can excite the large-scale dynamo as reviewed above, their simulation model was
a so-called “three-layer polytrope” consisting of top and bottom stably-stratified layers and
the CZ in between them. Therefore, it was suspected for a while that the essential factor
for the successful large-scale dynamo observed there might be the presence of the stably-
stratified layer assumed in their model rather than the rapid rotation (e.g., Favier and Bushby
2013). To pin down the key requirement for the large-scale dynamo, the impact of the stably-
stratified layers on the large-scale dynamo was studied in Masada and Sano (2014b), here-
after MS14a, in which two-types of semi-global models with and without stably-stratified
layers are compared with the same control parameters and the same grid spacing. It was
found in this study that a large-scale dynamo was successfully operated even in the model
without the stably-stratified layer, and confirmed that the key requirement for it should be a
rapid rotation if we evolved the simulation for a sufficiently long time than the ohmic dif-
fusion time. Note that a relatively weak density stratification (the density contrast between
the top and bottom CZs is about 10) was assumed in the simulation model employed in this
study as well as Käpylä et al. (2009b, 2013).

With these results, Masada and Sano (2014a), hereafter MS14b, explored the mechanism
of the large-scale dynamo operated in the rigidly-rotating stratified convection by linking the
mean-field (MF) dynamo model with the DNS. In this study, the FOSA based approach was
adopted in the MF modeling. The mean vertical profiles of the kinetic helicity and root-mean
square velocity were directly extracted from the simulation data and then the vertical profiles
of the turbulent α, turbulent pumping (γ ) and turbulent diffusivity (β) were reconstructed
according to the analytic expressions of

α(z) = −τc(uz∂xuy − uz∂yux) , γ (z) = −τc∂z(uz)2 , β(z) = τc(uz)2 , (57)
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Fig. 11 Time-depth diagram Bx(z, t) for the MF model (panel (b)) and its DNS counterpart (panel (a)).
For DNS result, the horizontal average of the magnetic field is shown. The orange and blue tones represent

positive and negative Bx in units of Bcv ≡ (ρu2)1/2. Time is normalized by τc . Note that By shows a similar
cyclic behavior with Bx yet with a phase delay of π/2; see MS14a,b for details

in anisotropic forms of dynamo coefficients under the FOSA (e.g., Käpylä et al. 2006a).
Although recent numerical studies indicate that the small-scale current helicity, i.e., j · b, is
important for the α-effect when the magnetic field is dynamically important (Pouquet et al.
1976; Brandenburg and Subramanian 2005b), its contribution was ignored in this study. As
the correlation time τc , the convective turnover time defined by τ = Hρ(z)/urms was chosen
there (Hρ is the density scale-height as a function of the depth). By solving one-dimensional
MF α2 dynamo equation in which these profiles were used as input parameters, i.e.,

∂Bh

∂t
= ∇ × (E − η∇ × Bh) , (58)

with

E = α(z)Bh + γ (z)ez × Bh − β(z)∇ × Bh , (59)

the time-depth diagram for the mean (horizontal) magnetic component (Bh) was obtained.
In Fig. 11, we show Bx(z, t) for the MF model (panels (b)) and its DNS counterpart (pan-
els (a)). Note that, for ensuring the saturation of the magnetic field growth, the quenching
effect was also taken into account. Since the DNS results were quantitatively reproduced by
the MF α2 dynamo, MS14b concluded that the large-scale magnetic field organized in the
rigidly-rotating turbulent convection was a consequence of the oscillatory α2 dynamo.

Reproducing the DNS results with mean-field models using coefficients from the origi-
nal DNS is an important verification of the whole approach. This has been done on many
occasions in the past; see, for example, the work by Gressel (2010) and Warnecke et al.
(2021).

7.5.2 A Strongly Stratified Model

In MS14a,b, a weakly-stratified model, in which the density contrast between top and bot-
tom CZs is about 10, was adopted. However, the actual Sun has very strong stratification
with a density contrast of ∼ 106 between top and bottom CZs, resulting in a large segrega-
tion of time scales from minutes to months. Aiming at the application to solar and stellar
interiors, Masada and Sano (2016), hereafter MS16, performed a convective dynamo sim-
ulation in a strongly stratified atmosphere with a density contrast of 700 in a semi-global
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Fig. 12 (a) 3-D view of the strongly stratified convection (for the progenitor run without rotation). The black
(gray) tone denotes downflows (upflows). (b) Time-depth diagrams for Bx and By . The normalization is

the equipartition field strength, Beq ≡ (ρu2)1/2. In MS16, a one-layer polytrope with a super-adiabaticity of

δ ≡ ∇ − ∇ad = 1.6 × 10−3 was used; see MS16 and MS22 for details

Fig. 13 Snapshots for (a) the
horizontal distribution of Bz at
the CZ surface, and (b) its
Fourier filtered image. In
panel (b), the small-scale
structures with k/kc � 8 are
eliminated for casting light on the
large-scale pattern (k is the
wavenumber and kc = 2π/Lh

with the horizontal box size Lh)

setup. Due to the strong solar- and stellar-like density stratification, multi-scale convec-
tion with a strong up-down asymmetry, i.e., slower and broader upflow regions surrounded
by a network of faster and narrower downflow lanes, was developed in this simulation, as
shown in Fig. 12(a). Even in such a situation, a large-scale dynamo was found to operate. As
shown in Fig. 12(b), the mean magnetic field components observed there showed a time–
depth evolution similar to that seen in the weakly-stratified model (MS14a,b), suggesting
that an oscillatory α2 dynamo is responsible for it. It was intriguing that, in addition to the
mean horizontal component, the large-scale structures of the vertical magnetic field were
spontaneously organized at the CZ surface in the case of the strongly stratified atmosphere,
as shown in Fig. 13.

