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Hannes Alfvéns väg 12, 10691 Stockholm, Sweden
2The Oskar Klein Centre, Department of Astronomy, Stockholm University, 10691 Stockholm, Sweden

3McWilliams Center for Cosmology & Department of Physics,

Carnegie Mellon University, Pittsburgh, PA 15213, USA and
4School of Natural Sciences and Medicine, Ilia State University, 3-5 Cholokashvili Avenue, 0194 Tbilisi, Georgia

Hydrodynamic and magnetohydrodynamic (MHD) turbulence in the early Universe can drive
gravitational waves (GWs) and imprint their spectrum onto that of GWs, which might still be
observable today. We study the production of the GW background from freely decaying MHD
turbulence from helical and nonhelical initial magnetic fields. To understand the produced GW
spectra, we develop a simple model on the basis of the evolution of the magnetic stress tensor. We
find that the GW spectra obtained in this model reproduce those obtained in numerical simulations
if we consider the detailed time evolution of the low frequency tail of the stress spectrum from
numerical simulations. We also show that the shapes of the produced GW frequency spectra are
different for helical and nonhelical cases for the same initial magnetic energy spectra. Such differences
can help distinguish helical and nonhelical initial magnetic fields from a polarized background of
GWs – especially when the expected circular polarization cannot be detected directly.

I. INTRODUCTION

Magnetohydrodynamic (MHD) turbulence in the early
Universe can be a powerful source of gravitational waves
(GWs) that could be observable as a stochastic back-
ground today [1–5]. The frequency spectrum of these
waves is related to the spectrum of the underlying tur-
bulence. Such turbulence could be induced during the
various epochs1 in the early Universe [8–11] or the possi-
ble presence of primordial magnetic fields [12–19]. These
GWs produced by turbulence at an epoch of the elec-
troweak phase transition lie in the sensitivity range of the
proposed Laser Interferometer Space Antenna and pulsar
timing arrays for the turbulence induced around an epoch
of the quantum chromodynamics (QCD) phase transi-
tion. Recently, various pulsar timing arrays [20–23] have
reported evidence for the presence of a common spec-
trum process across analyzed pulsars in the search of the
presence of an isotropic stochastic GW background. This
evidence has been used to constrain the strength and cor-
relation length of magnetic fields generated at the QCD
epoch [24–26]. However, the presence of a quadrupolar
spatial correlation [27], a characteristics of a GW back-
ground, is yet to be claimed.
Numerical simulations have confirmed that there is in-

deed a direct connection between the slopes of the turbu-
lence and GW spectra [28], except that at low frequen-
cies, below the peak of the spectrum, the GW spectrum
was found to be shallower in the simulations than what
was previously expected from analytical calculations. We
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1 The electroweak and QCD epochs are accompanied by crossovers
in the standard model [6, 7]. However, many extensions of the
standard model can lead to a first order phase transition.

call this part the low frequency tail of the GW spectrum.
However, there is the worry that this shallow tail could
be caused by unknown numerical artifacts such as the
finite size of the computational domain and the way the
turbulence is initiated in the simulations.

To understand the origin of the low frequency tail,
the authors of Ref. [26] have recently compared numeri-
cal MHD simulations with an analytic model, where the
stress is assumed constant for a certain interval of time.
Their model predicts a flat spectrum whose extent de-
pends on the duration over which the stress is held con-
stant. In this way, it was possible to determine an ef-
fective duration for a given numerical simulation. This
duration was found to be different for different simula-
tions. Their model is therefore descriptive rather than
predictive. Furthermore, in the numerical solutions the
stress was not actually constant for any duration of time.

In another recent approach, the authors of Ref. [29]
have focused on the importance of unequal time correla-
tion functions of the Fourier components of the velocity
field for purely hydrodynamic turbulence. While the au-
thors acknowledge the potential importance of the initial
growth phase of the turbulence, they also have no inverse
cascade in their simulations. This is different from MHD
turbulence, which can display inverse cascading even in
the absence of net magnetic helicity [30, 31]. This will be
crucial to the approach discussed in the present paper.

To address the problem of a limited computational do-
main, it is important to use large enough computational
domains so that its minimum wave number is as small
as possible. In this paper, we discuss two MHD simula-
tions where the wave number corresponding to the peak
of the GW spectrum and the wave numbers below that
corresponding to the horizon size at the initial time are
well resolved. Since the stress appears explicitly in the
linearized GW equation, we also analyze for these sim-
ulations the evolution of the stress spectrum along with
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the magnetic and GW spectra. Such a detailed compar-
ison between the simulated stress and resulting GWs is
an important new aspect of the present work. Second,
we develop a simple model, motivated by the stress evo-
lution seen in the present simulations, to explain the GW
spectrum obtained. In this model, our main focus is to
understand the nature of the GW spectrum below the
wave number corresponding to the peak of the spectrum.
Our simulations are similar to those of Ref. [26], but our
interpretation and corresponding modeling of the stress
is not. There is no time interval during which the stress
is constant. Our results are therefore not characterized
by the duration of such a time interval. In addition,
we determine and analyze spectral differences between
runs with and without magnetic helicity, which were not
noticed previously. We also emphasize that the Hubble
horizon wave number poses an ultimate cutoff for the flat
spectrum toward low wave numbers.
This paper is organized as follows. In Section II, we

discuss the evolution of the magnetic field, stress, and
GW spectrum in our new runs. In this section, we also
discuss how the stress spectrum evolves when inverse
transfer and inverse cascade of the turbulence correspond
to the evolution for nonhelical and helical magnetic fields
in the early Universe. In Section III, we discuss the model
to explain the low frequency tail of the GW spectrum.
Further, in Section IV, we compare the GW spectrum
obtained from our numerical simulations and our model.
We conclude in Section V.

