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ABSTRACT

In this study we present a compressible test-field method (CTFM) for computing α effect and turbulent mag-
netic diffusivity tensors, as well as those relevant for mean ponderomotive force and mass source, applied to
the full MHD equations. We describe the theoretical background of the method, and compare it to the quasi-
kinematic test-field method, and to the previously studied variant working in simplified MHD (SMHD). We
present several test cases using velocity and magnetic fields of the Roberts geometry, and also compare with
the imposed-field method. We show that, for moderate imposed field strengths, the nonlinear CTFM (nCTFM)
gives results in agreement with the imposed-field method. Comparison of different flavors of the nCTFM in
the shear dynamo case also agree up to equipartition field strengths. Some deviations between the CTFM and
SMHD variants exist. As a relevant physical application, we study non-helically forced shear flows, which
exhibit large-scale dynamo action, and present a re-analysis of low Reynolds number, moderate shear systems,
where we previously neglected the pressure gradient in the momentum equation, and found no coherent shear-
current effect. Another key difference is that in the earlier study we used magnetic forcing to mimic small-scale
dynamo action, while here it is self-consistently driven by purely kinetic forcing. The kinematic CTFM with
general validity forms the core of our analysis. We still find no coherent shear-current effect, but do recover
strong large-scale dynamo action that, according to our analysis, is driven through the incoherent effects.

1. INTRODUCTION

Over the past few decades, both local and global numerical
simulations of accretion discs have demonstrated that mag-
netic fields can be generated by a dynamo and drive turbu-
lent accretion through what is believed to be the magneto-
rotational instability (Brandenburg et al. 1995; Hawley et al.
1996; Hawley 2000). Real discs are always stratified about
the midplane, which can lead to kinetic helicity and thereby
to an α affect. Whether or not this really explains what is
seen in numerical simulations is unclear, because there are
other, potentially more powerful alternatives. One of them
is the shear-current (SC) effect. It is a mean-field dynamo
effect that can, in principle, generate large-scale magnetic
fields based on the off-diagonal components of the turbulent
magnetic diffusivity tensor (Rogachevskii & Kleeorin 2003,
2004). Whether or not this effect can also be responsible
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for the large-scale dynamo (LSD) seen in some non-helically
forced shear flows continues to raise debate (see, e.g., the re-
cent papers Squire & Bhattacharjee 2016; Käpylä et al. 2020;
Zhou & Blackman 2021, with contradictory results for and
against). As we will discuss in this paper, these discrepan-
cies follow from the different sets of equations used (incom-
pressible, Burgers, full (M)HD), and from the different as-
sumptions employed in the analysis methods that retrieve the
turbulent transport coefficients. This SC dynamo has been
proposed to avoid the need for the more classical helicity-
based α effect in situations where stratification and rotation
are inefficient or absent, and hence neither kinetic helicity
nor α effect can arise. One major difficulty in resolving the
aforementioned contradictions has been the lack of a reliable
quantitative measurement device capable of returning the tur-
bulent transport coefficients for MHD background turbulence
due to a small-scale dynamo (SSD).

The imposed-field method was the first machinery devel-
oped in the 1990’s (Brandenburg et al. 1990) for the retrieval
of α effect and turbulent pumping by imposing uniform mag-
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netic fields in different directions, measuring the mean (a.k.a.
turbulent) electromotive force (EMF), and solving for the un-
known coefficients. Gradients of the mean field contribute to
the mean EMF via the turbulent diffusivity tensor, hence it
is important to guarantee that they remain weak in the evolv-
ing magnetic field. Therefore, the field has to be reset after
suitable time intervals, and not taking this into account prop-
erly has led to some misinterpretations of the results (see the
discussion in Ossendrijver et al. 2001; Käpylä et al. 2010,
and the references therein). When properly used, this method
continues to be a valuable tool, and is also employed in this
work to validate the test-field results in the simplest cases.

The next toolbox was introduced by Brandenburg &
Sokoloff (2002) as a method of moments: to tackle the large
amount of unknown transport coefficients entering the mean
EMF while there are only three equations relating it to the
mean field, additional equations were constructed by form-
ing a sufficient number of moments. Measuring them from
the numerical models enables then to solve for the coeffi-
cients. This method can retrieve both the α and the turbulent
resistivity tensors, but relies on the mean field, generated in
the system, to be unsteady, typically oscillatory. This method
has various incarnations in many astrophysical contexts (e.g.
Squire & Bhattacharjee 2015; Shi et al. 2016; Simard et al.
2016; Käpylä et al. 2018). Occasionally, however, it is em-
ployed in an improper way by pre-assuming some of the co-
efficients to be negligible; putting them deliberately to zero
then renders the fitting meaningless in the worst case (e.g.
Simard et al. 2013; Squire & Bhattacharjee 2015; Shi et al.
2016).

The third alternative is the test-field method (TFM), intro-
duced by Schrinner et al. (2005, 2007), where linearly inde-
pendent test fields are subjected to the velocity taken from
a simulation, including both its fluctuating and mean con-
stituents. The test fields are passive, i.e., do not affect the
course of the simulation itself, except possibly through the
time step control. The equations for the corresponding fluc-
tuating magnetic fields are solved, which then allows for re-
trieving the full set of tensor coefficients (Brandenburg et al.
2008b). If the simulation is purely hydrodynamic, this ap-
proach is kinematic, but if it is an MHD run, where the gen-
erated magnetic field does backreact on the flow, the method
is called quasi-kinematic (QKTFM). For both variants, how-
ever, the same procedures apply. This method has proven
immensely successful, and has been utilized within a broad
spectrum of astrophysical – stellar, planetary, and disk dy-
namo – applications, including the shear dynamo problem
(Brandenburg et al. 2008a). The QKTFM has been applied
in Cartesian domains with horizontal (xy) averaging, with
and without shearing-periodic boundary conditions, as well
as in spherical domains, with longitudinal averaging. The
latter type of models (see e.g., Warnecke et al. 2018) have in-

cluded rotation and stratification, and are hence not optimal
for clarifying whether or not the SC effect can be important.
Also, it is not trivial to separate this effect from others con-
tributing to the turbulent magnetic diffusivity tensor such as
the Rädler effect with its antisymmetric contribution to the
diffusivity tensor. When an SSD is excited in such setups,
it is supposed to boost the SC effect (the scenario proposed
by Squire & Bhattacharjee 2016). The (Q)KTFM however,
does not apply: SSD action generates an MHD background
turbulence, the magnetic part of which is not accounted for.

A core machinery towards a TFM, which can take into ac-
count the magnetic background turbulence, was presented by
(Rheinhardt & Brandenburg 2010, hereafter RB10), albeit re-
lying on simplified MHD (SMHD), where pressure gradient
and self-advection of the flow were dropped from the mo-
mentum equation. Another step further was taken in Käpylä
et al. (2020), admitting self-advection, while yet ignoring the
pressure gradient and hence variations of density. This study
has been deemed inconclusive (see, e.g. Zhou & Blackman
2021), as second-order correlation approximation (SOCA)
calculations of Squire & Bhattacharjee (2016) were inter-
preted to indicate a decisive role of the pressure gradient in
creating the magnetic SC effect. In contrast, we argued that
the magnetic SC effect continues to exist in SMHD in the
ideal limit, albeit with a sign not supportive for a mean-field
dynamo. This paper aims at introducing a method meeting
all requirements, namely the compressible test-field method
(CTFM). We present test cases to demonstrate the limits of its
applicability, and then make a first attempt to apply it to the
shear dynamo problem in the regime of moderate Reynolds
number, magnetic Prandtl number, and shear, by measuring
the turbulent transport coefficients and interpreting them in
the framework of mean-field dynamo theory.

We should clarify from the outset that our primary goal
in the calculation of mean-field transport coefficients is, at
present, not to utilize them in more economic mean-field
models of astrophysical dynamos, but rather to provide some
understanding of the turbulent processes found in the pro-
gressively more realistic simulations of such dynamos. In
principle, our computations can also identify specific targets
of what to look for in future studies. We further note that for
the first steps to understand the SC effect with the CTFM, we
use the simplest possible setup, excluding physically impor-
tant effects such as rotation and stratification, thus studying
this effect in isolation. This approach is chosen to gain phys-
ical insights about this effect, although not allowing us to
assess its relevance in astrophysical objects.

2. MODEL AND METHODS

The full MHD (FMHD) system of equations, here with an
isothermal equation of state, is more complex than that of
SMHD used in earlier TFMs because of the occurrence of
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the pressure gradient. Consequently, we need an additional
evolution equation for the density, as the counterpart to the
Poisson equation for the pressure in incompressible MHD.
Also the viscous force is now more complex. Hence, we
have

DAA=U ×B + FM + η∇2A, (1)

ρ(DU+U ·∇)U + ∇P =J ×B + ρFK + ∇·(2νρS),(2)

(D +U ·∇) ln ρ=−∇ ·U , (3)

where J = ∇ × B is the current density with the vacuum
permeability set to unity. Furthermore,

DAA=DA+ SAyx̂, (4)

DUU =DU + SUxŷ + 2Ω×U , (5)

D=∂t + Sx∂y (6)

are linear operators. Here, Ω = Ωẑ is the global angular
velocity vector, Sij = (Ui,j + Uj,i)/2 − δij∇ · U/3 are
the components of the traceless rate-of-strain tensor S, where
commas denote partial differentiation, and P is the pressure
related to the density via P = c2sρ with the isothermal sound
speed cs. Terms containing S are due to a linear background
shear flow of the form U (S) = Sxŷ. Magnetic diffusivity η,
kinematic viscosity ν, and sound speed are assumed constant.
For c2s ln ρ (“pseudo-enthalpy”) we shall employ the symbol
H .

Throughout, we define mean quantities by horizontal av-
eraging (over x and y) denoted by an overbar. Hence, the
means depend on z and t only. Fluctuations are denoted by
lowercase symbols or primes, e.g., a = A−A, (u× b)′ =

u× b− u× b, and fK,M = FK,M − FK,M. The horizontal
average obeys the Reynolds rules, given that U (S) can effec-
tively be treated as a mean flow. For peculiarities involved
here, we refer to Käpylä et al. (2020), Sect. 2.3.1.