A possible physical origin of such surface magnetic structure formation is the negative
magnetic pressure instability (NEMPI; see § 8 for details). NEMPI is a mean-field process
in the momentum equation, where the Reynolds and Maxwell stresses attain a component
proportional to the square of the mean magnetic field, which acts effectively like a negative
pressure by suppressing the turbulent pressure. Since its growth rate becomes larger for
stronger density stratification (e.g., Jabbari et al. 2014), one can imagine that it may play an
important role in organizing sunspot-like large-scale magnetic field structures in the upper
part of the solar CZ. Although its presence has been confirmed numerically in forced MHD
turbulence (e.g., Brandenburg et al. 2011; Warnecke et al. 2013), it does not play a significant
role in organizing the surface magnetic structure seen in MS16 because of their relatively
rapid rotation; Ro = 0.02 was assumed there, while, according to Losada et al. (2012), Ro �
5 is required to excite the NEMPI.
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Fig. 14 Time-depth diagrams of Bx for (A) DNS models and (B) MF models. (C) Vertical profiles of the
turbulent α-effect (top) and turbulent diffusivity β (bottom) which are reconstructed with the analytic ex-
pressions of Eq. (57) from the information, such as kinetic helicity and rms velocity, directly extracted from
DNSs

The large-scale structure of the vertical magnetic field observed in MS16 is similar to that
observed in the large-scale dynamo by forced turbulence in a strongly stratified atmosphere
(Mitra et al. 2014; Jabbari et al. 2016). This implies that there would be an as-yet-unknown
mechanism for the self-organization of large-scale magnetic structures, which would be
inherent in a strongly stratified atmosphere.

In Masada and Sano (2022), hereafter MS22, with varying angular velocity as a control
parameter, the rotational dependence of the large-scale dynamo was explored in a series
of DNSs of rigidly-rotating convection. They linked its cause through MF dynamo models
with DNSs where a strongly stratified polytrope was adopted as a model of the convective
atmosphere, as in MS16.

In Fig. 14(a), DNS results are shown where a time-depth diagram of Bx is depicted for
models with different values of Co. While in the slowly rotating model with low Co, the
large-scale magnetic component fails to grow, it is found to be spontaneously organized in
the rapidly-rotating models with high Co. It was found from DNS that the large-scale dy-
namo was excited when Co � Cocrit, where Cocrit is the critical Coriolis number in the range
25 � Cocrit � 80, with Eq. (37) as the definition of the Coriolis number. It is remarkable
that Cocrit, which determines the success or failure of the large-scale dynamo, was almost
the same – independent of the density contrast (see Käpylä et al. 2009b) or the geometry of
the simulation model (see, e.g., Käpylä et al. 2012; Warnecke 2018, for Cocrit in the global
simulations); see MS22 for the quantitative comparison between models.

To explore the underlying mechanism of the rotational dependence of the large-scale
dynamo, the influence of the rotation on the turbulent transport coefficients was also studied
in MS22 with the FOSA-based approach similar to that adopted in MS14b. In Fig. 14(c), the
vertical profiles of the turbulent α effect and turbulent diffusivity β reconstructed with the
analytic expressions of Eq. (57) were shown. It can be found that, as the spin rate increases,
the turbulent diffusivity decreases significantly, but the profile of the α effect remains almost
unchanged. This result suggested that the rotational dependence of the large- scale dynamo
observed in MS22 may be primarily due to a change in the magnitude of the turbulent
diffusion. In fact, this insight was confirmed by the evidence that the MF dynamo model
with incorporating the dynamo coefficients shown in Fig. 14 reproduced quantitatively the
result of the DNS; see Fig. 14(b) for the time-depth diagram of Bx obtained in the MF
models with using different dynamo coefficients extracted from the corresponding DNSs.
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MS22 concluded that the independence (dependence) of the turbulent α effect (turbulent
diffusivity) on the rotation was the essence of the rotational dependence of the dynamo.
This is not only the same as the conclusion obtained by Käpylä et al. (2009b) from weakly-
stratified convective dynamo simulations using the TFM, but also the same as that obtained
by Shimada et al. (2022) from global solar dynamo simulation with using the “self-sustained
field method”. Although we don’t know whether the independence (dependence) of the α-
effect (turbulent diffusion) on the rotation, seen in these studies, is universal or not, it may
give an important suggestion not only on the turbulence modeling but on the solar dynamo
modeling.