II. NONHELICAL AND HELICAL CASCADES

Various phenomena such as primordial magnetic fields
and phase transitions can lead to the generation of tur-
bulence in the early Universe. The stress associated with
magnetic fields and turbulence lead to the production of
GWs. This has been studied in the literature both ana-
lytically [4, 32–37] and numerically [26, 28, 29, 38–40]. In
the present paper, we perform new simulations of decay-
ing MHD turbulence, where we resolve the scales which
are smaller than the Hubble horizon size at the initial
time. Before explaining the simulations in detail, let us
begin by summarizing the basic equations.

A. GWs from MHD turbulence

We follow here the formalism of Ref. [28, 41], where
conformal time is normalized to unity at the initial time.
One could associate this with the electroweak phase tran-
sition, for example. The velocity u is normalized to the
speed of light. The magnetic field B = ∇×A is written
in terms of the magnetic vector potential A, and the cur-
rent density is written as J = ∇×B. Following Ref. [42],
the energy density ρ includes the restmass density, so its
evolution equation obeys a continuity equation that also
includes magnetic energy terms. As in [41], ρ is normal-

ized to the critical energy density for a flat Universe. We
solve for the Fourier transformed plus and cross polar-
izations of the gravitational strain, h̃+ and h̃×, which
are driven by the corresponding projections of the stress,
which, in turn, is composed of kinetic and magnetic con-
tributions,

Tij =
4

3
γ2
Lorρuiuj −BiBj + ..., (1)

where γLor = (1− u2)−1/2 is the Lorentz factor, and the
ellipsis denotes terms proportional to δij , which do not

contribute to the projected source T̃+/×.
Assuming the Universe to be conformally flat, its ex-

pansion can be scaled out by working with conformal
time t and comoving variables [42]. We use the fact that
in the radiation-dominated era, the scale factor grows lin-
early with conformal time. The only explicit occurrence
of conformal time is then in the GW equation, where a
6/t factor occurs in the source term [41]. The full set of
equations is therefore

∂B

∂t
= ∇× (u×B− η∇×B), (2)

Du

Dt
=

1

ρ
∇ · (2ρνS)−

1

4
∇ ln ρ+

u

3
(∇ · u+ u · ∇ ln ρ)

−
u

ρ

[
u · (J×B) + ηJ2

]
+

3

4ρ
J×B, (3)

∂ ln ρ

∂t
= −

4

3
(∇ · u+ u · ∇ ln ρ) +

1

ρ

[
u · (J×B) + ηJ2

]
,

∂2

∂t2
h̃+/×(k, t) + k2h̃+/×(k, t) =

6

t
T̃+/×(k, t), (4)

where D/Dt ≡ ∂/∂t + u · ∇ is the advective derivative,
η is the magnetic diffusivity, ν is the kinematic viscosity,
Sij = 1

2 (ui,j + uj,i) −
1
3δij∇ · u are the components of

the rate-of-strain tensor S with commas denoting partial
derivatives. Fourier transformation in space is denoted
by a tilde. In all cases studied in this paper, the initial
conditions are such that B consists of a weak Gaussian-
distributed seed magnetic field, u = 0, ρ = 1.

We work with spectra that are defined as integrals over
concentric shells in wave number space k with k = |k|.
They are normalized such that their integrals over k
give the mean square of the corresponding quantity, i.e.,∫
Sp(B) dk = 〈B2〉, where Sp(B) = Sp(Bx) + Sp(By) +

Sp(Bz). Similarly, Sp(h) = Sp(h+)+Sp(h×) is defined as
the sum over the two polarization modes. Of particular
interest will also be the stress spectrum Sp(T), which is
defined analogously through Sp(T) = Sp(T+) + Sp(T×).
To study the evolution of the stress at selected Fourier
modes, we compute |T̃ (k, t)| ≡

√
Sp(T)/4πk2, which

scales the same way as |T̃+(k, t)| and |T̃×(k, t)|.