2.1. Compressible test-field method (CTFM)

The starting point for establishing any TFM are the evo-
lution equations for the fluctuations, here of magnetic vector
potential, a, velocity, u, and pseudo-enthalpy, h = c2s (ln ρ)′,
which follow from Eqs. (1)–(3) as

DAa=U × b+ u×B + (u× b)′ + fM + η∇2a, (7)

DUu=−∇h+ ρ−1ref

[
J × b+ j ×B + (j × b)′

]
−U ·∇u− u ·∇U − (u ·∇u)′ + fK (8)

+ν
(
∇2u+ ∇∇ · u/3

)
+2ν

[
S ·∇h+ s ·∇H + (s ·∇h)′

]
/c2s

Dh=−U ·∇h− u ·∇H − (u ·∇h)′ − c2s∇ · u .(9)

In order to avoid the occurrence of triple correlations, we
have, however, modified the momentum equation by replac-
ing the density in the denominator of the Lorentz acceleration

by a reference density ρref . It is set equal to the volume av-
eraged density and is constant in time as mass is conserved.
A possible refinement would consist in using a horizontal av-
erage instead, thus allowing ρref to change in time and to
depend on z.

2.1.1. The zero problem

In the QKTFM (see Sect. 2.2), the mean electromotive
force E = u× b, is a functional of only u, U , and B (lin-
ear in B). However, in the more general case with a mag-
netic background turbulence, this is no longer so. To deal
with this difficulty, RB10 added the evolution equations for
the background turbulence

(
u(0), b(0)

)
to the equations of

the TFM. In the context of (isothermal) FMHD we add the
evolution equations for

(
u(0), b(0), h(0)

)
, which by defini-

tion apply for zero mean field — thus we name this system
the “zero problem”. Let now all variables be split in parts in-
dependent of (superscript “(0)”) and vanishing with B (su-
perscript “(B)”), respectively, like u = u(0) + u(B) etc.
Then

DAa(B) = U × b(B) + u×B +
(
u(0)× b(B) (10)

+ u(B)× b(0) + u(B)× b(B)
)′

+ η∇2a(B),

DUu(B) =−∇h(B) + ρ−1ref

[
J × b+ j ×B

+
(
j(0)× b(B) + j(B)× b(0) + j(B)× b(B)

)′ ]
−U ·∇u(B) − u(B) ·∇U −

(
u(0) ·∇u(B)

+u(B) ·∇u(0) + u(B) ·∇u(B)
)′

(11)

+ν
(
∇2u(B) + ∇∇ · u(B)/3

)
+2ν

[
S ·∇h(B) + s(B) ·∇H +

(
s(0) ·∇h(B)

+ s(B) ·∇h(0) + s(B) ·∇h(B)
)′ ]

/c2s

Dh(B) =−U ·∇h(B) − u(B) ·∇H −
(
u(0) ·∇h(B) (12)

+ u(B) ·∇h(0) + u(B) ·∇h(B)
)′
− c2s∇ · u(B),
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and the “zero problem” is given by

DAa(0) =U × b(0) +
(
u(0)× b(0)

)′
+ fM + η∇2a(0),(13)

DUu(0) =−∇h(0) + ρ−1ref

(
j(0)× b(0)

)′
+ fK (14)

−U ·∇u(0) − u(0) ·∇U −
(
u(0) ·∇u(0)

)′
+ν

(
∇2u(0) + ∇∇ · u(0)/3

)
+ 2ν

[
S ·∇h(0)

+s(0) ·∇H +
(
s(0) ·∇h(0)

)′ ]
/c2s

Dh(0) =−U ·∇h(0) − u(0) ·∇H −
(
u(0) ·∇h(0)

)′
(15)

−c2s∇ · u(0) .

Note that, while Equations (10) and (11) are visibly inhomo-
geneous1 via the termsu(0)×B and J×b(0)+j(0)×B (both
homogeneous inB), this also holds true for Equation (12) via
∇ · u(B), which does not vanish forB 6= 0.

In general, E = u× b can be split into a contribution
E(0) = u(0) × b(0), which is independent of the mean field,
and

E(B) = u(0) × b(B) + u(B) × b(0) + u(B) × b(B), (16)

where u(B) and b(B) denote the solutions of Eqs. (10)
and (11). In the presence of an SSD, E(0) is commonly ex-
pected to vanish, hence we don’t consider it any further.

2.1.2. The kinematic limit

In the kinematic limit, the mean magnetic field evolving in
the main run is too weak to cause any significant deviations
of the fluctuating fields from the background turbulence, that
is, u → u(0), b → b(0), and h → h(0). Correspondingly, to
obtain all unknowns as first-order quantities inB, terms like(
u(B) × b(B)

)′
in Equations (10)–(12) need to be dropped,

and in u × B, j × B, J × b, the fluctuations u, j, b need
to be replaced by their counterparts from the “zero problem”,

1 The more precise term is “heteronomous” as used in the nonlinear dynam-
ical systems context.

u(0), j(0), b(0). Thus, we obtain

DAa(B) = U × b(B) + u(0) ×B (17)

+
(
u(0)× b(B) + u(B)× b(0)

)′
+ η∇2a(B),

DUu(B) =−∇h(B) + ρ−1ref

[
J × b(0) + j(0)×B

+
(
j(0)× b(B) + j(B)× b(0)

)′ ]
−U ·∇u(B) − u(B) ·∇U

−
(
u(0) ·∇u(B) + u(B) ·∇u(0)

)′
(18)

+ν
(
∇2u(B) + ∇∇ · u(B)/3

)
+2ν

[
S ·∇h(B) + s(B) ·∇H

+
(
s(0) ·∇h(B) + s(B) ·∇h(0)

)′ ]
/c2s

Dh(B) =−U ·∇h(B) − u(B) ·∇H (19)

−
(
u(0) ·∇h(B) + u(B) ·∇h(0)

)′
− c2s∇· u(B) .

This system is an inhomogeneous linear system for the vari-
ables a(B),u(B), h(B), with its inhomogeneities being in
turn linear and homogeneous in the mean field B. Hence,
disregarding the influence of initial conditions, there are so-
lutions being linear in B and vanishing for B = 0. This
qualifies Equations (17)–(19) directly for being cast into a
test-field procedure. As a caveat, we should mention that this
system may have non-vanishing solutions forB = 0, namely
unstable eigenmodes of its homogeneous part.

In the kinematic limit, the mean EMF E(B), the mean pon-
deromotive force F (B) and the “magnetically induced mass
source” Q(B)

have likewise to become linear in the fluctua-
tions b(B),u(B), h(B), so we write

E(B) = u(0) × b(B) + u(B) × b(0), (20)

for the contribution to F (B) from the Lorentz force

j(0) × b(B) + j(B) × b(0), (21)

(the factor 1/ρref omitted here), for that resulting from self-
advection

− u(0) ·∇u(B) − u(B) ·∇u(0) (22)

and that resulting from the nonlinear viscous force part

s(0) ·∇h(B) + s(B) ·∇h(0). (23)

Finally, from the advective term in the continuity equation,
we obtain

Q(B)
=− u(0) ·∇h(B) − u(B) ·∇h(0). (24)
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2.1.3. Test fields and parameterizations

We solve Eqs. (10)–(12) not by setting B to the actual
mean field resulting from the solutions of Eqs. (1)–(3), but
by setting it to one out of four test fields B(i), i = 1, . . . , 4.
Those are

B(1) = (cos kBz, 0, 0), B(2) = (sin kBz, 0, 0), (25)

B(3) = (0, cos kBz, 0), B(4) = (0, sin kBz, 0), (26)

where kB is the wavenumber of the test field, being a
multiple of the wavenumber corresponding to the vertical
extent of the computational domain. From the solutions
of Eqs. (10)–(12) we can construct for each B(i) (super-
scripts (i) left out hereafter) the mean electromotive forces
E(B) =

(
u× b

)(B)
, the mean ponderomotive forces,

F (B) =
(
j × b/ρref − u ·∇u+ 2ν s ·∇h

)(B)
, and the

mean mass sources Q(B)
= −

(
u ·∇h

)(B)
according to

Equations (32)–(24), and express them in terms of the mean
field by the ansatzes

E(B)
i =αijBj − ηijJj , (27)

F (B)

i =φijBj − ψijJj , (28)

Q(B)
=σiBi − τiJ i, (29)

where i, j adopt only the values 1, 2 as a consequence of
Jz = 0 and setting (the anyway constant) Bz arbitrarily to
zero. Hence, each of the four tensors, αij , ηij , φij , ψij , has
four components, and together with the vectors σi and τi, we
have 20 unknowns. αij , φij , and σi are pseudo-quantities,
ηij , ψij , and τi true ones. Note that often the α and η ten-
sors are defined just as the symmetric parts of our αij and
ηij while their antisymmetric parts are cast into the vecto-
rial coefficients of the γ and δ effects. The coefficients α, η
(or β), γ, and δ describe then in turn the effects of turbulent
generation, diffusion, pumping and the (non-generative, non-
dissipative) so-called Rädler effect. In the presence of shear,
the coefficient ηyx plays a prominent role; see Sect. 3.2.5.

In spite of what could be expected from the Lorentz force,
being quadratic in B, the turbulent ponderomotive force
Eq. (28) is with leading order linear in B. This is because
of the effect of the magnetic background turbulence b(0) via,
in the kinematic limit, j(0) × b(B) + j(B) × b(0). A mean
mass source Q(B)

due to non-vanishing vectors σ or τ re-
quires anisotropy of the turbulence. It was not considered in
this work, nor was F (B) due to non-vanishing φ and ψ.

2.1.4. The nonlinear case

In the QKTFM, only the velocity matters for the turbulent
transport coefficients and can hence readily be identified with
the one of the “main run”, i.e. the system (1)–(3), solved
simultaneously with the test problems. Thus, an opportu-
nity to deal with quenching, that is the effect of the evolving

mean field in the main run onto the fluctuating velocity and
thus the coefficients, opens up. A try to proceed analogously
in the CTFM encounters a threefold difficulty: First, Equa-
tions (10)–(12) are in general nonlinear PDEs, thus conflict-
ing with the requirement that the coefficients measured by
a TFM have to be independent of the amplitude of the test
fields, which implies linearity. Second, even when dropping
the terms quadratic and bilinear in u(B), b(B), h(B), these
variables would show nonlinear dependences on the ampli-
tude of B by virtue of terms of the form u(B) × B etc.
Third, there is no obvious channel through which the fluc-
tuating quantities of the main run which carry the imprint of
the evolving mean field of the LSD, would enter the system
(10)–(12).

All three difficulties can be overcome through a trick:
we identify u, b, h partly with the corresponding quantities
u(mr), b(mr), h(mr) of the main run in such a way, that the
system (10)–(12) becomes formally linear and its solutions
linear functionals of B. Mathematical rigor, however, is lost
as in general u(mr) 6= u(0) + u(B) etc. While it is inevitable
to replace u by u(mr) in u×B, b by b(mr) in J×b and j by
j(mr) in j×B, there are several choices to reform the bilinear
and quadratic terms (u× b)′(B), (j × b)′(B), (u ·∇u)′

(B),
(s ·∇h)′

(B), and (u ·∇h)′
(B). For example, (u× b)′(B)

can be rewritten as(
u(mr) × b(B)

)′
+

(
u(B) × b(0)

)′
or (30)(

u(0) × b(B)
)′

+
(
u(B) × b(mr)

)′
.