8 Solar-Stellar Connections and Questions Beyond Standard
Mean-Field Theory

The title of our review is “Turbulent processes and mean-field dynamo” Obviously, there are
mean-field effects in turbulence that are not just of dynamo type, and the mean-field dynamo
is not just related to the solar dynamo problem, but its relevance goes much beyond. Here, we
highlight, just some effects, but we refer to the reviews of Käpylä et al. (2023) for additional
examples.

8.1 Origin of Sunspots and Active Regions

An important goal in solar dynamo theory is to compute synthetic butterfly diagrams. The
question then emerges from which depth to take the mean toroidal field, for example. The
usual argument here is to invoke Parker’s theory of sunspot formation and to postulate that
the field at some depth translates directly to one at the surface. This is critical because the
final result depends on the assumed depth.

It is possible that sunspots are not deeply rooted, but are actually a surface phenomenon.
No successful and self-consistent model of shallow formation of active regions or sunspots
exists as yet. Noteworthy in this context is NEMPI, which is a mean-field theory of the
Reynolds and Maxwell stresses. This theory is extremely successful in that its results agree
remarkably well with direct numerical simulations (DNS).2 The problem is only that the
effect is not strong enough to make real sunspots or active regions. Because of this remark-
able agreement between theory and simulations, and because it is an important mean-field
process, we shall discuss here a bit more detail.

The essence of the effect is the contribution of the turbulent hydromagnetic pressure to
the horizontal force balance. The turbulent pressure is a small-scale effect, but it reacts to
the large-scale magnetic field. As the magnetic field increases, it suppresses the turbulence
locally, disturbing therefore the horizontal force balance. Although this large-scale magnetic
field itself contributes with its own magnetic pressure to the horizontal force balance, the
effect from the suppression of the turbulence is often stronger, so the net effect is a negative
one. This is why the mean-field effect from a large-scale magnetic field is a negative effective

2DNS means that viscous and diffusive operators are assumed to be the physical ones, but with coefficients
that are enhanced relative to the physical ones, but as small as possible. The ordering of these coefficients is
often preserved so as to access the relevant regimes with small magnetic and thermal Prandtl numbers. Large
eddy simulations (LES) or implicit LES, by contrast, use just numerical schemes to keep the code stable. Such
schemes are often too complicated to state them as an explicit term in the equations, as if they are negligible,
but they never are.
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Fig. 15 Cuts of Bz/Beq(z) in the xy plane at the top boundary (z/Hρ = π ) and the xz plane through the
middle of the spot at y = 0. In the xz cut, we also show magnetic field lines and flow vectors obtained by
numerically averaging in azimuth around the spot axis. Adapted from Brandenburg et al. (2013)

magnetic pressure. This idea goes back to early work of Kleeorin et al. (1989, 1996), who
developed the mean-field theory for this effect.

In the beginning, it was not clear what kind of numerical experiments one could try
to test the a negative effective magnetic pressure effect. The first mean-field simulations
were done with a uniform horizontal magnetic field (Brandenburg et al. 2010). This led
to the development of magnetic flux concentrations near the surface, but those began to
sink downward as time went on. A similar effect was soon also seen in DNS (Brandenburg
et al. 2011). The sinking of such structures was explained by the negative effective magnetic
pressure: a positive magnetic pressure would lead to the rise of structures (Parker 1967)
while a negative one leads to a sinking. The sinking of magnetic structures had the side
effect that the structures disappeared from the surface and became less prominent.

Subsequent experiments with a vertical field had a more dramatic effect on the general
appearance of structures. Because the ambient field was vertical, the downflow had little
effect on the magnetic flux concentrations themselves (Brandenburg et al. 2013). Figure 15
shows the spontaneous development of a magnetic spot. Brandenburg et al. (2013) found
that NEMPI saturates slightly below equipartition value.

Most of the numerical experiments where done with forced turbulence, where one had
explicit control over the degree of scale separation. For the results presented here ReM ∼ 19
and PrM = 0.5. The value of ReM = urms/ηkf is very small because it is based on the forcing
wavenumber kf, which is chosen to be large. Furthermore, PrM is chosen to be less than unity,
because NEMPI is not expected to work for PrM ≥ 14. This is rather different in actual stellar
convection, where the development of magnetic structures takes different shapes (Stein and
Nordlund 2012; Masada and Sano 2016; Käpylä et al. 2016).