B. Evolution of the stress and strain spectra

To put our results into perspective and compare with
earlier work, we study cases of suddenly initiated tur-
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TABLE I. Summary of simulation parameters

Run Ei
M kp Esat

GW Ωsat
GW

HEL 5.4× 10−3 10 3.7× 10−7 5.9× 10−12

NHEL 5.5× 10−3 10 3.5× 10−7 5.6× 10−12

bulence. We perform simulations similar to those of
Ref. [28] by using as initial condition for the magnetic
field a random Gaussian-distributed magnetic field with a
k4 spectrum for k < kp and a k−5/3 spectrum for k > kp.
For details of such a magnetic field, see Ref. [43]. As
initial condition for the GW field, we assume that h and
ḣ vanish. The strength of the GW field is then strongly
determined by the sudden initialization of a fully devel-
oped turbulence spectrum. The details of the simulations
are given in Table I. In this table, the first column rep-
resents the name of the runs (HEL and NHEL), E i

EM is
the initial value of the magnetic energy density compared
to the background energy density, kp is the wave num-
ber at which the magnetic energy spectrum peaks and it
is normalized by the wave number corresponding to the
Hubble horizon size at the initial time, Esat

GW is the value
of the GW energy density after saturation compared to
the background energy density, and Ωsat

GW is the density
parameter of GWs, representing the ratio of the GW en-
ergy density compared to the critical energy density at
present. Ωsat

GW has been calculated considering the pro-
duction of GWs around the electroweak phase transition.

We consider two runs where the initial magnetic field
is either fully helical (HEL) or nonhelical (NHEL). In
Figs. 1 and 2, we show for HEL and NHEL, respectively,
the time evolution of the spectra of the magnetic field, the
TT-projected stress, the strain derivative, and the strain.
Inverse cascading is seen in the magnetic energy spectra,
which leads to the expected increase of the spectral stress
at small k; see Figs. 1(a) and (b) for the HEL run. By
contrast, in NHEL, the stress spectrum always decreases
at small k. We also see in Fig. 1(c) that the GW energy
spectrum has a maximum at k ≈ 20, which is not present
in NHEL; cf. Fig. 2(c). Their spectra fall off toward
smaller k proportional to k and k1.5 for HEL and NHEL,
respectively.

In Figs. 3 and 4, we show the time evolution of the
modulus and phase of stress and strain derivative for
HEL and NHEL for wave vectors k = (k, 0, 0) and five
different values of k, which are all below kp. The purpose
of this is to see how representative these individual wave
vectors are compared to the collective effect of all oth-
ers of similar length, and whether there is any important
effect resulting from the phases of the stress.

Broadly speaking, the time evolution of the modulus
of the stress |T̃ | for any of the five wave vectors does not
seems to reflect the expectation from the evolution of the
shell-integrated stress spectrum, which is increasing for

HEL and decreasing for NHEL, as was see in Figs. 1 and
2. This is an important observation and may be due to
the fact that in Figs. 3 and 4, we have shown stress and
strain derivatives only for particular values of k.
From Figs. 3 and 4, it is evident that arg(T̃ ) remains

constant for some time and starts evolving more rapidly
after that. It is also interesting to note that the ampli-

tude of |
˙̃
h| increases up to the time until which arg(

˙̃
h)

is roughly constant. After this time, |
˙̃
h| enters an oscil-

latory regime and its amplitude does not change much.
Other wave vectors of the same length show a similar be-

havior of arg(T̃ ) and arg(
˙̃
h), as is shown in the figures of

the Supplemental Material provided along with the data
in Ref. [44]. This conclusion applies for both runs shown
in Figs. 3 and 4 and it leads us to develop a simple model
to understand the GW spectrum in these cases. In this
model we replace T̃ by its wave vector-averaged magni-
tude, |T̃ |, as discussed in Section III.
Further, to understand the role of the phases of the

stress tensor in the production of GWs, we run two new
simulations analogous to runs HEL and NHEL, where
we replace T̃ (k, t) by its modulus at each time step. The
final GW spectrum in these modified runs turns out to
be virtually the same as in the original HEL and NHEL
runs; see Fig. 5. The comparisons of HEL and NHEL are
shown in panels (a) and (b) of this figure, respectively.
Dashed red and gray curves at times t = 1.5 and t =
37, respectively, are for the cases when T̃ (k, t) has been
replaced by its modulus. It is evident from the figure
that there is hardly any difference in the actual Sp(ḣ)
after replacing the stress with its modulus. On the basis
of this observation, we develop a model to obtain the GW
spectrum from the time evolution of the spectrum of the
stress tensor.
A striking difference between HEL and NHEL is the

more pronounced peak in the spectral GW energy in the
former. As we show in Appendix A, this is due to the
fact that the stress spectrum for NHEL is different from
that of HEL due to the presence of additional helical
contributions to the two-point correlation of the magnetic
field vectors. This difference is shown in Fig. 6 and the
details are explained next.

C. Overall behavior of the stress

At the most minimalistic level, we can say that the
magnetic field shows an approximately self-similar evo-
lution at late times, where for HEL, the peak value of
EM(k, t) is unchanged, but the position of the peak kp
goes to progressively smaller values as kp ∼ t−2/3.
To understand the consequences for the evolution of

the stress, let us now consider an idealized model, where
EM(k) ≡ Sp(B)/2 has a k4 subinertial range, where
k < kp, with kp(t) being the peak wave number, and a

k−5/3 inertial range spectrum for k > kp. The spectrum
of the transverse traceless part of the stress, Sp(T)/2, can
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FIG. 1. Spectra of the magnetic field, the TT-projected stress, the strain derivative, and the strain for suddenly initiated
turbulence with magnetic helicity.

