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The Hosking integral, which characterizes magnetic helicity fluctuations in subvolumes,
is known to govern the decay of magnetically dominated turbulence. Here we show
that, when the evolution of the magnetic field is controlled by the motion of electrons
only, as in neutron star crusts, the decay of the magnetic field is still controlled by
the Hosking integral, but now it has effectively different dimensions than in ordinary
magnetohydrodynamic (MHD) turbulence. This causes the correlation length to increase
with time t like t4/13 instead of t4/9 in MHD. The magnetic energy density decreases like
t−10/13, which is slower than in MHD, where it decays like t−10/9. These new analytic
results agree with earlier numerical simulations for the nonhelical Hall cascade.

1. Introduction

The x-ray emission from neutron stars during the first hundreds of years is believed to
be powered by magnetic dissipation within their outer crusts (Gourgouliatos et al. 2018).
Since the ions are immobile in neutron star crusts, electric currents are transported
by electrons alone (Cho & Lazarian 2009). Their velocity is u = −J/ene, where J =
∇×B/µ0 is the current density, B is the magnetic field, e is the elementary charge, ne

is the electron density, and µ0 is the permeability. The evolution of B is then governed
by the induction equation where the electromotive force u×B is given by −J ×B/ene.
The induction equation therefore takes the form (Goldreich & Reisenegger 1992)

∂B

∂t
= ∇×

(

−
1

ene
J ×B − ηµ0J

)

, (1.1)

where η is the magnetic diffusivity and t is time. The J × B nonlinearity in this
equation leads to a cascade toward smaller scales—similar to the turbulent cascade
in hydrodynamics turbulence (Goldreich & Reisenegger 1992). This model is therefore
referred to what is called the Hall cascade. There has been extensive work trying
to quantify the amount of dissipation that occurs (Gourgouliatos et al. 2016, 2020;
Gourgouliatos & Hollerbach 2018; Igoshev et al. 2021; Anzuini et al. 2022). Idealized
simulations in Cartesian geometry resulted in power law scaling for the resistive Joule
dissipation (Brandenburg 2020, hereafter B20). It depends on the typical length scale
of the turbulence, the electron density, the magnetic field strength, and the presence
or absence of magnetic helicity. Denoting volume averages by angle brackets, the decay
of the magnetic energy density E = 〈B2〉/2µ0 with time tends to follow power law
behavior, E ∝ t−p, where the exponent p is smaller than in magnetohydrodynamic
(MHD) turbulence. Here, 〈...〉 denotes volume averaging over the spatial coordinates
x. In the helical case, it was found that p = 2/5, while for the nonhelical case, B20
reported p ≈ 0.9. The correlation length of the turbulence, ξ, increases with time like
ξ ∝ tq, where q = 2/5 in the helical case, i.e., q = p, and q ≈ 0.3 in the nonhelical case.
In the helical case, the exponent 2/5 was possible to explain on dimensional grounds by
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noting that the magnetic field does not correspond to a speed (the Alfvén speed, as in
MHD) with dimensions ms−1 in SI units, but to a diffusivity with dimensions m2 s−1.

The decay properties of the nonhelical Hall cascade were not yet theoretically un-
derstood at the time. In the last one to two years, however, significant progress has
been made in describing the decay of magnetically dominated turbulence, where a new
conserved quantity has been identified, which is now called the Hosking integral (see
Zhou et al. 2022, for details regarding the naming). The purpose of the present paper is
to propose the scaling of the Hall cascade under the assumption that it is governed by
the constancy of the Hosking integral, which now has different dimensions than in MHD.

2. Hosking integral and scaling for the Hall cascade

The Hosking integral IH is defined as the asymptotic limit of the magnetic helicity

density correlation integral IH(R) for scales R large compared to the correlation length

of the turbulence, ξ, but small compared to the system size L. The original work on
this integral is that by Hosking & Schekochihin (2021), who subsequently applied it to
the magnetic field decay in the early universe (Hosking & Schekochihin 2022); see also
Brandenburg et al. (2015) and Brandenburg & Kahniashvili (2017) for earlier work were
inverse cascading of magnetically dominated nonhelical turbulence was first reported.
The function IH(R) is given by

IH(R) =

∫

VR

d3r 〈h(x)h(x+ r)〉, (2.1)

where VR is the volume of a ball of radius R and h = A·B is the magnetic helicity density
with A being the magnetic vector potential, so B = ∇×A. We recall that 〈...〉 denotes
averaging over x. The function IH(R) is thus the integral over the volume VR = 4πR3/3.
For small R, it increases proportional to R3, but for large R, it levels off. This is the
value of R, which determines the Hosking integral IH ≡ IH(R). In practice, it is chosen
empirically and must still be small compared with the size of the domain; see Hosking
& Schekochihin (2021) for various examples and Zhou et al. (2022) for a comparison of
different computational techniques for obtaining IH(R).