8.2 Dynamo Flux Budget and Impact of the Surface Activity on the Deep Dynamo

Following Cameron and Schüssler (2015) (hereafter, CS15, also see Cameron and Schüssler
2023, this collection) we now estimate the budget of the toroidal magnetic flux in the dy-
namo region. Using the Stokes theorem and the induction equation Eq. (34), we define the
derivative of the toroidal magnetic field flux in the northern hemisphere of the Sun as

∂�N
tor

∂t
=
∮

δ�

(
U × B + E

)
· dl, (60)

where �N
tor = ∫

�
BφdS, � is the meridional cut of the northern hemisphere of the solar

convection zone, δ� stands for the contour confining the cut and the differential dl is the
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Fig. 16 Estimation of
contributions of the budget
equation; see Eq. (61), for the
time of cycle minimum

line element of δ�. The same can be written for the southern hemisphere flux �S
tor. Similarly

to CS15, we use the boundary conditions, and we estimate the RHS of the Eq. (60) in the
coordinate system which is co-rotating with angular velocity of the solar equator, U 0φ =
R sin θ�0, and �0 the surface angular velocity at the equator,

∂�N
tor

∂t
=
∫ π/2

0

I1︷ ︸︸ ︷(
Uφ − U 0φ

)
Br rt dθ +

∫ rt

ri

I2︷ ︸︸ ︷(
U

( π
2 )

φ − U 0φ

)
B

( π
2 )

θ dr (61)

+
∫ rt

ri

I3︷ ︸︸ ︷(
E (0)

r − E ( π
2 )

r

)
dr +

∫ π/2

0

I4︷ ︸︸ ︷(
E (t)

θ rt − E (i)
θ ri

)
dθ

here, rt = 0.99R, ri = 0.67R, are the radial boundaries of the dynamo region. In compare
to CS15 we have additional contributions in the budget equation. Figure 16 shows profiles
of the kernels I1−4 for the period of the magnetic cycle minimum. The estimations are based
on results and parameters of the mean-field model presented above. Noteworthy, the south
hemisphere should show the profiles of the opposite sign (see CS15). The results for I1,4

qualitatively similar to CS15. This is because the mean-field model show the qualitative
agreement with solar observations for the time latitude evolution of the surface radial mag-
netic field. The diffusive decay of the toroidal magnetic flux is captured as well because
of the phase shift between evolution of the poloidal and toroidal magnetic field in dynamo
model and presumably in the solar dynamo as well. The model show the sharp poleward
increase of I1. This effect produces the winding of the toroidal magnetic field from poloidal
component by the latitudinal shear. The effect of the radial shear, I2, has maximum near the
bottom of the convection zone, where its magnitude is less than the I1.

Figure 17(a) shows the time evolution of the RHS contributions of Eq. (61). In our model
the We see that I2 is about factor 2 less than I1. Winding of the toroidal field by the latitu-
dinal shear seems to be the main generation effect in our model and, perhaps, in the solar
dynamo, as well. The radial shear is less efficient because it is small in the main part of the
convection zone. Also, it has the opposite sign near the convective zone boundaries. This
justifies applications of simple 1-D Babcock–Leighton dynamos to the solar observations
as argued by CS15. Together with the fact of the poleward increase of I1 it explain the rel-
ative success of correlation of the polar magnetic field strength and the magnitude of the
subsequent magnetic cycle for the solar cycle prediction (Choudhuri et al. 2007).

Figure 17(b) shows the budget of the toroidal flux generation rate (I1 + I2) and loss
rate(I3 + I4) for our dynamo model. The parameters of the budget are larger than those
deduced by CS15 from solar observations. The difference is because of additional generation
and loss terms. The budget which includes only the surface activity contributions (green
line in Fig. 17b) is less than the full case. Also, the magnitude of the generation rate by
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Fig. 17 (a) Time evolution of the RHS contributions of Eq. (61); (b) the dynamo models budget, black line
show the standard mean-field model, green line – the budget which includes only the surface contributions
(I1,4), blue line – the run where the radial subsurface shear (region r = 0.9-0.99R) is neglected and the red
line shows the model with accounts of surface spot-like activity effects. Starting point is marked by black
circle

the latitudinal shear can be larger than in the solar observations because of difference in the
latitudinal profiles of the surface radial magnetic field. We guess that in the dynamo model
the radial magnetic field increase poleward steeper than in observations. This issue have to
be studied further. Figure 17b shows the budget for another two dynamo models. In one
case, we neglect the generation effect of the radial subsurface shear in region r = 0.9-0.99R.
In compare to the standard case, this model shows the reduction of the generation rate, the
amplitude of the generated toroidal flux, and increase of the loss rate. Therefore we conclude
the importance of the subsurface shear layer for our dynamo model.

The above analysis shows the importance of surface activity for the dynamo model and
perhaps for the solar dynamo as well. Sunspot activity in the form of magnetic bipolar
regions is one of the most important aspects of magnetic surface activity. A consistent ap-
proach to include it in dynamo models is at present absent. Also, the origin of sunspots and
their bipolar magnetic field is not well known; see Sect. 8.1. The Babcock–Leighton type
and flux-transport dynamo models use a phenomenological approach. It is also applicable
to mean-field models. Pipin (2022) studied the effect of surface activity on convection zone
dynamos. Here, we briefly discuss some results of the paper. The emergence of bipolar mag-
netic regions (BMRs) is modeled using the mean electromotive force which is represented
by the α and magnetic buoyancy effects acting on the unstable part of the axisymmetric
magnetic field as follows:

E (BMR)
i = αβδiφ 〈B〉φ + Vβ

(
r̂ × 〈B〉)

i
, (62)

where the first term takes into account the BMR’s tilt and the second term models the surface
magnetic region in the bipolar form. To produce the bipolar like regions we have to restrict
spatially Vβ in Eq. (62) to the small scales that are typical for the solar BMR; see details in
the above cited paper. Position and emergence time are chosen to be random and modulated
by the large-scale magnetic activity. The BMR’s α-effect parameters are random as well; see
details in (Pipin 2022; Pipin et al. 2023). The given approach could be refined further using
the 3D hydrodynamics, effects of the Coriolis force and the theory of the Joy’s law developed
recently by Kleeorin et al. (2020). Figure 18 illustrates the formation of BMR simulated in
the dynamo model. It was found that the BMR effects on the dynamo are restricted to the
shallow layer below the surface. At the surface, the effect of the BMR on the magnetic field
generation is dominant. Compare to the standard axisymmetric mean-field model discussed
in the subsections above, the nonaxisymmetric dynamo, which includes the emergence of
tilted BMR, can result in additional dynamo generation of the large-scale poloidal magnetic
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Fig. 18 Snapshots of magnetic regions in the south hemisphere in ascending phase of the magnetic cycle.
The left column shows the nonaxisymmetric magnetic field lines, time is shown in days. The right column
shows the radial magnetic field on the top boundary. Reproduced by permission from Pipin et al. (2023)

field and to an increase of the polar magnetic field. The red line in Fig. 17(b) shows the
budget for this nonaxisymmetric dynamo model. We see an increase of the toroidal flux
generation rate in the nonaxisymmetric model because of the surface BMR activity. Similar
to Cameron and Schüssler (2015), we can conclude that sunspot surface activity seems to
play an important part in the solar large-scale dynamo.

8.3 Effect of Corona on the Dynamo

Usually, dynamo models are limited to the star embedded in a vacuum, which is described
by boundary conditions on the stellar surface. However, the boundary conditions have a de-
termining influence on the global solutions, such as the symmetry about the equator. With
the assumption of an external vacuum, all induction effects in the corona are neglected.
Since the solar surface rotates differentially, the highly conductive plasma in the corona also
causes induction effects through shear. Observations of coronal rotation are very scarce.
There is evidence from extended coronal holes of rigid rotation in latitude (Timothy et al.
1975; Bagashvili et al. 2017). Kinematic dynamo models involving the corona with various
assumptions on its rotation and conductivity give a wide range of solutions (Elstner et al.
2020). A notable influence of the corona on the dynamo in the convection zone was also
observed in DNS by Warnecke et al. (2016). A too weak density contrast and too strong
viscous coupling of the corona to the star in their model probably underestimates the ef-
fect of the Lorentz force in the corona. Considering a dynamical situation with dominant
Lorentz force in the corona, the solution in the Sun corresponds to that with vacuum bound-
ary condition independent of rotation and conductivity in the corona. The magnetic field
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in the corona varies in time to a nearly force-free solution. Further investigations of the
star-corona coupling are needed to clarify the exchange of magnetic energy and helicity.

8.4 Stellar Cycle Periods

Noyes et al. (1984) developed an early understanding of the observed stellar cycle periods,
Pcyc. In those years, there where just six stars with measured rotation and cycle periods.
Remarkably, for the stars of Noyes et al. (1984), those values have not changed much with
the more accurate data of Baliunas et al. (1995); see Table 1 for a comparison of their cycle
periods and the more recent data sets (Olspert et al. 2018; Boro Saikia et al. 2018; Bonanno
and Corsaro 2022). However, for the many stars of Baliunas et al. (1995), the modern anal-
ysis of Olspert et al. (2018) and Boro Saikia et al. (2018) showed considerable changes in
the results for stellar cycle periodicities. In particular, many of the double periodicities of
Baliunas et al. (1995) vanished when extended data became available, and different methods
were used.

In recent work of Bonanno and Corsaro (2022), new cycle data were collected for al-
together 67 stars. Their new sample includes stars with less accurate data points, so the
existence of different branches was no longer a pronounced feature. In addition, many of
the new data points are different from the earlier ones of Brandenburg et al. (2017b); see
Table 2. As in their paper, we denote G and F dwarfs by the same blue italic symbols and K
dwarfs by the same red roman symbols.

To see how strong this revision of the data is, we plot in Fig. 19 the ratios Prot/Pcyc

versus log〈R′
HK〉 for all stars of Bonanno and Corsaro (2022) and highlight with lowercase

and uppercase letters the stars that were also included in the sample of Brandenburg et al.
(2017b). We see that the new data are remarkably consistent with the old ones. Out of the
eight stars on the branch of active stars, five where listed by Brandenburg et al. (2017b) as
having two periods. Of the 16 inactive stars, three were listed with two periods, but the case
of the Sun was classified by Brandenburg et al. (2017b) as somewhat different, because the
80 years Gleissberg cycle does not fit well on the active branch and, unlike all the other stars
with two cycle periods, which are all younger than 3.3 Gyr, the Sun is relatively old.