FIG. 2. Same as Fig. 1, but for the nonhelical case.
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FIG. 3. Modulus and phase of T̃ (k, t) and
˙̃
h(k, t) for the helical case for k = (k, 0, 0) with k = 0.3 (orange), 0.4 (red), 0.5

(green), 0.6 (blue), and 0.7 (black). The inset shows the phase with a linear abscissa.

FIG. 4. Same as Fig. 3, but for the nonhelical case.



6

t=1.5

t=37

t=1.5, with modulus of stress

t=37, with modulus of stress

0.1 0.5 1 5 10 50

10
-12

10
-11

10
-10

10
-9

10
-8

k

S
p
(h

)

(a)

t=1.5

t=37

t=1.5, with modulus of stress

t=37, with modulus of stress

0.1 0.5 1 5 10 50

10
-13

10
-12

10
-11

10
-10

10
-9

10
-8

k

S
p
(h

)

(b)

FIG. 5. Sp(ḣ)(k, t) vs k: (a) The solid black and blue curves represent Sp(ḣ)(k, t) at times t = 1.5 and t = 37 for run hel. The

dashed red and gray curves show Sp(ḣ)(k, t) for the case when the stress spectrum has been replaced by its modulus in the
GW evolution equation. The black curve coincides with the dashed red curve and solid blue curve coincides with dashed gray
curve. (b) Same as (a), but for run nonhel.
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FIG. 6. In this figure, magnetic field energy spectrum, EM(k)
(Dashed curves) and Sp(T) (Solid curves) for the helical and
non helical case. The blue and red curves are for nonhelical
and helical case respectively.

be computed analytically using the expressions given in
Appendix A (see Refs. [37, 45] for details) and is shown
in Figs. 7 and 8 for the helical and nonhelical cases, re-
spectively. In these figures, we take three instances where
the magnetic peaks are at wave numbers kp = 1, 0.3, and
0.1.

For HEL, the position of the peak of EM(k) is un-
changed. We see that, in agreement with earlier work
[28], the positions of the peak of Sp(T) are always at
2kp. However, even though the peak values of EM(k) are
unchanged, except for the factor of two, those of Sp(T)
are not and decay. Nevertheless, at small k, Sp(T) still
increases proportional to k−1

p . If kp ∝ t−2/3, as expected

for helical turbulence [46–48], we find that Sp(T) ∝ t2/3

for small k.

For NHEL, as shown in Ref. [48], the peak of the spec-
trum decreases with decreasing values of kp proportional

TABLE II. Time evolution of Sp(T) and |T̃ | from theory

helical nonhelical

Sp(T) vs kp at small k ∝ 1/kp ∝ kp

kp vs t kp ∝ t−2/3 kp ∝ t−1/2

Sp(T) vs t Sp(T) ∝ t2/3 Sp(T) ∝ t−1/2

|T̃ | vs t |T̃ | ∝ t1/3 |T̃ | ∝ t−1/4

to kβp , where β is an exponent that can be between one
and four. In Fig. 8, we present the case with β = 1 and

find that now Sp(T)(k) ∝ kp for small k and ∝ k
14/3
p

for large k. If kp ∝ t−1/2, as expected for the nonhelical

case for β = 1, Sp(T) ∝ t−1/2 for small k. We have sum-
marized the behavior of Sp(T) with time in Table II for
helical and nonhelical cases.

Recently, it has been found that the Hosking integral
[49], a Saffman-like helicity integral, is well conserved in
nonhelical magnetically dominated decaying turbulence
[50, 51], which implies β = 1.5. For the general case,
we write Sp(T) ∝ k2β−1

p (for k < kp), which implies

Sp(T) ∝ t−8/9 for β = 1.5 and kp ∝ t−4/9.

It is also interesting to note that, for a given spec-
trum of the magnetic field, Sp(T) is different for HEL
and NHEL; see the blue and red curves in Fig. 6), re-
spectively. For the helical case, Sp(T) has smaller values
compared to the nonhelical case at wave numbers be-
low kp. However, it has large values for wave numbers
around the peak and above. Such a feature of the stress
spectrum also translates to the GW spectrum and that
is why we see a difference in the final GW spectrum pro-
duced from helical and nonhelical cases discussed in the
previous section.
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FIG. 7. Left: Solutions for Sp(T) (red) for different EM(k) (blue) for three values of kp. Right: solutions for Sp(T) scaled by

kp (blue) and k
−8/3
p (red), to see its scalings in the subinertial and inertial ranges, respectively.
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FIG. 8. Similar to Fig. 7, but for a case with β = 1. On the right, the solutions for Sp(T) are scaled by kp (blue) and k
14/3
p

(red), to see its scalings in the subinertial and inertial ranges, respectively. Violet indicates the two overlap for kp = 1.