Likewise, one writes the fluctuating Lorentz force as(
j(mr) × b(B)

)′
+

(
j(B) × b(0)

)′
or (31)(

j(0) × b(B)
)′

+
(
j(B) × b(mr)

)′
,

the factor 1/ρref again having been omitted here. The fluc-
tuating self-advection term and the fluctuating nonlinear vis-
cous force part, as well as the fluctuating part of the advective
term in the continuity equation, are rewritten in an analogous
way. All these versions are linear in quantities with the su-
perscript (B). Identifying B with any of the test fields, we
call the systems (17)–(19) and (10)–(12) with any combina-
tion of the above rearrangements applied, the test problems
and their solutions the test solutions. As we have five bi-
linear/quadratic terms, altogether 32 different versions (“fla-
vors”) of the CTFM exist, out of which, however, we con-
sider only the four, already employed in earlier works. Note
that the different flavors have in general different stability
properties. For most of the runs of this work, we chose to use
the respective first versions of Equations (30) and (31) etc.
This choice corresponds to what is called the ju flavor; see
Table 1 of RB10.

In the kinematic limit B → 0, all flavors of the CTFM
converge and have thus to yield identical results up to round-
off errors.
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2.1.5. Construction of functionals linear inB

To guarantee that the mean EMF E(B), the mean pon-
deromotive force F (B), and the mean “magnetically induced
mass source” Q(B)

become also formally linear functionals
of B one proceeds analogously to the treatment of the fluc-
tuating parts of the bilinear/quadratic terms, e.g.

E(B) = u(mr) × b(B) + u(B) × b(0) or (32)

= u(0) × b(B) + u(B) × b(mr),

cf. Eqs. (29) and (30) of RB10. Henceforth we drop the
superscript ‘mr’ so that quantities without superscript always
refer to the main run.

2.1.6. Remarks

1. The major advance afforded by the new method is to
provide a tool, which is reliable when magnetic back-
ground turbulence is present and compressibility is
fully taken into account, albeit restricted to isothermal-
ity. However, it deals with nonlinearity in the same
way as the earlier methods for this class of problems.

2. An analogous, yet simpler TFM can be established for
incompressible MHD, and the theoretical basis for that
was laid out in Appendix A of RB10.

3. Higher than second-order correlations are already en-
tering the transport coefficients in the kinematic limit(
then of the fluctuations b(0), u(0), h(0)

)
beyond

SOCA. It is one of the strengths of any TFM not to
be restricted to a certain maximal correlation order.

4. Given the lack of mathematical rigor of the nonlinear
version of the method, agreement of all or at least some
of its different flavors may provide a heuristic argu-
ment for correctness.

5. The transport coefficients delivered by the nonlinear
version are dependent on the mean field in the main
run, but not on the amplitude of the test fields. Yet,
for the general case of poor scale separation, the co-
efficients do depend on the scale of the test fields kB .
Hence, for a meaningful application to the interpreta-
tion of the main run, it is important to guarantee that
the dominant scale of the mean field observed in it
agrees with that of the test fields. That granted, the
coefficients can be employed to establish a mean-field
model of the main run, the validity of which, however,
is limited to just the observed mean field; see Tilgner &
Brandenburg (2008) for an example illustrating such a
limitation. Predicting correctly a zero growth rate from
such a model for a main run with saturated mean field
on an MHD background would provide a strong argu-
ment for the correctness of the nonlinear version; see

Brandenburg et al. (2008b) for such a study regarding
the QKTFM, We refer this to future work.

2.1.7. Mean-field equations

For completeness, we provide here the equations govern-
ing the mean quantitiesA, U and H

∂tA =− SAyx̂+U ×B + η∇2A+ E, (33)

∂tU =− SUxŷ −∇H −U ·∇U − 2Ω×U (34)

+ ν(∇2U + ∇∇ ·U/3) + 2νS ·∇H/c2s (35)

+ J ×B/ρref + F , (36)

∂tH =−U ·∇H − c2s∇ ·U +Q . (37)

Note that in this most general form, all quantities comprise
‘(0)’ and ‘(B)’ constituents. Thus, also the vorticity dy-
namo is covered, which to model, however, one would need
a parameterization of F (0) and Q(0)

in terms of U
(0)

. The
CTFM cannot produce such.

2.2. Quasikinematic TFM

We state here for comparison the governing equation for
the QKTFM (see also Schrinner et al. 2005, 2007), which
is just Eq. (10) with b(0) = 0, while dropping Eq. (11) –
Eq. (12). Hence Eq. (32) reduces simply to

E(B) = u× b(B) (38)

and we find the contribution u(B) × b(0) missing. Again, for
further details see RB10.

2.3. Resetting

The test problems Eqs. (10)–(12), being linear, can
have unlimitedly growing solutions, but usually the mea-
sured transport coefficients nevertheless show intervals, in
which they are statistically stationary, in other words show
“plateaus”. If these are absent altogether, we disregard such
a measurement, or try to improve it by lowering the time step
or increasing the resolution. We reset the test solutions after
regular intervals (typically every 15–20 turnover times in this
study); see Hubbard et al. (2009) for a discussion. Each re-
setting interval hence contains an initial transient, which we
remove from the analysis. If the coefficients also show non-
stationary behavior towards the end of the resetting interval,
these parts are removed, too.

2.4. Comments on fluctuations and averages

The CTFM yields coefficients, which still depend on z and
t. We usually present them as quantities that are additionally
averaged over these coordinates, but we emphasize that the
fluctuations in z and t can themselves be an intrinsic compo-
nent of another class of dynamos, for example the incoher-
ent α–shear dynamo (Vishniac & Brandenburg 1997). The
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fact that the mean-field coefficients, and hence also the mean
fields, fluctuate in those remaining coordinates is a common
feature of mean-field theory in cases lacking strong separa-
tion between the spatio-temporal scales of mean and fluctu-
ating quantities. Dealing correctly with limited scale sepa-
ration requires to take nonlocal effects properly into account
(Brandenburg et al. 2008c; Rheinhardt & Brandenburg 2012;
Brandenburg & Chatterjee 2018), but this does not at all com-
promise the usefulness of mean-field theory. The CTFM is
without any modifications capable of dealing with scale de-
pendence w.r.t. z via varying the wavenumber kB , and in this
paper we apply the kinematic CTFM to study scale depen-
dence in the shear dynamo context. For temporal nonlocality,
merely time-dependence (harmonic or exponential) has to be
added to the specification of the test fields (25),(26).

2.5. Random forcing

We utilize the standard random forcing as implemented in
the PENCIL CODE (Pencil Code Collaboration et al. 2021),
which employs white-in-time harmonics. Their wavevectors
are chosen from a thin shell in k space of radius kf further
requiring that they fit into the computational domain. We also
exclude the case ky = 0 to avoid a mean field or flow to be
directly sustained.

2.6. Suppression of the vorticity dynamo

The runs with shear alone (Ω = 0) are prone to a hydrody-
namic instability, leading to the generation of mean flows and
usually referred to as the vorticity dynamo (see, e.g. Elperin
et al. 2003; Käpylä et al. 2009). As in Käpylä et al. (2020),
we prefer to suppress these flows, to focus on studying the
magnetic shear current effect in isolation. The procedure
adopted there, namely subtracting xy averaged mean flows,
is not a sufficient measure here as not all the mean flows are
captured. Hence, we turn to another method, namely sup-
pressing the vorticity dynamo by adding a small amount of
rotation to the system. For Ω and S of opposite sign, which
is the standard case in galactic and accretion disks, we would
be limited to the range where q ≡ −S/Ω < 2, as at the upper
limit the flow would become Rayleigh unstable. If we, how-
ever, choose the same sign, hence a negative q, we can avoid
this limitation. Here, we investigate values of q in the range
[−40, ...,−10], and choose the maximum value that still sup-
presses the vorticity dynamo, but does not yet significantly
affect the test field measurements; see Sect. 3.2.1.

2.7. Input and output quantities

The simulations are fully defined by choosing shear param-
eter S, rotation rate Ω, the forcing amplitude and wavenum-
ber, kf , and the diffusivities ν and η. For normalizations we
use the length scale k−11 , with k1 = 2π/L, where L is the ex-
tent of the simulation domain in any direction, and the acous-
tic time scale τs = (csk1)−1. Rotation rate Ω and shear rate

S are normalized by the acoustic time scale as Ω̃ = Ωτs and
S̃ = Sτs, respectively, and wavenumbers as k̃ = k/k1. The
boundary conditions are periodic in y and z, while shearing–
periodic in x.

For the velocity field, we define a time-averaged root-
mean-square (rms) value as urms =

〈
〈u2〉1/2

〉
t
, and a

time-dependent variant urms(t) = 〈u2〉1/2. Here, 〈.〉 de-
notes volume averaging and 〈.〉ξ averaging over a coordi-
nate ξ. Similarly, we define rms values for the magnetic
field Brms =

〈
〈B2〉1/2

〉
t
, and Brms(t) = 〈B2〉1/2, while

Bi,rms =
〈
B

2

i

〉1/2
z

are the rms values of the mean field com-
ponents. The magnetic field is normalized by the equiparti-
tion field strength, Beq =

〈
〈ρu2〉1/2

〉
t
. Simulation results

are often shown as functions of the time in units of turnover
time, turmskf .

For diagnostics, we quantify the strength of the turbulence
by the fluid and magnetic Reynolds numbers

Re =
urms

νkf
, ReM =

urms

ηkf
= PrM Re, (39)

where

PrM =
ν

η
, (40)

is the magnetic Prandtl number. The Lundquist number is
given by

Lu =
Brms

ηkf
√
ρref

. (41)

The strength of the imposed shear is measured by the dy-
namic shear number

ShK =
S

urmskf
. (42)

We normalize the turbulent magnetic diffusivity tensor by the
microscopic diffusivity η.