The early data of Noyes et al. (1984) did already suggest

ωcyc ∝ �1.25 (63)

Table 1 Comparison of cycle periods Pcyc (in years) from Noyes et al.
(1984) (NWV84), Baliunas et al. (1995) (Bal+95), and Bonanno and Cor-
saro (2022) (BC22). The last two columns compare the seismic age given by
BC22 and the gyrochronological age as listed by Brandenburg et al. (2017b)
(BMM17). The latter differ significantly, but the determined cycle periods
were remarkably stable over the decades

HD —— Pcyc [yr] —— — age [Gyr] —

NWV84 Bal+95 BC22 BC22 BMM17

3651 10 13.8 14.70 — 7.2

4628 8.5 8.37 8.47 3.33 5.3

16,160 11.5 13.2 12.68 — 6.9

160,346 7 7.00 7.19 — 4.4

201,091 7 7.3 7.11 6.10 3.3

201,092 11 11.7 — — 3.2
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Table 2 Comparison of stellar cycle properties from the samples of Bonanno and Corsaro (2022) and Bran-
denburg et al. (2017b) (indicated as “old”). The blue italics and red roman letters refer to the stars discussed
in Brandenburg et al. (2017b) and are also indicated in Fig. 19

HD Sym log〈R′
HK〉 log〈R′old

HK 〉 Prot [d] P old
rot [d] Pcyc [yr] P I

cyc [yr] P A
cyc [yr]

100,180 −4.83 −4.92 14.06 14.00 3.60 3.60 12.90

103,095 −4.90 −4.90 32.51 31.00 7.07 7.30 —

10,476 −4.97 −4.91 35.40 35.20 10.45 9.60 —

146,233 −4.95 −4.93 22.66 22.70 11.59 7.10 —

160,346 −4.86 −4.79 34.20 36.40 7.19 7.00 —

16,160 −4.94 −4.96 48.29 48.00 12.68 13.20 —

165,341 −4.61 −4.55 19.51 19.00 5.09 5.10 15.50

166,620 −5.00 −4.96 42.25 42.40 16.81 15.80 —

219,834 −4.93 −4.94 38.89 43.00 9.48 10.00 —

26,965 −4.96 −4.87 40.83 43.00 10.24 10.10 —

3651 −5.06 −4.99 40.50 44.00 14.70 13.80 —

4628 −4.95 −4.85 37.82 38.50 8.47 8.60 —

81,809 −4.89 −4.92 40.93 40.20 8.05 8.20 —

219,834 −5.10 −5.07 43.40 42.00 16.29 21.00 —

201,091 −4.56 −4.76 35.62 35.40 7.11 7.30 —

Sun −4.94 −4.90 25.55 25.40 10.70 11.00 80.00

149,661 −4.61 −4.58 20.92 21.10 12.38 4.00 17.40

152,391 −4.46 −4.45 11.01 11.40 11.94 — 10.90

156,026 −4.56 −4.66 18.85 21.00 19.31 — 21.00

190,406 −4.76 −4.80 14.01 13.90 18.61 2.60 16.90

76,151 −4.68 −4.66 14.70 15.00 16.34 2.50 —

78,366 −4.57 −4.61 9.60 9.70 14.26 5.90 12.20

114,710 −4.74 −4.75 11.99 12.30 14.12 9.60 16.60

22,049 −4.46 −4.46 11.09 11.10 11.00 2.90 12.70

for the cycle frequency ωcyc = 2π/Pcyc versus angular rotation rate �. This dependence
is reproduced by considering free dynamo waves and assuming axisymmetric mean fields,
B = bφ̂ + ∇ × aφ̂, with (a, b) ∝ ei(ky−ωt) and writing −iω = −iωcyc + λ, where both ωcyc

and λ are assumed to be real. The mean-field dynamo equations result in traveling wave
solutions with a dispersion relation of the form

ωcyc =√
α�′kL/2, λ = ωcyc − ηTk2. (64)

At least up to moderate rotation rates, it is reasonable to assume that α and �′ are propor-
tional to �. The crucial assumption in arriving at an approximation that matches Eq. (63) is
to assume that the relevant wavenumber ky is selected not by the condition of marginal ex-
citation, but by the assumption that λ = λ(k) is maximized. Thus, k has to obey dλ/dk = 0,
which yields ωcyc ∝ (α�′)2/3 ∝ �4/3. By contrast, if the dynamo is quenched to the being
marginally excited, then ωcyc ≈ ηT/L2, which would be either independent of �, or perhaps
even decreasing with �, if ηT decreases with increasing � due to quenching.

Of course, nonlinear dynamos must always be quenched to reach a steady state. This led
Brandenburg et al. (1998) to suggest that Eq. (63) could be obeyed if both α and ηT are
antiquenched in such a way that ηT is antiquenched more slowly than α, so that ωcyc would
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Fig. 19 Prot/Pcyc versus log〈R′
HK〉 for all stars of Bonanno and Corsaro (2022) (small black symbols).