III. PREDICTIONS FROM ALGEBRAICALLY

GROWING STRESS

With the detailed information above, we are now in
a position to compare with the predictions from a sim-
ple time-dependent model. In this section, we compute
GW spectra by considering a simple model for the time
evolution of the stress. It is assumed to increase alge-
braically as a power law characterized by a power law
index p during the time interval from t = 1 to te.

A. The model

We model the + and × polarizations of the Fourier-
transformed stress, T̃ (k, t), as

T̃ (k, t) =

{
|T̃0(k)| t

p, 1 ≤ t ≤ te,

0, t > te,
(5)

where |T̃0(k)| represents |T̃ (k, t)| at the initial time and is
obtained for given energy and helicity spectra of the mag-
netic field; see Appendix A for details. We note that the
authors of Ref. [26] have developed an analytical model
for the GW spectrum on the basis of the time evolu-
tion of the stress, which they assumed constant during a
certain interval – unlike our case. The authors explain
the location of certain breaks in their GW spectrum as a
consequence of the finite duration over which the stress is
constant. This duration is an empirical input parameter.
In our model, by contrast, the stress evolves as a power
law with an index that is in principle known from MHD
theory, although we can get even better agreement with
the simulations when we take the actual power-law index
that is realized in the simulations.

To obtain the GW spectrum for our model, we first
solve Eq. (4) for a case when the source is active during

the interval 1 < t < te and thus obtain h̃(k, t) and
˙̃
h(k, t).
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FIG. 9. (a) Sp(ḣ(k, t) at different times. Here, we assume t = te, EM = c(k/kp)
4/(1+(k/kp)

17/3), where kp = 10 and c = 10−4

and p = −1/4. The red, blue, and black curves are for te = 2, 4, and 10 respectively. The two black vertical lines correspond

to k∗ and 2kp. (b) Sp(ḣ) at times te = 10, 20, and 30.

The solution for t ≥ te is given by

h̃(k, t) =

∫ t

1

sin k(t− t′)

k

6T̃ (k, t′)

t′
dt′, (6)

˙̃
h(k, t) =

∫ t

1

cos k(t− t′)
6T̃ (k, t′)

t′
dt′. (7)

Using Eq. (7) and our model for T̃ (k, t), we obtain

˙̃
h(k, t) =

−3|T̃0(k)|

(kt0)p

{
ei(kt−pπ/2)

[
Γ(p, ikte)− Γ(p, ikt0)

]

+ e−i(kt−pπ/2)
[
Γ(p,−ikte)− Γ(p,−ikt0)

]}
. (8)

In the above expression, t0 = 1 represents the initial
time. In Fig. 9(a), we show Sp(ḣ) at different times for
this model with p = −1/4. The red, blue, and black

curves represent Sp(ḣ) at t = 2, 4, and 10, respectively.

It is evident from this figure that Sp(ḣ) is almost flat for

1 <∼ k <∼ 2kp and declines as ∝ k−11/3 for k > 2kp. Sp(ḣ)
is proportional to k2 for k < kH, where kH represents the
wave number corresponding to the Hubble horizon size
at t = te. Further, as time increases, Sp(ḣ) at low wave
numbers (kH < k < 1) grows and saturates, as is evident
from Fig. 9(b).

To understand the role of the power-law index in the
algebraically growing part of the stress on Sp(ḣ), we cal-

culate Sp(ḣ) for different values of p. Those are shown

in the right-hand panel of Fig. 10. Here, Sp(ḣ) is rapidly
oscillating, so we plot in this figure only its envelope.
From this figure, we conclude that Sp(ḣ) can be divided
into three regime. We begin discussing first the high
wave number regime (k > k0, regime I), where k0 rep-
resents the wave number corresponding to the Hubble
horizon at the initial time. Sp(ḣ) is flat and changes to
k−11/3 for k > 2kp. For very low wave numbers corre-
sponding to the superhorizon range (k < kH, regime III)

Sp(ḣ) is proportional to k2. In the intermediate regime

[kH <
∼ k <

∼ (1 − p)/t0, regime II], Sp(ḣ) changes from a

1

p=2 /3

p=1/3

p=0

p=-1/4

p=-3 /4

p=-7 /6

0.01 1 200

k

S
p
(h
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)
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1/t 2 kp

FIG. 10. Sp(ḣ) for different values of p. Here, the left, middle,
and right black vertical lines represent the wave numbers cor-
responding to the horizon size at the final time t, the initial
time t0 = 1, and 2kp, respectively.

flat spectrum to a k2 spectrum as the wave number de-
creases. Note that, as the wave numbers decrease, the
transition from a flat spectrum to a k2 spectrum is faster
for the case when p = −1/4 than when it is p = 1/3. The
wave number at which this transition occurs depends on
the value of p and can be understood as follows. In the
algebraically growing phase, the typical time scale over
which T̃ /t decays, is δtT ∼ t/(1−p) and the typical time
scale for sourcing GWs at a given wave number k just
after t = 1 is δtGW ∼ 1/k, as can be inferred from the

cosine function in Eq. (7). The value of T̃ /t does not
change much when δtGW/δtT ≤ 1. This implies that,
for k > (1 − p)/t0, there will be a finite interval dur-

ing which T̃ /t can be assumed constant. However, for

k < (1 − p)/t0, T̃ /t always changes. The wave number
k ∼ (1 − p)/t0 corresponds to the wave number where

Sp(ḣ) starts changing from a flat spectrum.