2.8. Interpretation of the dynamo instability

As in Käpylä et al. (2020), we compute three different dy-
namo numbers describing a 1D mean-field dynamo model2,
in which both the coherent SC effect and the incoherent ones
due to αyy and ηyx fluctuations with zero mean are taken into
account. The coherent shear current effect is characterized by

DηS ≡
1

η2T

[(
S

k2z
+ ηxy

)
ηyx + ε2

]
, (43)

where ηT = η+ηt, ηt = (ηxx + ηyy)/2, ε = (ηxx − ηyy)/2,
and kz is the dynamo wavenumber. Our standard approach is
to identify this wavenumber from the Fourier mode growing

2 In Käpylä et al. (2020) we labelled this model “0D” because the explicit z
dependence can be eliminated by employing the ansatzA ∼ exp(ikz)
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fastest during the exponential phase of an LSD and we de-
note it as kz,kin. The incoherent α–shear–driven dynamo is
described by

DαS =
αrms |S|
η2Tk

3
z

, (44)

where we consider in αrms only the fluctuations of αyy . Fi-
nally, for a dynamo driven by the incoherent SC effect due to
fluctuations of ηyx and shear,

DηrmsS =
ηyx,rms |S|
η2Tk

2
z

(45)

is relevant. In Käpylä et al. (2020), we derived the
marginal dynamo numbers for a grid of combinations of
(DηS , DαS , DηrmsS), and we refer the reader to these re-
sults. For orientation, we note that in the absence of the in-
coherent effects, DηS > 1 is required for dynamo action, but
DαS > 2.3 in the absence of the coherent and incoherent SC
effects. The presence of the SC effects increases the value of
this critical DαS , but this influence is mild.

3. RESULTS

3.1. Roberts flow and field

A simple and reliable way of validating the CTFM is to
restrict oneself to two dimensions (x and y) and compare
with the imposed-field method, where αxx,yy = u× b ·
B0/B

2
0x,0y and B0 is a uniform field, imposed in either the

x or the y direction. The two-dimensional case corresponds
to kz = 0, so that no turbulent diffusion can act and only the
α tensor is considered. For the flow (or field) geometry, we
have chosen case I of Roberts (1972), which is a vector field
of the form (− cosx sin y, sinx cos y,

√
2 cosx cos y) having

the Beltrami property. A ponderomotive force is constructed
such that without magnetic field exactly that geometry is ob-
tained in the background flow u(0), that is, the distortion by
the u(0) ·∇u(0) term is compensated and the pressure gra-
dient vanishes as well as the nonlinear part of the viscous
force. In the complementary case of magnetic forcing, an
EMF with just the Roberts geometry is sufficient as due to its
Beltrami property and the linearity of the induction equation
the resulting Lorentz force is zero, no flow is driven, and b(0)

has exactly the Roberts geometry bRob. In Figures 1 and 2 we
show the ReM dependence of αxx = αyy ≡ α for kinetic and
magnetic forcing, respectively (αxy,yx = 0). As in RB10,we
have normalized α by α0K = −urms/2 and α0M = 3brms/4,
respectively.

In the kinetically forced case, we compare with the QK-
TFM and find perfect agreement, as expected. In the mag-
netically forced case, the QKTFM yields the wrong sign of
α, as was already found by RB10in SMHD, while the cor-
responding TFM was found to agree with the imposed-field
method. Comparing their results with those of the CTFM,
we find agreement up to some fixed offset for small values of
Lu; see Figure 2.

Figure 1. ReM dependence αxx = αyy ≡ α for the forced
Roberts flow, agreeing perfectly with the results of the imposed-
field method.

Figure 2. Lu dependence of α for forced magnetic background
with Roberts geometry bRob and PrM = 1, using FMHD with
CTFM (black). Red dashed: SMHD.

In Figure 3 we show the dependence of αxx and αyy on
B0 for the forced magnetic background with Roberts geom-
etry, ν = η and forcing amplitudes between 0.01 and 100
in units where ν = η = k1 = 1. In these cases, flows
are only driven by the Lorentz force. The velocity is gen-
erally small compared with B0/

√
ρref : it can reach 23%

when B0/ηk1
√
ρref = 1, but is smaller both for weaker and

stronger fields. Note that this test case, in which the turbulent
flow is solely induced by the interaction of the imposed field
with the magnetic background turbulence b(0), is quite dif-
ferent from the shear dynamo case studied in the later parts
of the paper, as well as from astrophysical settings in general.
The jb, bb, ju, and bu flavors always give the same results for
the aligned component αxx, also agreeing with those from
the imposed field method, but for strong imposed fields (in
terms of B0/b

(0)
rms), the perpendicular component, αyy, dis-
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Figure 3. B0 dependence of α for the flow-free magnetically
forced background with Roberts geometry u(0) = 0, b(0) = bRob

and PrM = 1 from the CTFM. The results from the imposed-field
method are shown by the blue dashed line and agree with all four
flavors of the CTFM for αxx. The other colored solid lines refer
to αyy and departures are seen with the bu flavor. The ju flavor
(orange) gives even negative values for B0/b

(0)
rms & 7, while the bb

(red) and jb (green) flavors yield αyy = αxx.

agrees significantly among the flavors; see the different lines
in Figure 3. We note that this disagreement is not due to the
added compressibility, but was present already in the SMHD
case of RB10,and was not noticed there. As demonstrated in
Appendix B, the correctness in αxx is systematic and extends
to arbitrary strengths ofB0.

Surprisingly, the slope of the quenching characteristic ex-
hibits now power −5 while in RB10−4 had been observed.
We suggest to attribute this difference to the inclusion of
pressure gradient and self-advection.

3.2. Shear dynamos with SSD magnetic background
turbulence

In this section we perform a continuation study of Käpylä
et al. (2020), where the SMHD equations were used (govern-
ing so-called burgulence) with kinetic and magnetic forcing.
Now we turn to full MHD, forced, however, only kinetically
with a nonhelical form of the forcing. Hence, in all experi-
ments, we set fM to zero. We measure the turbulent transport
coefficients from volume- and time-averaged quantities, ne-
glecting the transients and untrustworthy parts of the time
series, as explained in Sect. 2.3. The incoherent effects are
measured following the same procedure, but rms values are
used: αrms =

〈
〈αyy2〉1/2

〉
t

and ηrms =
〈
〈ηyx2〉1/2

〉
t
. It

should be noted that our values of αrms and ηrms underes-
timate the actual ones, which also include the z dependent
fluctuations.

In all the simulations performed in this section, we have
used the ju flavor of the CTFM. This choice is based on
test runs with the full shear dynamo setup, see Appendix A,

with varying magnetic Prandtl numbers (PrM = 5 . . . 20) and
S̃ = −0.2. These tests revealed that the ju and bb flavors
gave results in good agreement both in the kinematic and the
nonlinear regime with good stability properties of the test
solutions. The jb and bu flavors, however, showed poorer
stability properties, hence runs employing them would have
required extremely small time steps, rendering them unfea-
sible. The tests indicate that the nonlinear CTFM (nCTFM)
may yield correct results in the case of the shear dynamo as
long as the mean field is at most slightly above equipartition
with the velocity fluctuations. However, this is no proof of
its general applicability.

3.2.1. Vorticity dynamo

For certain values of PrM, namely for 5 and 10, while not
for 1 and 20, we see the generation of strong mean flows. In
Figure 4 we compare cases with and without rotation from
purely hydrodynamical counterparts of our MHD runs. With
such experiments we can verify the presence of the mean
flows due to a vorticity dynamo and not due to the backre-
action of the magnetic field. In the case of Ω̃ = 0, hence
shear alone (black line in panel (a), and the zt-diagram in
panel (b)) we see the generation of a strong mean flow, which
first grows exponentially with a dominating k̃z = 1 mode,
and then saturates, exhibiting oscillatory behavior with com-
plicated phase migration. In the MHD runs with TFM, the
mean flows perturb the system to the extent that the test so-
lutions start to grow super-exponentially. The time step be-
comes prohibitively small, and no plateaus can be observed
anymore in the transport coefficients. Hence, all these TFM
measurements have been disregarded.

If a very small amount of rotation is added (panels (c) and
(d) of Figure 4), the instability is suppressed, with urms(t) re-
maining statistically constant throughout the simulation (blue
and orange lines in panel (a)). We see, however, that the ver-
tical length scale of the flow is larger in the case of weaker
(d) than in the case of stronger rotation (c). This indicates
that the q = −40 case has still too weak rotation to fully
suppress the vorticity dynamo, while q = −20 brings the
vertical scales close to the forcing scale k̃f = 10. The pres-
ence of weak mean flows for q = −40 is also reflected in the
slightly larger urms(t) (orange line slightly above the blue
one in panel (a)).

We have run CTFM simulations without shear, but with
rotation rate Ω̃ = −0.01, and also with a ten times higher ro-
tation rate; see Figure 5(a)–(d). One can observe that the cru-
cial ηyx is very similar in the cases with weak rotation, with
shear included (orange lines) or excluded (black lines), while
all the other η components are much more strongly affected.
The diagonal components are clearly larger for S̃ = 0, and
ηxy reverts its sign from strongly positive (with shear) to very
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low values fluctuating about zero (without shear). 3 From the
run with ten times faster rotation (blue lines) we observe that
with increasing rotation rate there is a tendency to revert the
sign of ηyx to positive and to increase its magnitude, while
reverting ηxy to negative values, but with weaker magnitude.
We conclude that for q = −20, the rotation rate is still small
enough not to affect the TFM measurements significantly.
Hence, we select q = −20 as the fiducial parameter for our
runs.

We use this setup for all Prandtl numbers above unity, to
guarantee that no mean flows disturb the measurements. We
note, however, that for PrM = 20 the results are nearly iden-
tical with and without rotation, indicating that the vorticity
dynamo is not active there. This is illustrated in Figure 5(e),
where we show the measurements of the ηyx component with
and without rotation, yielding very similar results in the mid-
ranges of the resetting intervals. The parameters, varied in
the henceforth presented simulations, are the shear rate S̃, the
magnetic Prandtl number PrM, and the forcing wavenumber
kf .

3.2.2. Kinematic runs

We start by presenting the kinematic CTFM analysis of
some shear dynamo models. We stress that the kinematic
method is generally valid and indispensable in studying the
possibility of large-scale dynamo instabilities with magnetic
background turbulence b(0), which is the main goal of this
paper. We vary PrM and ShK, and study the scale depen-
dence of the turbulent transport coefficients by changing the
vertical wavenumber of the test fields, kB . We change PrM
by keeping the magnetic resistivity η fixed. Hence, the larger
PrM, the smaller is Re. The results are summarized in Ta-
ble 1.

In practice, we ran first only the zero problems until sat-
uration, and then forked new runs with the rest of the test
problems turned on. The measurements would not be mean-
ingful before saturation, but this strategy also accelerates the
runs. Despite the low Reynolds numbers, the systems are
already prone to chaotic behavior, and any small perturba-
tion (such as the random seed of the forcing being initialized
differently, or the time step changing slightly when kB is al-
tered) can lead to different small-scale dynamo solutions (for
an extreme example, compare the entries marked with a star
in Table 1). Hence, for investigating the scale dependence
of the coefficients it is desirable to choose runs that have as
similar as possible SSD solutions.