What matters for the Hall cascade is the fact that the dimensions of h are [h] = [B]2[x],
and therefore the dimensions of IH and IH are

[IH] = [B]4[x]5. (2.2)

However, as already noted in B20, using e = 1.6 × 10−19 As, µ0 = 4π × 10−7 TmA−1,
and ne ≈ 2.5× 1040 m−3 for neutron star crusts, we have eneµ0 ≈ 5× 1015 Tsm−2, and
therefore

B

eneµ0
=

B

5× 1015 T

m2

s
, (2.3)

which is why we say B has dimensions of m2 s−1.† Therefore, the dimensions of IH are

[IH] = [x]13[ s]−4. (2.4)

Thus, given that IH = const in the limit of small magnetic diffusivity, a self-similar
evolution must imply that all relevant length scales, and in particular the magnetic

† In MHD, by comparison, the ion density ρ is a relevant quantity. Using ρ = 103 kgm−3 for
solar surface plasmas, and the identity 1T = 1kg s−2 A−1, we have µ0 = 4π×10−7 T2 s2 mkg−1,
and therefore ρµ0 ≈ 3.5 × 10−2 Tsm−1, or B/

√
ρ0µ0 = (B/3.5 × 10−2 T) m s−1, which is why

we say that in MHD, B has dimensions of ms−1.
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Figure 1. Compensated spectra for Run B of B20, which corresponds to Run B1 in the
present paper. Here, β = 1.7 has been used as the best empirical fit parameter.

correlation length ξ(t), must increase with time like ξ ∼ t4/13. Since 4/13 ≈ 0.31, this is
indeed close to the behavior ξ ∼ tq with q ≈ 0.3 found in Sec. 3.2 of B20 (their Run B),
as already highlighted in the introduction of the present paper.

To demonstrate that the energy spectra E(k, t at different times are indeed self-similar,
we collapse them on top of each other by plotting them versus kξ(t). Here, ξ(t) =
E−1

∫

k−1E(k, t) dk is the weighted integral of k−1, where the spectra are normalized
such that

∫

E(k, t) dk = E(t) is the magnetic energy density. This ensures that the
maxima of E(kξ) are always approximately near kξ(t) = 1. In addition, we must also
compensate for the decay in amplitude by multiplying the spectra by a time-dependent
function, e.g., ξ(t)β , where β is a suitable exponent, so that the compensated spectra all
have the same height. In this way, we find a universal spectral function by plotting

[ξ(t)]
β
E
(

kξ(t), t
)

≡ φ
(

kξ(t)
)

. (2.5)

As an example, we show in Figure 1 the compensated spectra for Run B of B20, which
we discuss in more detail below. At this point, we just note that these were solutions
to Eq. (1.1), where the initial condition consists of a nonhelical magnetic field with a
spectrum E(k) ∝ k4 for k ≪ k0, with k0 being the initial peak wavenumber. For k ≫ k0,
we assume a decaying spectrum, here with E(k) ∝ k−5/3, although this particular choice
of the exponent was not important. After some time, the spectral slopes of both subranges
change: At small k, the spectrum steepens from k4 to k5. Beyond the peak, it falls off
with a k−7/3 inertial range, as was already found by Biskamp et al. (1996).

To determine the theoretically expected value of β, we invoke the condition that the
compensated spectra be invariant under rescaling, t → τt′, x → τ qx′, where τ is an
arbitrary scaling factor. We recall that the dimensions of E(k, t) are [x]5[t]−2, so rescaling
yields a factor τ5q−2. In addition, expressing E′ in terms of its universal spectral function
φ(kξ), the factor ξβ on the left-hand side of the Eq. (2.5) produces a factor ξ−β on the
right-hand side of Eq. (2.5), and therefore, after rescaling, a τ−βq factor, i.e.,

E(k) → τ5q−2 E′(k) ∝ ξ(t)−βτ−βqφ(kξ). (2.6)
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Run Lu t1/[t] t2/[t] η̃ B̃rms ǫ̃ p q β pH
B1 650 0.2 500 0.024 600 3× 106 0.8± 0.1 0.3± 0.1 1.7± 0.1 0.16
B2 1300 3 200 0.011 700 6× 106 0.78± 0.05 0.31± 0.05 1.6± 0.05 0.11

Table 1. Summary of runs discussed in this paper.