The nature of Sp(ḣ) can also be understood by writing
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the expression of
˙̃
h(k, t), given in Eq. (8), for different

limits depending on the values of kt0 and kte. For te ≫
t0, which is indeed the case, and p < 1, Eq. (8) reduces
to

˙̃
h(k, t)

6|T̃0(k)|
≈





sin k(t−t0)
kt0

(I),

Γ[p]
(kt0)p

cos
(
kt− pπ

2

)
− cos kt

p (II),

cos kt
p

[(
te
t0

)p

− 1
]

(III).

(9)

Using this, we calculate the spectrum of
˙̃
h; it is given by

Sp(ḣ)(k, t)

36|T̃0(k)|2
≈





[
sin k(t−t0)

t0

]2
(I),

k2
[
− cos kt

p + Γ[p]
(kt0)p

cos(kt− pπ
2 )

]2
(II),

k2
{

cos kt
p

[(
te
t0

)p

− 1
]}2

(III).

(10)
From the above expression, we conclude that the break
points for the different slopes of Sp(ḣ) is decided by

|T̃0(k)|
2 for k > t−1

0 . Here, |T̃0(k)|
2 is flat for k < 2kp and

proportional to k−11/3 for k > 2kp. For the superhorizon

modes, i.e., k < 1/te, Sp(ḣ) is proportional to k2, and for

wave numbers t−1
0 < k < t−1

e , Sp(ḣ) changes from a flat
spectrum to k2, as shown as the blue curves in Fig. 10.
In this model, we take the same algebraic evolution

with a constant power-law index for all wave numbers.
In general, however, the time evolution of T̃ (k, t) is dif-
ferent for wave numbers below and above the peak of
Sp(T)(k, t). For the case of helical magnetic fields dis-
cussed in Fig. 7, the value of Sp(T) for a particular
k < 2kp at the initial time, grows as t2/3 until the time
for which Sp(T) peaks at this particular wave number.
After this time, the value of Sp(T) for this particular k
starts decreasing as t−16/9. This implies that we would
have assumed T̃ (k) ∝ t1/3 for k < kp and T̃ (k) ∝ t−8/9

for k > kp. For the nonhelical magnetic field shown in
Fig. 8, Sp(T) is always decreasing. For k < 2kp at the

initial time, it first decreases as t−1/2 and later switches
to t−7/3. We study Sp(ḣ) by incorporating this and find

that there is no difference in the final Sp(ḣ) compared
to the one obtained in our model. This is why we did
not consider the aforementioned evolution of the stress
to keep the model simple.

IV. COMPARISON OF THE ANALYTICAL

MODEL WITH SIMULATION RESULTS

In the above section, we discussed Sp(ḣ) in a model
inspired by the fact that the GW spectrum does not
change if we change the stress tensor by its modulus for
decaying MHD turbulence in the early Universe. In this
model, we approximate the stress tensor by |T̃ (k, t)| ≡√
Sp(T)/4πk2 and its time evolution is parameterized as

a power law with index p; see Fig. 11. In this section, we

provide a comparison for Sp(ḣ) obtained in this model
with the simulation results discussed in Section II B. To
compare, we show Sp(ḣ) obtained from the model and
different simulations together. In Figs. 12(a) and (b),
we plot the spectra for the runs shown in Figs. 1 and
2 and discussed in Section II B. For the dotted-dashed
black curve, |T̃0(k)| is obtained by using Eq. (A6) of Ap-
pendix A, where we take EM = c(k/kp)

4/[1+(k/kp)
17/3]

and the value of the constant c is determined such that
the obtained stress spectrum matches with that of the
simulation at t = 1. For this case, the stress spectrum
evolution is modeled as a single power law and the value
of p is 1/3 and −1/4 for the helical and nonhelical cases,
respectively. The value of p is decided from the time evo-
lution of the low wave number tail of Sp(T), as discussed
in Section IIC. From this figure, it is concluded that the
spectral nature of Sp(ḣ) matches well with the prediction
from the model. However, there is a difference at small
wave numbers, especially for the nonhelical case. This
is due to the fact that the modelling of Sp(T) by a sin-
gle power does not provide a better fit to the evolution
obtained in NHEL.
A double power law of the form t−1/3/[1+(t−1)n]5/7n,

where n regulates the transition, here with n = 10, pro-
vides a better fit to Sp(T) for the low frequency tail for