A general observation is that the stronger the SSD, that is,
the stronger the magnetic background turbulence, the weaker

3 Note that in the absence of shear but Ω 6= 0, the off-diagonal elements of
η have to reflect the Rädler effect, hence ηxy = −ηyx. In our results,
however, the signal is drowned out by the fluctuations.

are ηxx, ηyy, and ηxy , while ηyx is always weak and con-
sistent with zero within error bars. We can also notice that
the fluid Reynolds number Re is crucial for the magnitude of
the η components and their fluctuations, all growing with Re,
which is clearly visible when comparing sets with PrM = 1

and 20 at the weakest shear. In these, the SSD is weak, and
the main effect must come from the flow: For PrM = 1,
the diagonal components and ηxy are more than twice, while
ηyx and ηrms an order of magnitude larger. The magni-
tude of αrms/ηtkf remains roughly constant, but note that
ηt = (ηxx + ηyy)/2.

Continuing with analyzing the sets with the weakest shear,
S̃ = −0.05 (i. e., −0.15 < ShK < −0.09) in the high
PrM case, we find the diagonal η components to be roughly
equal, i.e. isotropic within error bars. The low PrM cases
with k̃B = 1 show no anisotropy either, but this is not equally
clear for the higher kB cases, which show weak anisotropy;
this could be due to insufficient integration time though, as no
significant anisotropy is expected in these weak shear runs
without mean magnetic fields and stratification. The high
PrM runs show only weak scale dependence, insignificant
within error bars, while the low PrM runs show a clearly dis-
cernible one, such that the diagonal components are reduced
when kB is increased. ηyx is first positive, but turns to nega-
tive at the highest kB ; yet all values are consistent with zero
within error bars. The fluctuating quantities show no marked
scale dependence at neither Prandtl number.

At moderate shear (S̃ = −0.1, resulting in −0.3 <

ShK < −0.16), the diagonal components show a weak
anisotropy with both Prandtl numbers investigated. However,
for PrM = 1, ηxx is larger than ηyy , while the opposite is
true for PrM = 20. ηyx is negative, but consistent with zero
within error bars for PrM = 20, while significantly positive
for PrM = 1, for all kB . As per the scale dependence, the
diagonal η components and ηxy are decreasing with kB for
PrM = 1, while ηyx is constant. ηrms is decreasing with kB ,
too. The trends in the set with PrM = 20 are just opposite
for the diagonal components and ηxy: they increase with kB .
These differences must reflect the larger influence of shear
on the flow and the stronger SSD generated in the case of
PrM = 20.

At higher shear (S̃ = −0.2, resulting in −0.6 < ShK <

−0.23), the η anisotropy can be observed to get unified:
with all the Prandtl numbers studied, ηxx is systematically
larger than ηyy being statistically significant especially for
PrM = 20. The diagonal components exhibit only a weak
scale dependence in all sets except PrM = 1, where a clear
decrease as a function of kB is seen. ηyx has a clear tendency
of being positive or consistent with zero. ηxy is the compo-
nent showing the most prominent scale dependence with all
PrM used: its magnitude decreases from k̃B = 1 to k̃B = 3

in all runs, although for k̃B = 2, one often finds an increased
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Figure 4. Comparison of the generated mean flows with S̃ = −0.2, Ω̃ = 0 (black line in (a), zt diagram in (b)), S̃ = −0.2, Ω̃ = −0.01
(q = −20; (c), blue line in (a)), and S̃ = −0.2, Ω̃ = −0.005 (q = −40; (d), orange line in (a)). Panel (a) shows the time evolution of
the volume-averaged rms velocity, urms(t). Colors in the zt diagrams encode Uy/cs with extrema ±0.7, ±0.014, and ±0.022, in (b)–(d),
respectively.
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Figure 5. Panels (a)–(d): components of η, measured with CTFM
and normalized to the microscopic diffusivity η. Black: S̃ = 0,
Ω̃ = −0.01; blue: S̃ = 0, Ω̃ = −0.1; orange: S̃ = −0.2, Ω̃ =
−0.01 (q = −20), all for PrM = 10. The time axes have been made
to match at t urmskf = 400 hence orange and blue curves have been
introduced with small offsets (∆t urmskf = 6 and 8, respectively).
Panel (e): ηyx from S̃ = −0.2, PrM = 20 runs with no (black) and
weak (orange) rotation (Ω̃ = −0.01, q = −20).

Figure 6. Volume-averaged rms values of the velocity (urms(t),
black) and the total magnetic field from the main run (Brms(t), yel-
low), magnetic zero solution (b(0)rms(t), orange), rms values of the
mean azimuthal (By,rms, red) and radial (Bx,rms, blue) magnetic
fields from Run nS02Pm1, all normalized to urms.

value in comparison to k̃B = 1. Also ηrms is decreasing as
function of kB , more prominently so the smaller PrM is. We
also note that with high shear and k̃B = 1, ηxx shows high-
frequency oscillations, which vanish at k̃B = 3.

Finally, we have run one set with S̃ = −0.3, ShK ≈
−0.86, and PrM = 20. This set has the strongest SSD, but in
comparison to the second largest shear rate, S̃ = −0.2, the

Figure 7. zt diagrams of By (top) and Bx (bottom) from the main
run of qS02Pm1. The main run of nS02Pm1 is identical up to some
slight differences due to different time steps.

transport coefficients are no longer quenched strongly by it.
Otherwise the anisotropy and scale dependence of the mea-
sured coefficients is very similar.

To summarize, the main findings in this section are the fol-
lowing: the SSD quenches the η components up to a certain
point, while more vigorous kinetic turbulence, quantified by
increasing Re, enhances their magnitude. Scale dependence
is evident only in runs with high enough Re. Strong shear
leads to anisotropy, with ηxx > ηyy. Kinematic calculations
show no evidence for negative values of ηyx within the stud-
ied parameter regime.

3.2.3. Models with Prandtl number of unity

We proceed by discussing runs with PrM of unity and forc-
ing wavenumber k̃f = 5, but the main run with the poten-
tial of LSD now included. This choice is motivated by a re-
cent study by Zhou & Blackman (2021), who highlighted hy-
drodynamical weak-shear cases at low to moderate Reynolds
numbers and PrM = 1 to give rise to a negative ηyx, when
measured with the kinematic TFM. Without further analysis,
such a result could be easily interpreted to be favorable for
SC-effect dynamos, but contradicts all previously published
numerical results that have not reported negative ηyx in this
regime.

As in Sect. 3.2.2, we start the measurements only after sat-
uration of the zero problems and proceed until the saturation
of the evolving mean fields. Runs of this kind are reported
in our tables below with names starting with ‘n’ (nonlinear).
The runs starting with ’k’ refer to the corresponding kine-
matic runs presented in the previous section. We also per-
form QKTFM measurements for each run (names starting
with ‘q’). In the ‘n’ and ‘q’ cases, we compute the turbu-
lent transport coefficients after the saturation of both types of
dynamos (if present).
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Table 1. Summary of the kinematic models with variable PrM, shear rate, and vertical wave number of the test fields.

Run PrM ReM ShK Lu ηxx/η ηyy/η ηyx/η ηxy/η αrms/ηtkf ηrms/η

S005Pm1k1 1 43 -0.09 13 28.794±0.322 28.480±0.227 0.122±0.296 3.413±0.413 0.036±0.012 2.601±0.381
S005Pm1k2 1 44 -0.09 13 26.183±0.317 25.134±0.101 0.468±1.201 3.839±1.100 0.025±0.026 1.282±1.111
S005Pm1k3 1 43 -0.09 12 21.763±0.396 22.083±0.313 -1.707±1.786 1.786±0.556 0.035±0.026 2.241±2.879
S005Pm20k1 20 34 -0.15 16 11.826±0.095 12.100±0.048 0.004±0.091 1.127±0.094 0.039±0.020 0.282±0.158
S005Pm20k2 20 34 -0.15 16 11.754±0.097 11.982±0.051 0.024±0.080 1.112±0.101 0.039±0.021 0.264±0.182
S005Pm20k3 20 34 -0.15 16 11.667±0.366 11.749±0.486 -0.045±0.043 1.189±0.078 0.038±0.024 0.264±0.189

S01Pm1k1 1 47 -0.16 16 36.436±0.354 35.382±0.098 0.435±0.366 8.707±0.718 0.029±0.015 2.839±1.442
S01Pm1k2 1 48 -0.16 15 33.434±0.337 31.845±0.348 0.550±0.201 6.879±0.195 0.030±0.018 2.031±1.251
S01Pm1k3 1 47 -0.16 16 27.735±0.264 26.932±0.335 0.303±0.217 5.271±0.162 0.033±0.019 1.309±0.683
S01Pm20k1 20 32 -0.30 27 7.811±0.139 8.389±0.207 -0.068±0.066 0.908±0.166 0.040±0.018 0.298±0.283
S01Pm20k2 20 32 -0.30 28 7.678±0.283 8.151±0.231 -0.092±0.064 1.063±0.149 0.036±0.020 0.257±0.112
S01Pm20k3 20 32 -0.30 27 8.272±0.255 8.766±0.350 -0.002±0.033 1.000± 0.116 0.033±0.018 0.227±0.147

S02Pm1k1 1 66 -0.23 25 70.218±6.340 65.830±6.636 0.717±0.298 32.987±3.260 0.020±0.009 4.164±1.529
S02Pm1k2 1 66 -0.23 25 56.417±3.857 54.361±3.352 -0.094±0.742 22.979±3.578 0.026±0.016 2.663±0.670
S02Pm1k3 1 63 -0.24 24 43.668±2.935 41.674±3.695 -0.132±0.326 14.530±1.093 0.032±0.023 1.478±0.634
S02Pm5k1 5 16 -0.48 17 4.149±1.205 4.317±1.542 0.063±0.071 5.192±0.215 0.043±0.017 0.515±0.143
S02Pm5k2 5 16 -0.48 17 4.765±0.776 4.576±0.919 0.019±0.070 4.993±0.208 0.036±0.017 0.370±0.175
S02Pm5k3 5 16 -0.48 16 5.444±0.515 5.045±0.578 0.043±0.037 3.180±0.381 0.031±0.013 0.259±0.083
S02Pm10k1 10 42 -0.47 45 12.729±0.989 12.197±1.002 0.059±0.109 5.918±0.179 0.030±0.011 0.787±0.475
S02Pm10k2 10 42 -0.47 44 13.203±0.467 12.637±0.611 0.139±0.053 6.440±0.306 0.027±0.011 0.542±0.239
S02Pm10k3 10 42 -0.47 44 13.416±0.481 12.514±0.879 0.154±0.039 5.009±0.320 0.027±0.009 0.468±0.165
S02Pm20k1 20 33 -0.60 45 5.438±0.278 4.808±0.138 0.042±0.103 3.282±0.738 0.046±0.019 0.296±0.061
S02Pm20k2 20 33 -0.60 45 5.503±0.152 4.900±0.141 0.064±0.084 4.462±0.416 0.045±0.023 0.269±0.083
S02Pm20k3 * 20 33 -0.60 44 6.099±0.140 5.372±0.232 0.041±0.013 1.569±0.784 0.046±0.013 0.326±0.084
S02Pm20k3 * 20 33 -0.60 39 6.832±0.077 6.707±0.392 -0.020±0.043 2.255±0.079 0.035±0.018 0.224±0.064