Therefore, 5q− 2 = −βq must be satisfied in order that the compensated spectra remain
invariant under rescaling. Thus, β = 2/q − 5, as already found in B20. Inserting now
q = 4/13 yields β = 3/2. The total magnetic energy density is therefore

E =

∫

ξ−βφ(kξ) dk = ξ−(β+1)

∫

φ(kξ) d(kξ) ∝ t−(β+1) q, (2.7)

and since E ∝ t−p, we have† p = (β+1) q. Using β = 2/q− 5, we have p = 2 (1− 2q); see
Eq. (28) of B20. For q = 4/13 ≈ 0.31, we have p = 2 (1− 8/13) = 10/13 ≈ 0.78, which is
not quite as close to the value reported in B20 as that of q, but this could be ascribed
to the lack of scale separation and also the magnetic field no longer being strong enough
so that the Lundquist number,‡

Lu = Brms/eneµ0η, (2.8)

is no longer in the asymptotic regime. This also resulted in the empirical value of β being
slightly larger than the theoretical one, as we will see next.

3. Comparison with simulations for different diffusivities

In B20, various simulations of the Hall cascade have been presented, including forced
and decaying simulations, helical and nonhelical ones, with constant and time-varying
magnetic diffusivities, with and without stratification, etc. The main purpose of that
work was to understand the dissipative losses that would lead to resistive heating in the
crust of a neutron star. One of those simulations is particularly relevant for the present
paper: his Run B, which had a relatively strong initial magnetic field, no helicity, large
scale-separation, and a magnetic diffusivity that decreased with time in a power law
fashion, allowing the simulation to retain a higher Lundquist number as the magnetic
field decreases.

In the present paper, we analyze his Run B, which is here called Run B1. It is actually
a new run, because we now have calculated the Hosking integral during run time. We
also compare with another run (Run B2), where we decreased the magnetic diffusivity
by a factor of two. As in B20, η is assumed to decrease with time proportional to t−3/7.
We kept, however, the same resolution of 10243 mesh points for both runs, but we must
keep in mind that this can lead to artifacts resulting from a poorly resolved diffusive
subrange for Run B2.

In Table 1, we compare several characteristic parameters: the start and end times,

† An equivalent, but conceptually simpler route to the t−10/13 decay law, suggested by David
Hosking (private communication), is to use Eq. (1.1) to argue that the timescale tdec for magnetic
decay is proportional to ξ2/B. Since tdec is proportional to t for selfsimilar decay, we get, using

ξ5B4 = [B2(ξ2/B)10/13]13/4 = (B2t10/13)13/4 = const, the scaling B2 ∝ t−10/13. The difference
between MHD and Hall cascade is that, in the former, tdec is proportional to ξ/B, but ∝ ξ2/B
in the latter.

‡ Note that, unlike the case of MHD, in the present case of Hall cascade, no wavenumber
factor enters in the definition of the Lundquist number.
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Figure 2. Compensated spectra for Run B2.

t1 and t2, respectively, of the interval for which averaged data have been accumulated,
nondimensional measures of the magnetic diffusivity, the magnetic field strength, and
the dissipation, η̃, B̃rms, and ǫ̃, respectively, and the instantaneous scaling exponents p,
q, and β. For η̃, B̃rms, and ǫ̃, we compute the following time-averaged ratios:

η̃ ≡ 〈tη/ξ2〉t, B̃rms ≡ 〈Brms/(eneµ0η)〉t, and ǫ̃ ≡ 〈ǫ/(e2n2
eµ0η

3/ξ2)〉t, (3.1)

where ξ(t) = E−1
∫

k−1E(k, t) dk is the correlation length and ǫ = ηµ0〈J
2〉 is the

magnetic dissipation with η = η(t), as noted above. These were also computed in B20.
Time is given in diffusive units, [t] = (ηk20)

−1. In the runs of series B of B20, the value
of k0 is 180 times larger than the lowest wavenumber k1 ≡ 2π/L of our cubic domain of
size L3.

It turns out that a lower resistivity is important for obtaining the expected scaling.
We therefore now consider Run B2, where Lu ≈ 1300. The result is shown in Figure 2,
where we used β = 1.6 as the best fit, which is still slightly larger than the expected value
of 3/2, but it goes in the right direction. Therefore, we show in Figure 2 the resulting
compensated spectra for Run B2, where the magnetic diffusivity is half that of Run B1
and Lu is now twice as large a before; see Table 1. We use the Pencil Code (Pencil
Code Collaboration et al. 2021) and, in both cases, we use a resolution of 10243 mesh
points.