Lowercase (uppercase) letters denote data points of Bonanno and Corsaro (2022) that were also included in
the sample of Brandenburg et al. (2017b). There are refer to the data of stars given in the Table 2. The dotted
lines denote the fits determined by Brandenburg et al. (2017b) while the upper (lower) solid lines denote fits
to the stars of Bonanno and Corsaro (2022) with lowercase (uppercase) letters

Fig. 20 Dependence of cycle
period on stellar rotation rate.
Red and black crosses show the
results of Brandenburg et al.
(2017b), green crosses those of
Lehtinen et al. (2016), orange
squares the models of Warnecke
(2018), and the asterisks are from
the models of Pipin (2021);
act/inact marks the active and
inactive branches of activity,
respectively; while kin/nkin stand
for kinematic and nonkinematic
models, respectively (adapted by
permission from Pipin 2021)

increase with increasing magnetic field strength, and yet the dynamo would still saturate.
Whether this is the only viable solution to this puzzle remains still unclear.

Recently, a number of numerical dynamo models were applied to investigate the rela-
tion of the cycle period on the stellar rotation rate in solar analogs (Pipin 2015; Strugarek
et al. 2017; Warnecke 2018; Viviani et al. 2018; Hazra et al. 2019; Noraz et al. 2022). Fig-
ure 20 shows some of these results including the results of observations of Brandenburg
et al. (2017b) and the survey of Lehtinen et al. (2016). It is interesting that the saturation
branch of stellar activity for the young solar analogs with rotation periods of less than 10
days is well reproduced in the very different solar-like dynamo models including various
GCD simulations (Strugarek et al. 2017; Warnecke 2018; Viviani et al. 2018), flux transport
model of Hazra et al. (2019) and mean-field model of Pipin (2021). In Fig. 20, this branch
is marked by the green line.

The mean cycle period in this branch is almost independent of stellar rotation rate. The
nonkinematic nonlinear model of Pipin (2021) shows multiple periods along this line. Pipin
(2021) found that saturation of dynamo activity is accompanied by a depression of latitudi-
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nal shear, a concentration of magnetic activity to the surface, and changes in the meridional
circulations from one cell to multiple cells per hemisphere structure. According to the con-
clusions of this paper, it is clear that in the saturated state, dynamo waves do not follow the
Parker–Yoshimura rule. Their cycle period is determined by turbulent diffusion and merid-
ional circulation. This is why the predictions of flux transport and nonkinematic mean-field
dynamo models coincide. The independence of the cycle period on the rotation rate can be
typical for the dynamo solutions which show concentration of the magnetic activity toward
the boundaries of the dynamo (see Pipin 2015; Pipin and Kosovichev 2016).

The inactive branch of the nonkinematic mean-field dynamo models shows a fairly strong
positive inclination (see Fig. 20), which is absent in the kinematic models. We see that the
dynamo model can reproduce a power law ∼ Co0.5, avoiding the antiquenching concept
of Brandenburg et al. (1998). In fact, the nonkinematic dynamo models show a frequency
doubling phenomenon for models in the range from 10 to 15 days rotation period (see Figs. 3
and 8 of Pipin 2021). The frequency doubling or the second harmonic generation is known
from nonlinear optics. This is typical for wave propagation in nonlinear media. In dynamo
waves, second harmonics are generated because of B2 effects such as the magnetic feedback
on the large-scale flow, magnetic helicity conservation, and magnetic buoyancy effects. The
second harmonics can be found in the solar activity as well (Sokoloff et al. 2020). For the
solar case, they are subdominant. However, they can become dominant for fast rotating stars.
This makes the interpretation of magnetic activity cycles difficult (Stepanov et al. 2020).

It is important to note that the GCD simulations of Viviani et al. (2018) show an increased
level of nonaxisymmetry with an increase of rotation rate and a transition to preferred non-
axisymmetric dynamos for solar-type stars with a rotation period of less than 14 days. In
simulations, this transition happens when the rotation profile changes from an antisolar to a
solar-like profile with a faster equator and slow poles. Stellar Zeeman Doppler Imaging ob-
servations of Donati and Landstreet (2009) and See et al. (2016), for example, show that the
magnetic topology depends on stellar mass and rotation rate. In a certain interval of rotation
periods (below 14 d) and stellar mass, the results of Viviani et al. (2018) are compatible with
the observational findings mentioned above.

Summarizing, we suggest that the Parker–Yoshimura dynamo regime can work for solar
analogs rotating with periods above 14–15 days. In an interval of stellar rotation periods
between 10 and 15 days, frequency doubling and a transition to the nonaxisymmetric dy-
namos occurs. For lower rotation periods, the dynamo transits to a saturation stage. It can be
characterized by high magnetic activity and multiple dynamo periods which are independent
of stellar rotation rate. This new picture should be further improved by including possible
dynamo effects of surface activity in the form of bipolar magnetic regions and star spots.