S03Pm20k1 20 35 -0.86 55 5.711±0.559 5.259±0.627 -0.043±0.053 8.692±0.458 0.039±0.022 0.240±0.129
S03Pm20k2 20 35 -0.86 56 5.898±0.230 5.242±0.133 0.076±0.072 7.846±0.820 0.038±0.014 0.202±0.153
S03Pm20k3 20 35 -0.86 56 6.274±0.255 5.359±0.161 0.114±0.052 5.511±0.480 0.039±0.022 0.241±0.129

Note. The run labels are constructed from the pattern SXXPmYYkZ, where XX indicates the magnitude of the negative S̃, YY the used
magnetic Prandtl number PrM, and Z the vertical wave number of the test fields, k̃B . The sets with fixed shear and variable Prandtl number are
separated by double horizontal lines. The forcing wave number is k̃f = 5 for PrM = 1 and k̃f = 10 for higher PrM. Runs with a star symbol
have different SSD solutions.
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We begin by presenting results from two runs without
shear and rotation employing CTFM and QKTFM, integrated
over six thousand turnover times; see the first entries in Ta-
ble 2. For these setups, an SSD is present, resulting in ini-
tial exponential growth of the magnetic field, which then sat-
urates at around 400 turnover times. After that, the mag-
netic energy stays close to its average saturation value of
Lu ≈ 0.25 ReM. We see that both methods give consistent
results: the diagonal elements are isotropic, i.e., roughly of
the same magnitude within error bars, and the off-diagonal
elements are consistent with zero. These runs were inte-
grated twice as long as any other run, hence their error bars
reflect the minimal level achievable with realistic computa-
tion times. The agreement of CTFM and QKTFM is not self-
evident: Given the weakness of the SSD, we interpret it as an
indication of strong dominance of the contribution u× b(B)

to the mean EMF over u(B) × b(0); see Sect. 2.2.
By adding shear, we find that the SSD is enhanced in

terms of its saturation strength, as indicated by the increas-
ing Lundquist number (Lu) in Table 2. The growth rate also
increases somewhat as function of the shear rate; for a typ-
ical case see Figure 7 with the largest shear number in this
set. The rms strength of the total magnetic field reaches
Lu ≈ 0.42ReM at the highest shear. In all cases, the mag-
netic fields of the zero problem and the main run are of sim-
ilar strength; correspondingly, the mean fields reach maxi-
mally a few percent of the equipartition strength at the high-
est shear rate. None of the constituents of the magnetic field
show significant growth after the SSD has saturated; see Fig-
ure 6. Obviously, shear and turbulence have only the capa-
bility of generating short-lived large-scale patches inBy (see
Figure 7), persisting only over a few tens to maximally a cou-
ple of hundred turnover times. The timescale of persistence is
even shorter in Bx (maximally a few tens). The wavenumber
of these patches is k̃z = 1, which is used both as the vertical
wavenumber of the test fields in all the measurements, and to
compute the dynamo numbers for these runs; see Table 3.

Differences in ηyx between CTFM and QKTFM start
to emerge when shear is increased. As was reported in
Sect. 3.2.2, the kinematic CTFM (kCTFM) gives consistently
positive values for all values of S̃, although for the weakest
shear, S̃ = −0.05, the error bars are too large to be certain
about the positive sign. Results in close agreement are found
beyond kinematics. This is expected as no clear LSD is oper-
ational and thus the two versions of the CTFM have to agree.
The QKTFM, however, yields negative ηyx within error bars
with all shear numbers investigated. Hence, we can repro-
duce the results of Zhou & Blackman (2021) of negative ηyx
with the QKTFM, but the results of the CTFM do not lend
support to them.

As per the other η components, we note that the QKTFM
yields larger diagonal components in comparison to the

CTFM with main run, especially in the cases with high shear.
Both methods give positive values of ηxy , but the values re-
trieved with the QKTFM are larger than those with CTFM.

We note that in one case, namely with S̃ = −0.1, the back-
ground turbulence, in terms of both the flow and magnetic
field zero solutions u(0) and b(0), is statistically different
between the kinematic and nCTFM runs. We re-iterate that
such differences can emerge even in mildly turbulent flows,
e.g., due to differences in the time step. Simultaneously, we
observe a difference in the measured transport coefficients,
such that the diagonal components are larger by about 25%
in the kinematic run. Given the weakness of the mean field,
we attribute these marked differences to the difference in the
background turbulence. In Sect. 3.2.2 we saw that SSD can
diminish the transport coefficients, while a higher level of
kinetic turbulence enhances them. In the present case, both
effects are present, given the larger ReM and Lu in the kine-
matic run. This result suggests that the enhancing effect by
more vigorous kinetic turbulence is stronger than the sup-
pressing effect by the SSD in this shear regime. In the case
S̃ = −0.2, differences in ReM and Lu can again be observed,
again indicative of the background turbulence being differ-
ent between the kinematic and the nonlinear runs. However,
these differences are smaller than for S̃ = −0.1, which ex-
plains the weaker impact on the coefficients (≈ 15%), al-
though weak mean-field effects cannot be ruled out either.

We also compute the dynamo numbers, following the pro-
cedure described in Sect. 2.8 and report them in Table 3. We
note that in the shearless case, DηS is ideally zero, but not in
practice due to limited accuracy of the measurements. With
all the shear rates investigated, the dynamo numbers remain
subcritical both with respect to the coherent SC effect and the
incoherent ones (for a complete analysis, see Käpylä et al.
2020). This is in perfect agreement with the observation of
the mean fields to remain weak with hardly any growth, ex-
cept for a slight increase inBy . This is most likely the reason
why in the earlier study of Brandenburg et al. (2008a) em-
ploying the QKTFM, which concentrated on analyzing the
regime with generation of strong large-scale fields, no atten-
tion was paid to this parameter regime. We also regard it
to be insignificant for the investigation of dynamos in shear
flows.

3.2.4. Varying Prandtl number and moderate shear

Next we map out a part of the parameter space where the
generation of significant large-scale magnetic fields occurs.
One such regime can be found when k̃f = 10 and PrM is
increased, while keeping the shear number ShK at moder-
ate values. The results are summarized in Table 4. For runs
with 5 ≤ PrM ≤ 20, we find mean magnetic field configu-
rations closely matching those of (Brandenburg et al. 2008a;
Squire & Bhattacharjee 2015); see Figure 8. In contrast to
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Run ReM ShK Lu ηxx/η ηyy/η ηyx/η ηxy/η αrms/ηtkf ηrms/η

nS00Pm1 43 0 12 26.491±0.321 26.919±0.463 0.094±0.156 0.233±0.429 0.044±0.016 2.873±0.985
qS00Pm1 43 0 12 27.298±0.207 26.922±0.051 0.110±0.138 -0.159±0.422 0.045±0.016 3.353±1.423
kS005Pm1 43 -0.09 13 28.794±0.322 28.480±0.227 0.122±0.296 3.413±0.413 0.036±0.012 2.601±0.381
nS005Pm1 43 -0.09 13 28.516±0.549 28.158±0.502 -0.151±0.320 4.006±0.125 0.038±0.011 2.810±0.679
qS005Pm1 43 -0.09 13 29.107±0.377 28.621±0.517 -0.543±0.318 4.070±0.302 0.039±0.012 2.987±0.829
kS01Pm1* 47 -0.16 16 36.436±0.354 35.382±0.098 0.435±0.366 8.707±0.718 0.029±0.015 2.839±1.442
nS01Pm1* 43 -0.19 13 27.413±0.291 27.604±0.478 0.552±0.378 6.923±0.129 0.036±0.014 2.401±0.558
qS01Pm1 46 -0.17 18 38.173±0.653 36.291±0.830 -1.033±0.829 11.399±0.924 0.039±0.011 5.107±1.501
kS02Pm1 * 66 -0.23 25 70.218±6.340 65.830±6.636 0.717±0.298 32.987±3.260 0.020±0.009 4.164±1.529
nS02Pm1 * 62 -0.25 28 59.060±3.234 57.019±2.562 0.390±0.554 29.457±2.578 0.020±0.011 3.391±1.806
qS02Pm1 65 -0.24 28 70.091±0.825 70.265±0.564 -0.568±0.277 42.854±0.917 0.027±0.008 5.468±1.317

Table 2. Summary of the PrM = 1 runs with varying shear rate.

Note. Runs marked with ‘q’, ‘k’ and ‘n’ have been analyzed with the quasi-kinematic TFM (QKTFM), the kinematic version of the CTFM
(no main run), and the CTFM including the main run, respectively. Boldfaced: runs most compatible with Zhou & Blackman (2021). We note
that they used purely hydrodynamic simulations with the kinematic TFM, hence retrieving the kinetic contribution to ηyx. Runs marked with *
indicate cases, where the magnetic background turbulence is not statistically similar.
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Table 3. Dynamo numbers for the runs with PrM = 1 and variable
shear rate.

Run −S̃ k̃z,kin k̃z,sat k̃B DηS DηrmsS DαS

nS00Pm1 0 1 1 1 9×10−5 0 0
qS00Pm1 0 1 1 1 2×10−5 0 0
kS005Pm1 0.05 1 1 1 -0.0135 0.2961 0.7048
nS005Pm1 0.05 1 1 1 0.0169 0.3265 0.6812
qS005Pm1 0.05 1 1 1 0.0585 0.3350 0.6829
kS01Pm1 0.1 1 1 1 -0.0609 0.4168 0.8029
nS01Pm1 0.1 1 1 1 -0.1870 0.5908 1.1218
qS01Pm1 0.1 1 1 1 0.1339 0.6988 1.0811
kS02Pm1 0.2 1 1 1 -0.0542 0.3496 0.4357
nS02Pm1 0.2 1 1 1 -0.0076 0.0973 0.0600
qS02Pm1 0.2 1 1 1 0.0401 0.4317 0.5277

Note. The dynamo numbers are calculated based on the wavenum-
ber kz,kin of the fastest growing Fourier mode in the kinematic stage
of the LSD. The other wavenumbers are those of the mode dominat-
ing in the saturation stage of the LSD, kz,sat, and those of the test
fields, kB .

the weak, incoherent, and short-lived patches seen in Fig-
ure 7, the mean azimuthal field grows to near equipartition;
see further Figure 9. The k̃z = 1 mode emerging in the non-
linear stage exhibits phase coherence nearly throughout the
whole 5000 turnover times of the run. Likewise, Bx shows
faint hints of the same pattern, but with a sign opposite to
By .