NHEL; see Fig. 11. In this figure, we plot T̃ (k, t) ob-
tained from the simulation in solid and dotted blue for
the wave numbers k = 0.3 and 0.5, respectively and the
double power law fit to the blue curves is in dashed red
color. The double power law, which fits T̃ (k, t) for HEL,
is 1/[1 + (t − 0.2)n]5/24n, where n = 20. After consider-

ing such a time evolution, the obtained Sp(ḣ) is shown as
the dotted red curve in Fig. 12(b). For the dashed green

curve, we consider |T̃0(k)| =
√
Sp(T)/4πk2 and Sp(T) is

obtained from the simulation at t = 1. These different
forms of the time evolution of T̃ (k, t) are given in Ta-
ble III. The spectra in Figs. 12(a) and (b) are plotted at

a time when the value of the Sp(ḣ) for each wave number
has reached approximately a constant value. The actual
time for HEL is t = 175.5 and for NHEL it is t = 99.5.
For earlier times, the mean value of Sp(ḣ) is in reason-
ably good agreement with the values obtained from the
model.
We notice that the nature of the GW spectra in HEL

and NHEL are different. There is large power in HEL
compared to NHEL around the peak of the GW spectrum
for the same strength of the initial magnetic field. This
is due to the presence of an additional term due to the
helicity spectrum in the stress spectrum; see Appendix A.

V. CONCLUSIONS

In this work, we have suggested a simple model to
understand the GW spectrum obtained for decaying
MHD turbulence in the early Universe. The Fourier-
transformed stress is taken to be |T̃ (k, t)|, i.e., we ignore
changes in the phase, and its time evolution is parameter-



10

k=0.3

k=0.5

fitted curve

1 2 3 4 5 6 7

4.0×10-6

4.5×10-6

5.0×10-6

5.5×10-6

6.0×10-6

t

|T˜
(k
,t
)|

(a)

k=0.3

k=0.5

fitted curve

1 2 3 4 5 6 7

3.×10-6

4.×10-6

5.×10-6

6.×10-6

7.×10-6

8.×10-6

t

|T˜
(k
,t
)|

(b)

FIG. 11. T̃ (k, t) vs. t. (a) The solid and dotted blue curves correspond to the time evolution of T̃ (k, t) vs t obtained from
the simulation for k = 0.3 and 0.5, respectively, for HEL and the red curve corresponds to a broken power law fit to the blue
curves. (b) Same as (a), but for NHEL.

|T
˜

0(k)| from Eq.(A5)

|T
˜

0(k)| from simulation

|T
˜

0(k)| from Eq.(A5)

0.1 0.5 1 5 10 50

5.×10-10

1.×10-9

5.×10-9

1.×10-8

k

S
p
(h


)

(a)

from sim.

single power law

double power law

|T
˜

0(k)| from Eq.(A3)

|T
˜

0(k)| from simulation

|T
˜

0(k)| from Eq.(A3)

0.1 0.5 1 5 10 50
1.×10-10

5.×10-10

1.×10-9

5.×10-9

1.×10-8

k

S
p
(h


)

(b)

from sim.

single power law

double power law

FIG. 12. Sp(ḣ) vs k: (a) The solid blue curve represents Sp(ḣ) corresponding to the run shown in Fig. 1, respectively. The

dotted red and dashed green curves represent the spectra obtained in the model for the time evolution of T̃ (k, t) given in column

2 of Table III. The dot dashed black curve represents Sp(ḣ) for the time evolution of T̃ (k, t) given in column 1 of Table III.

The red curves are for the case when |T̃0(k)| is obtained using Eq. (A6) of Appendix A. For the green curves, |T̃0(k)| is taken
from the simulation. (b) Same as (a), but for nonhelical case.

TABLE III. Time dependence of T̃ (k, t) taken in our analysis

run from theory from simulation

hel
(

t
t0

)1/3
1

(1+(t−0.2)n)5/24n

nonhel
(

t
t0

)−1/4
t−1/6

(1+(t−1)n)5/14n

ized by a power law. Such a time evolution of the stress is
motivated by the simulations for the decaying MHD tur-
bulence at low wave numbers discussed in Section II B.
We find that the spectral nature of the GW spectrum is
well represented by this simple model. In this work, we
also show that the nature of the GW spectra in the he-
lical case are different from those in the nonhelical case.
Apart from the polarization of GW, this spectral differ-
ence may also be important in distinguishing the helical

and nonhelical nature of the primordial magnetic field.

In this work, we have developed a model to understand
the low frequency tail of the GW spectrum in the cases
where turbulence is initiated suddenly. However, it will
now also be interesting to study cases where the magnetic
field is generated selfconsistently, such as through the
chiral magnetic effect in the early Universe [52, 53]. It
would be interesting to see if a model such as the one
discussed in this paper can also explain the GW spectra
obtained through the chiral magnetic effect. This, we
hope to report in a future study.
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Data availability—The source code used for the sim-
ulations of this study, the Pencil Code, is freely avail-
able from Refs. [54]. Supplemental Material with plots
similar to Figs. 3 and 4, but for other wave vectors of the
same length, along with the simulation setups and the
corresponding data are freely available from Ref. [44].