Another comparison between Runs B1 and B2 is shown in Figure 3, where we compare
their evolution in the pq–diagram. While Run B1 clearly evolves along the β ≈ 1.7 line,
Run B2 tends to be closer to the β ≈ 3/2 line. Note also that both runs settle near the
p = 2(1− 2q) self-similarity line (B20), although we begin to see departures near the end
of the run, which is due to the finite size of the domain.

Finally, we show in Figure 4 the scalings of IH(t), where we see that the decay exponent
pH ≡ −d ln IH/d ln t is about pH ≈ 0.16 for Run B1 and about 0.11 for Run B2. Earlier
work by Zhou et al. (2022) showed that pH decreases as the Lundquist number increases,
and is, in MHD, around 0.2 for Lu ≈ 103, and decreases to pH ≈ 0.01 for Lu ≈ 4× 107.
Such large values can currently only be obtained with magnetic hyper-diffusivity (Hosking
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Figure 3. pq diagrams for Runs B1 (open red symbols) and B2 (closed blue symbols). Larger
symbols denote later times.

Figure 4. Evolution of IH(t), showing first a slight increase and then a decline proportional
to t−0.16 for Run B1 and proportional to t−0.11 for Run B2. The inset shows the evolution of
IH(R; t) as a function of R for increasing values of t (indicated by the arrow) for Run B2. The
abscissae of the main plot and the inset are normalized by ηk2

0 and k0, respectively.

& Schekochihin 2021; Zhou et al. 2022), but this has not been attempted in the present
work.

As already noted by Zhou et al. (2022), there is an initial increase in IH(t). This is
explained by the fact that the magnetic field obeys Gaussian statistics initially, but not
during the later evolution. The inset shows the R dependence of IH(R; t) for different t.
The relevant value of R is deemed to be at the location where the local slope of IH(R)
is minimum at late times.
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MHD [B] = [x]/[t] [〈h〉] = [x]3/[t]2 q = 2/3 (helical)

[IH] = [x]9/[t]4 q = 4/9 (nonhel)

[E(k, t)] = [x3][t]−2 β = 2/q − 3 β = 2 · 9/4− 3 = 3/2
p = 2 (1− q) p = 2 (1− 4/9) = 10/9

Hall [B] = [x]2/[t] [〈h〉] = [x]5/[t]2 q = 2/5 (helical)

[IH] = [x]13/[t]4 q = 4/13 (nonhel)

[E(k, t)] = [x5][t]−2 β = 2/q − 5 β = 2 · 13/4− 5 = 3/2
p = 2 (1− 2q) p = 2 (1− 2 · 4/13) = 10/13

Table 2. Comparison of the scalings for MHD and the Hall cascade.

4. Conclusion

The present work has highlighted the power of dimensional arguments, which were
here applied to the case of the Hall cascade without helicity, where the magnetic field
is naturally represented as a quantity with units of a magnetic diffusivity. The magnetic
helicity density has units of m5 s−2 and the Hosking integral has units of m13 s−4, which
yields q = 4/13, β = 3/2, and p = 10/13. Comparing with standard MHD, where the
magnetic field has units of ms−1, our exponents p and q are now smaller, but β is still
the same in both cases; see Table 2 for a comparison between Hall cascade and MHD.
The empirically determined value of β is somewhat larger, but this can be explained by
finite scale separation and small Lundquist numbers.

The decay properties of the Hall cascade are important in understanding resistive
heating in neutron stars while producing at the same time larger scale magnetic fields
at a certain speed through inverse cascading (B20). Such simulations have already been
done in spherical geometry (Gourgouliatos et al. 2020), but the magnetic field in those
simulations did not yet exhibit clear forward or inverse cascading. This is presumably due
to their initial magnetic field being strongly localized at intermediate length scales. Using
an initial broken power law, as done here, would help producing the expected forward or
inverse cascadings, but this may also require much larger resolution than what is currently
possible. Similarly, of course, the values of ne and η are depth dependent in real neutron
stars, but the work of B20 showed that this did not affect the scaling behavior of the
magnetic decay. Therefore, the importance of the Hosking integral may well carry over
to real neutron stars.

The possible role of reconnection in the Hall cascade remains still an open question. In
the case of MHD, reconnection has been discussed extensively by Hosking & Schekochihin
(2021), making reference to earlier work by Zhou et al. (2019, 2020) and Bhat et al. (2021).
Also in the Hall cascade there is the possibility that the decay of E could be slowed down
in an intermediate range of values of the Lundquist number. As shown in Zhou et al.

(2022), this could lead to a termination line in the pq diagrams that is different from
the p = 2(1− 2q) self-similarity line discussed here. At the moment, however, there is no
compulsory evidence for deviations of the solutions from the self-similarity line.
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