The properties of the obtained SSDs and LSDs are as fol-
lows: the mean azimuthal field grows always to near equipar-
tition as can be seen from Figure 10. The dynamo growth
rates depend on ReM, hence the SSD grows slowest for
PrM = 5, and faster for PrM = 10 and 20, with nearly
equal growth rates. For PrM = 5, the SSD saturates below
equipartition, but very close to it for the higher Prandtl num-
bers. After saturation of the SSD, mainly By continues to
grow. Again, the highest PrM and ReM cases show the fastest
growth, which is, however, distinctly slower than that of the
SSD. For PrM = 5, the LSD grows the slowest, and, because
its SSD’s saturation strength was lower4, growth is seen also
in Bx. Its growth rate, however, is different from that of
By , which is somewhat atypical of “standard” dynamos and
could be taken indicative of eigenmodes that consist of only
one component; see Rheinhardt et al. (2014); Brandenburg
& Chen (2020) for examples. However, for an LSD based on

4 As we diagnose the mean field in terms of the rms values of Bx,y , high
vertical wavenumber modes enter. Hence, if the SSD is strong and LSD is
weak, these modes will dominate, and the growth of the low wavenumber
modes (the actual mean field) cannot necessarily be seen.

the coherent effects alone this can be ruled out here. Even-
tually, the Bx components grow equally strong in all cases,
while the saturation strength ofBy is the highest for the high-
est PrM, but this component undergoes semi-regular oscil-
lations in all the runs. The total magnetic field saturation
strength is largest in the highest PrM runs, see the Lundquist
numbers in Table 4.

It is very difficult to disentangle the wavenumber of the
preferentially growing Fourier mode of the LSD, as the SSD
‘contaminates’ the growth rates: all modes exhibit exponen-
tial growth with the same growth rate as long as LSD and
SSD grow simultaneously (for a more detailed analysis of a
similar system; see Väisälä et al. 2021), and separating the
growth rates of these two instabilities is impossible. Hence,
we have to rely on the following means of separation: We
perform a dedicated set of runs, where we first remove the
mean magnetic field at each time step, while letting the SSD
grow until saturation. After that we continue the simula-
tions, but with the mean fields allowed to grow from very
small seeds. Now only the eigenmodes of the LSD grow,
so we can determine the fastest growing of them and ex-
tract its wavenumber kz,kin. For PrM = 5 and 10 we obtain
k̃z,kin = 2, while k̃z,kin = 3 for PrM = 20. As is evident
from Figure 8, in the saturated stage, the mode of wavenum-
ber unity takes over, thus k̃z,sat = 1. This happens in all
LSD–active simulations, as can be seen from Table 5. In this
section, we use the former (growth phase) wavenumber in
the kinematic CTFM measurements and the latter (nonlinear
phase) one in the nonlinear counterparts.

From Table 4 we observe that with none of the employed
TFMs the measured ηyx is negative. Hence, it is unlikely that
these dynamos are driven by the coherent magnetic SC effect.
We observe that for the highest PrM investigated, the diago-
nal components of η get significantly anisotropic when mea-
sured with the CTFM, such that ηxx is exceeding ηyy. Since
this anisotropy is also recovered with the kinematic version,
it cannot solely be due to the mean magnetic field, but must
also reflect the growing influence of the shear, given that ShK
is growing with PrM. Contrariwise, we note that the QK-
TFM does not reveal this anisotropy at all. Moreover, for the
highest PrM, the two methods tend to return ηxy with differ-
ent sign – still positive for CTFM, but negative for QKTFM.
QKTFM also shows opposite anisotropy with ηyy exceeding
ηxx, albeit insignificant within error bars.

Although the background turbulence of the kinematic and
the nonlinear (‘n’ and q’) runs in this set is satisfactorily sim-
ilar, the strength of the mean field may differ within the latter
ones, depending on, e.g., how long the runs have been in-
tegrated, or whether the mean-field was removed before the
saturation of the SSD or not. Hence, in Table 4, we indicate
the runs, where the mean field strength is clearly different
with a star, see the PrM = 5 set. Here, the kCTFM and
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Table 4. Summary of the models with variable PrM and fixed shear rate.

Run PrM ReM ShK Lu ηxx/η ηyy/η ηyx/η ηxy/η αrms/ηtkf ηrms/η

kS02Pm5 5 16 -0.48 17 4.765±0.776 4.576±0.919 0.019±0.070 4.993±0.208 0.036±0.017 0.370±0.175
nS02Pm5* 5 16 -0.50 22 4.235±0.181 4.210±0.220 0.173±0.016 0.634±0.136 0.028±0.012 0.194±0.087
qS02Pm5* 5 16 -0.49 18 5.910±1.429 6.034±1.388 0.273±0.125 1.994±1.447 0.025±0.009 0.381±0.315
kS02Pm10 10 42 -0.47 44 13.203±0.467 12.637±0.611 0.139±0.053 6.440±0.306 0.027±0.011 0.542±0.239
nS02Pm10 10 42 -0.47 48 14.832±1.066 14.923±1.042 0.501±0.035 3.710±1.178 0.026±0.011 0.659±0.246
qS02Pm10 10 42 -0.47 49 13.276±1.528 13.541±1.641 0.400±0.077 2.160±1.844 0.030±0.011 0.631±0.376
kS02Pm20 20 33 -0.60 44 6.099±0.140 5.372±0.232 0.041±0.013 1.569±0.784 0.046±0.013 0.326±0.084
nS02Pm20 20 33 -0.60 47 7.356±0.807 5.608±0.486 0.000±0.042 0.874±0.326 0.041±0.020 0.202±0.128
qS02Pm20 20 33 -0.61 47 5.696±0.462 6.008±0.528 0.033±0.021 - 1.017±0.533 0.045±0.011 0.228±0.094

Note. Conventions as in Table 2, except for the star indicating different levels ofB, while the background turbulence is roughly similar. As per
the scale of the test fields, in the kinematic CTFM runs we use kB corresponding to the one seen in the main run during the growth phase of the
magnetic field, while in the nCTFM ones, k̃B = 1 is used in all cases.
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Table 5. Dynamo numbers for the models with variable PrM and
fixed shear rate.

Run PrM k̃z,kin k̃z,sat k̃B DηS DηrmsS DαS

kS02Pm5 5 2 1 2 -0.1137 2.3003 4.2421
nS02Pm5 5 2 1 1 -1.2616 1.4233 2.9659
qS02Pm5 5 2 1 1 -1.1108 1.5666 2.4237
kS02Pm10 10 2 1 2 -0.3556 1.4004 3.4350
nS02Pm10 10 2 1 1 -0.9868 1.3086 2.9487
qS02Pm10 10 2 1 1 -0.7421 1.5195 3.5596
kS02Pm20 20 3 1 3 -0.1981 1.5581 3.1317
nS02Pm20 20 3 1 1 0.0124 0.8021 2.6719
qS02Pm20 20 3 1 1 -0.1564 1.0812 3.2568

Note. Conventions as in Table 3. For the kinematic CTFM mea-
surements (label ‘k’, no main run), the listed kz,kin and kz,sat have
been obtained from the corresponding CTFM run with main run (la-
bel ‘n’).

nCTFM calculations yield very similar magnitudes of the di-
agonal η components, but QKTFM somewhat larger ones,
albeit with large error bars. In the case of PrM = 10 and 20,
the diagonal η components from the nonlinear runs exceed
their kinematic counterparts. The fluctuating coefficients are
nearly always suppressed in the nonlinear runs.

We can also observe that with the highest PrM, ηyx is
approaching zero with all of the methods used while being
much larger and positive with lower PrM. This could be in-
dicative of a tendency of ηyx to change sign as PrM is in-
creased further. We tried to investigate this regime with the
CTFM, but observed the test solutions to get unstable, with
super-exponential, likely unphysical growth. Accordingly,
the measurements become unreliable. Preliminary results
from the QKTFM, indeed indicate a sign change of ηyx to
negative, but without the possibility of properly utilizing the
CTFM, we leave this to be investigated in forthcoming work.

The kinematic dynamo numbers listed in Table 5, clearly
predict positive growth rates for all PrM, as evidenced by the
1D mean-field dynamo model. The nCTFM gives predictions
closer to marginality, slightly subcritical for PrM = 5 and 10,
and clearly critical for PrM = 20. Those returned by the QK-
TFM do not predict dynamo action for PrM = 5, but for
larger PrM, they are clearly supercritical, hence more consis-
tent with the kCTFM measurements. In all cases in this set,
the incoherent effects are sufficient to explain dynamo action,
with often slight, but far from fatal inhibition by the coherent
effect. We note that for PrM = 20, the nCTFM yields pos-
itive dynamo numbers DηS for the coherent SC effect, but
these are clearly below the critical one; moreover, the corre-

Figure 8. zt diagrams of By (top) and Bx (bottom) from from the
main run of qS02Pm20. The main run of nS02Pm20 is identical up
to some slight differences due to different time steps.

Figure 9. As Figure 6, but for Run nS02Pm20.

sponding ηyx values turn out to be insignificant within error
bars.