Appendix A: Sp(T) in terms of magnetic spectrum

Here, we provide the expressions for the stress spec-
trum in terms of the magnetic spectrum for helical and
nonhelical cases; see Refs. [45] and [37] for the deriva-
tion. The two-point correlation for the nonhelical mag-
netic field in Fourier space is given by,

〈B̃i(k)B̃
∗
j (k

′)〉 = (2π)3δ(k− k′)(δij − k̂ik̂j)PSM(k)

(A1)

Assuming a Gaussian nature of the magnetic field fluc-
tuations, the stress spectrum is given by

Sp(T) ≡4πk2〈T̃TT
ij (k)T̃TT

∗ij (k)〉 = 4πk2
∫

d3q
[
PSM(q)

PSM(|k− q|)(1 + γ2 + β2 + γ2β2)
]
. (A2)

Here, T̃TT
ij (k) = −BiBj + 1

2δijBkBk. In terms of the

energy spectrum, EM(k) ≡ 4πk2PSM(k), the above ex-

pression reduces to

Sp(T) =
1

4π

∫
d3q

k2

q2|k− q|2

[
EM(q)

EM(|k− q|)(1 + γ2 + β2 + γ2β2)
]
. (A3)

In the above expressions γ = k̂ · q̂ and β = k̂ · k̂− q.
For helical magnetic fields, there is an additional anti-
symmetric contribution to the two-point correlation and
is given by,

〈B̃i(k)B̃
∗
j (k

′)〉 = (2π)3δ(k− k′)
(
(δij − k̂ik̂j)PSM(k)

+ iǫijmk̂mPAM (k)
)
. (A4)

The stress spectrum for this case is given by

Sp(T) =4πk2
∫

d3q
[
PSM(q)PSM(|k− q|)(1 + γ2 + β2 + γ2β2)

+ 4γβPAM(q)PAM(|k− q|)
]
. (A5)

In terms of the energy spectrum, EM(k), and the helicity
spectrum, HM (k) ≡ 4πk2PAM(k), the above expression
reduces to

Sp(T) =
1

4π

∫
d3q

k2

q2|k− q|2

[
EM(q)EM(|k− q|)

(1 + γ2 + β2 + γ2β2) + 4γβHM (q)HM (|k− q|)
]
.

(A6)
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JOSS 6, 2807 (2021).

http://dx.doi.org/10.1093/mnras/stab3418
http://arxiv.org/abs/2201.03980
http://dx.doi.org/10.1103/PhysRevD.103.L041302
http://arxiv.org/abs/2009.14174
http://dx.doi.org/10.1103/PhysRevD.105.L041302
http://arxiv.org/abs/2102.09358
http://dx.doi.org/10.1103/PhysRevD.105.123502
http://arxiv.org/abs/2201.05630
http://dx.doi.org/10.1086/183954
http://dx.doi.org/10.1103/PhysRevD.102.083512
http://arxiv.org/abs/1903.08585
http://arxiv.org/abs/2205.02588
http://dx.doi.org/10.1103/PhysRevLett.114.075001
http://arxiv.org/abs/1404.2238
http://dx.doi.org/10.1088/2041-8205/794/2/L26
http://arxiv.org/abs/1407.5626
http://dx.doi.org/10.1103/PhysRevD.66.024030
http://dx.doi.org/10.1103/PhysRevD.76.083002
http://arxiv.org/abs/0705.1733
http://dx.doi.org/10.1103/PhysRevD.78.043003
http://dx.doi.org/10.1088/1475-7516/2009/12/024
http://arxiv.org/abs/0909.0622
http://dx.doi.org/10.1088/1361-6382/aac89c
http://arxiv.org/abs/1803.02271
http://dx.doi.org/10.1103/PhysRevD.101.103526
http://arxiv.org/abs/1912.12089
http://dx.doi.org/10.1088/1475-7516/2022/04/019
http://arxiv.org/abs/2107.05356
http://dx.doi.org/10.1103/PhysRevResearch.3.013193
http://arxiv.org/abs/2011.05556
http://arxiv.org/abs/2112.12013
http://dx.doi.org/10.1080/03091929.2019.1653460
http://dx.doi.org/10.1103/PhysRevD.54.1291
http://arxiv.org/abs/astro-ph/9602031
http://dx.doi.org/10.1103/PhysRevD.96.123528
http://norlx65.nordita.org/~brandenb/projects/LowFreqTail/
http://dx.doi.org/10.5281/zenodo.6596525
http://dx.doi.org/10.1103/PhysRevD.69.063006
http://arxiv.org/abs/astro-ph/0304556
http://dx.doi.org/10.1143/JPSJ.53.2539
http://dx.doi.org/10.1103/PhysRevLett.83.2195
http://arxiv.org/abs/physics/9903028
http://dx.doi.org/10.1103/PhysRevLett.118.055102
http://arxiv.org/abs/1607.01360
http://arxiv.org/abs/2010.00699
http://dx.doi.org/10.1103/PhysRevX.11.041005
http://arxiv.org/abs/2206.07513
http://dx.doi.org/10.3847/1538-4357/aa886b
http://arxiv.org/abs/1705.00378
http://dx.doi.org/10.3847/1538-4357/aaba75
http://dx.doi.org/10.21105/joss.02807