Another interesting observation is that different types of stars, including partially con-
vective main sequence solar-type stars, fully convective M-dwarfs, and evolved post-main
sequence giant stars show similar scaling with the Rossby number for the unsaturated regime
(see, e.g., Wright and Drake 2016; Wright et al. 2018; Lehtinen et al. 2020). In particular,
to derive the Rossby number, these study employ a simple parameterization of the con-
vective turnover time suggested by stellar interior models. It was found that for evolved
stars, the Rossby-independent parameterizations break down in the rotation–activity relation
(Lehtinen et al. 2020). This constitutes a strong argument in favor of the turbulent dynamo
paradigm suggesting a common role of the turbulent process in dynamos operating in these
stars.
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8.5 Analogy of Mean-Field α and the Chiral Magnetic Effect

The α effect in mean-field dynamo theory is an effect that emerges after averaging over
the scale of several turbulent eddies. We know already that turbulent diffusion is somewhat
analogous to microphysical diffusion, which also emerges after averaging, but here after
averaging over atomic scales. Interestingly, even for the α effect there can be an effect on
atomic and subatomic scales, because fermions, such as electrons, are chiral. The spin of an
electron emerging from the decay of a neutron is anti-aligned with its momentum vector,
so their dot product is a negative pseudo-scalar, called the chirality. Positrons have positive
chirality. In the presence of an ambient magnetic field, the spins align, but electrons and
positrons move in opposite directions, causing therefore an electric current. This constitutes
a microscopic α effect (Rogachevskii et al. 2017; Brandenburg et al. 2017c),

αmicro ≡ μ5η = 24αfine(nL − nR)(�c/kBT )2, (65)

where μ5 is the normalized chiral chemical potential (with units of inverse length), η is the
microscopic magnetic diffusivity, αfine ≈ 1/137 is the fine structure constant (quantifying
the strength of electromagnetic interaction between charged particles), nL and nR are the
number densities of left- and right-handed fermions, � ≈ 10−27 erg s is the reduced Planck
constant, c ≈ 3 × 1010 cm s−1 is the speed of light, kB ≈ 10−16 erg K−1 is the Boltzmann
constant, and T is the temperature.

The applications of chiral MHD are manifold and range from condensed matter systems
and heavy ion collisions to neutron stars and the early Universe; see Kharzeev (2014) for
a review. Interestingly, because this microscopic α effect produces helical magnetic fields,
and because the total chirality is conserved (Boyarsky et al. 2012), this effect does not last
forever, but is being quenched in a form analogous to the catastrophic quenching formula,
which takes the form (Rogachevskii et al. 2017)

∂μ5

∂t
= −λη

(
μ5B

2 − ηtμ0J · B
)

− �flipμ5, (66)

where λ is a coupling constant which, in the catastrophic quenching formalism, is related
to 2ηtk

2
f /B

2
eq, and �flip is a spin-flipping parameter, which is related to 2ηk2

f in the catas-
trophic quenching formalism (see, e.g., Field and Blackman 2002; Blackman and Branden-
burg 2002).

There is a vast range of recent work in this field, which goes well beyond the scope
of the present paper. We just mention here the paper of Masada et al. (2018), who studied
chiral magnetohydrodynamic turbulence in core-collapse supernovae. They found that the
inverse cascade related to the chiral effects impacts the magnetohydrodynamic evolution in
the supernova core toward explosion.

8.6 Direct Statistical Simulations

An alternative or extension to mean-field theory in the usual sense is to solve the time-
dependent system of one-point and two-point correlation functions. This is what is now
known as Direct Statistical Simulations (Tobias et al. 2011; Tobias and Marston 2013, 2017)
and has primarily been applied to two-dimensional turbulent shear flow problems. The di-
mensionality of the two-point correlation function doubles for those directions over which
homogeneity cannot be assumed. On the other hand, the dynamics of the low order statistics
is usually slower than that of the original equations. In addition, it is possible to reduce the
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complexity of the problem by employing Proper Orthogonal Decomposition (Allawala and
Marston 2016; Allawala et al. 2020). This approach has not yet been applied to magneto-
hydrodynamics and the dynamo problem. Such an approach would be able to incorporate
both small-scale and large-scale dynamos at the same time. The small-scale dynamo prob-
lem would be solved through correlation functions, as has been done in Brandenburg and
Subramanian (2000), for example. But their simulations were isotropic and did not include
anisotropic dependencies on position. Nevertheless, this approach has the potential of being
a strong competitor in addressing the high Reynolds number dynamics of problems of astro-
physical and geophysical relevance; see Tobias (2021) for a recent review touching on these
aspects.

9 Looking Forward

In this review, we have provided some insight into recent developments in our understanding
of the generation of astrophysical large-scale magnetic fields. The current development of
mean-field theory allows us to go beyond some of the original restrictions that were related
to the assumption of large scale-separation and the inappropriate neglect of nonlinear effects
due to higher order correlations in contributions to the mean turbulent electromotive force.
A big portion of the progress comes from the development in the DNS of astrophysical tur-
bulence. Noteworthy, the classical mean-field theory is based on the fundamental equations
of electrodynamics and has well-known limits. With the new steps forward, we can take
into account results of the DNS, e.g., the spectral kernels, and treat them as experimental
facts. The necessity of some phenomenological additions to classical mean-field theory are
motivated both by DNS and observations of the magnetic activity in astrophysical systems,
such as those in our Sun and other stars. In this way, mean-field models become a valuable
tool to understand the real and virtual worlds of the dynamo in stars and in DNS.
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