3.2.5. Dependence on the shear rate

Here, we investigate the shear rate dependence of the trans-
port coefficients and the LSD at PrM = 20. The main results
are presented in Table 6. We perform additional sets of runs
with shear rates S̃ = −0.05,−0.1, and −0.3. As per the
efficiency of the LSD, we notice that the strongest mean az-
imuthal field By in terms of equipartition is obtained with
S̃ = −0.2. For that value, roughly 70% of the magnetic en-
ergy is in the mean field. For S̃ = −0.1 the corresponding
fraction is 30%, and 55% for S̃ = −0.3. Topology and coher-
ence of the mean field in the nonlinear stage do not change as
a function of shear rate: in all runs, we see the dominance of
a coherent k̃z,sat = 1 mode. The modes growing in the kine-
matic stage have k̃z,kin = 2 for the two lower shear rates,
and k̃z,kin = 3 for the two higher ones. By comparing the



COMPRESSIBLE TEST-FIELD METHOD AND SHEAR DYNAMOS 19

Figure 10. Volume-averaged rms values of the total magnetic
field from the main run (Brms(t), solid), rms values of the mean
azimuthal (By,rms, dashed), and radial (Bx,rms, dotted) fields from
three different runs. Black: qS02Pm5, orange: qS02Pm20, blue:
qS02Pm10.

kCTFM runs with variable shear rate, we can also observe
that shear enhances the SSD: in the case of the highest shear
rate, the values of Lu are larger than in any other set, and
at times there is even a superequipartition b(0) for the two
higher shear rates. The presence of a more vigorous SSD,
however, does not seem to boost the LSD indefinitely with
increasing shear, as the fraction of the energy in the mean
field is lower in the S̃ = −0.3 case than in the S̃ = −0.2

one.
The correctness of the nCTFM with Lu as high as for the

highest shear rate, S̃ = −0.3, is no longer granted. Hence,
for this shear rate, we report measurements with the QKTFM
and kCTFM; for all other shear rates we judge the method
valid, and report full sets of results. The diagonal compo-
nents of η do not manifest marked anisotropy until |S̃| ≥ 0.2,
corresponding to |ShK| & 0.5. Then, the CTFM indicates
ηxx > ηyy within error bars, while the QKTFM rather tends
to ηyy > ηxx, yet to be considered insignificant in view of
the error bars. QKTFM shows a sign change of ηxy , when
|S̃| ≥ 0.1, while the CTFM yields positive values. The kine-
matic variant shows increasing values of ηxy as function of
shear rate, while the nonlinear variant indicates rather de-
creasing ones. The most marked difference of the methods
is seen for ηyx: the kCTFM yields negative, but insignificant
values for weak shear, but then significant positive values for
strong shear. The nonlinear version, in contrast, shows large
positive values with weak shear, and a much reduced value at
the highest shear that this method is applicable for. The QK-
TFM is in rough agreement with the trends of the nCTFM.

The retrieved dynamo numbers (Table 7) indicate slightly
subcritical incoherent dynamos for the lowest shear rate, but
clearly supercritical incoherent dynamos for all other shear

rates. The prediction for the coherent SC-effect dynamo is
unfavorable, except for S̃ = −0.1, where a positive, yet still
subcritical DηS is obtained with the kCTFM.

4. CONCLUSIONS

This work presents the compressible test-field method
(CTFM) applicable to full MHD with magnetic background
turbulence. We present an extensive set of tests using 2D ve-
locity and magnetic fields of Roberts geometry, for which
it has long been known that the quasi-kinematic test-field
method (QKTFM) completely fails (giving even the wrong
sign ofα) when a (force-free) magnetic background is forced
(RB10).We find agreement in α between the CTFM and the
imposed-field method, when the ratio of the imposed field
to the forced magnetic background B0/b

(0)
rms is smaller than

≈ 7.
Tests with the shear dynamo setup reveal agreement of

two different nonlinear flavors of the CTFM up to Lundquist
numbers of B of at least 25 while Brms/b

(0)
rms is not exceed-

ing≈ 0.8. We also compare with the SMHD approach of our
earlier study (Käpylä et al. 2020), which neglects the pres-
sure gradient, and find some mild discrepancies due to the
former omission of this term.

We proceed by applying the CTFM to the case of shear dy-
namos, where our previous study was limited to SMHD with
magnetic forcing, and was hence deemed inconclusive. In
this work, we use full MHD subject to kinetic non-helical
forcing only and moderate ReM, yet resulting in vigorous
small-scale dynamo (SSD) action. We mostly concentrate
on analyzing the kinematic CTFM results due to their gen-
eral validity, while also presenting results of nonlinear CTFM
(nCTFM) within its validity range, and QKTFM ones for
comparison. We largely confirm the results of the earlier
study, namely, the finding of large-scale dynamos (LSD)
excited by the incoherent α–shear effect, in the parameter
regime of moderate shear numbers (ShK ≈ −0.3 . . . − 0.9)
and magnetic Prandtl numbers PrM = 5 . . . 20. With PrM =

1, where Zhou & Blackman (2021) measured negative ηyx
(favorable for the coherent SC-effect dynamo) with the QK-
TFM, we find uninterestingly weak LSD, and the CTFM does
not confirm the QKTFM measurements.

Parameter regimes studied in this work are limited to mod-
erate PrM and ShK. What prevented us from extending our
analysis beyond these limits is the aforementioned enhanced
instability of the test solutions either in the presence of strong
mean flows or very strong magnetic fluctuations. Further
studies in this regime might be enabled by using higher res-
olution and even smaller time steps, greatly increasing the
computational challenge, though. Another avenue for future
research would be to assess the importance of the density
in the Lorentz force, where we have replaced it by a con-
stant reference value. It is conceivable that density variabil-
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Table 6. Summary of the runs with varying shear rate and PrM = 20.

Run −S̃ ReM ShK Lu ηxx/η ηyy/η ηyx/η ηxy/η αrms/ηtkf ηrms/η

kS005Pm20 0.05 34 -0.15 16 11.754±0.097 11.982±0.051 0.024±0.080 1.112±0.101 0.039±0.021 0.264±0.182
nS005Pm20 0.05 34 -0.15 18 12.036±0.655 12.191±0.630 0.133±0.061 1.297±0.241 0.043±0.013 0.547± 0.278
qS005Pm20 0.05 33 -0.15 20 11.116±2.280 11.398±2.113 0.135±0.089 1.013±0.677 0.046±0.020 0.552±0.354
kS01Pm20 0.1 32 -0.30 28 7.678±0.283 8.151±0.231 -0.092±0.064 1.063±0.149 0.036±0.020 0.257±0.112
nS01Pm20 0.1 33 -0.30 28 9.152±1.560 9.506±1.551 0.203±0.121 1.236±0.878 0.040±0.019 0.345±0.233
qS01Pm20 0.1 32 -0.31 35 6.696±0.309 7.097±0.308 0.041±0.011 -0.426±0.115 0.050±0.013 0.297±0.087
kS02Pm20 0.2 33 -0.60 44 6.099±0.140 5.372±0.232 0.041±0.013 1.569±0.784 0.046±0.013 0.326±0.084
nS02Pm20 0.2 33 -0.60 47 7.356±0.807 5.608±0.486 0.000±0.042 0.874±0.326 0.041±0.020 0.202±0.128
qS02Pm20 0.2 33 -0.61 47 5.696±0.462 6.008±0.528 0.033±0.021 -1.017±0.533 0.045±0.011 0.228±0.094
kS03Pm20 0.3 35 -0.86 56 6.274±0.255 5.359±0.161 0.114±0.052 5.511±0.480 0.039±0.022 0.241±0.129
qS03Pm20 0.3 34 -0.87 60 5.813±0.311 5.933±0.333 0.055±0.022 -0.693±0.695 0.039±0.009 0.188±0.062

Note. Conventions as in Table 2.

Table 7. Dynamo numbers for the models with varying shear rate
and PrM = 20.

Run −S̃ k̃z,kin k̃z,sat k̃B DηS DηrmsS DαS

kS005Pm20 0.05 2 1 2 -0.0236 0.1952 2.1389
nS005Pm20 0.05 2 1 1 -0.0957 0.3979 2.0790
qS005Pm20 0.05 2 1 1 -0.1110 0.4594 2.4033
kS01Pm20 0.1 2 1 2 0.2891 0.8237 4.5000
nS01Pm20 0.1 2 1 1 -0.4746 0.8095 4.3888
qS01Pm20 0.1 2 1 1 -0.1653 1.1906 6.2656
kS02Pm20 20 3 1 3 -0.1981 1.5581 3.1317
nS02Pm20 20 3 1 1 0.0124 0.8021 2.6719
qS02Pm20 20 3 1 1 -0.1564 1.0812 3.2568
kS03Pm20 0.3 3 1 3 -0.7848 1.4347 2.6384
qS03Pm20 0.3 3 1 1 -0.3848 1.3288 3.4519

Note. Conventions as in Table 3.

ity becomes important at high Mach numbers, which is a
regime that has not yet received much attention; but see Ro-
gachevskii et al. (2018) for specific predictions.
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Käpylä, P. J., Mitra, D., & Brandenburg, A. 2009, PhRvE, 79,

016302
Ossendrijver, M., Stix, M., & Brandenburg, A. 2001, A&A, 376,

713
Pencil Code Collaboration, Brandenburg, A., Johansen, A., et al.

2021, J. Open Source Softw., 6, 2807
Rheinhardt, M., & Brandenburg, A. 2010, A&A, 520, A28 (RB10)
—. 2012, Astron. Nachr., 333, 71
Rheinhardt, M., Devlen, E., Rädler, K.-H., & Brandenburg, A.
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Figure 11. Comparison of the ju (orange lines) and bb (black lines) flavors in the nonlinear stage for PrM = 20 and S̃ = −0.2 with Lu ≈45
based on the total field strength, and ≈25 based on the mean-field strength, while Brms/b

(0)
rms = 0.78

APPENDIX

A. SHEAR DYNAMO TEST EXPERIMENTS

Given the results from the experiments with Roberts forcing where the nCTFM failed to reproduce some of the α coefficients
for imposed fields yielding Lundquist numbers above 10, it is important to verify whether the nonlinear method is valid in shear
dynamo cases as the generated mean fields at high shear and PrM reach a strong field regime. In case of the Roberts forcing, we
had a generally valid method, namely the imposed field one, to compare the CTFM results with, but for determining η from a
shear dynamo such an alternative does not exist. Hence, we must rely on the comparison of the different flavors of the CTFM,
which may provide indication for correctness, but no definite proof. We have re-run many of our shear dynamo runs with the
bb flavor, and show in Figure 11 a comparison with the ju flavor in the nonlinear regime of a typical case with a strong mean
field. We plot the time series of the η components for seven resetting intervals of the test problems. The diagonal components
from both methods agree very well, as can be seen from the top row of Figure 11. The agreement of the off-diagonal components
(lower row) is somewhat poorer, but still acceptable. The ηyx component from the bb flavor shows a slight systematic offset to
more positive values, but as this component is small and its time average nearly always consistent with zero within error bars, we
conclude that this difference is not significant. The agreement for ηxy is again rather good.
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B. OCCASIONAL CORRECTNESS OF THE NONLINEAR METHOD

Consider the equations for a(B), u(B) and h(B) of the main run with imposed uniform fieldB0

DAa(B) =U × b(B) + u×B0 +
(
u× b(B) + u(B) × b(0)

)′
+ η∇2a(B), (B1)

DUu(B) =−∇h(B) + ρ−1ref

[
j ×B0 +

(
j × b(B) + j(B) × b(0)

)′]
−U ·∇u(B) − u(B) ·∇U −

(
u ·∇u(B) + u(B) ·∇u(0)

)′
(B2)

+ν
(
∇2u(B) + ∇∇ · u(B)/3

)
+ 2ν

[
S ·∇h(B) + s(B) ·∇H +

(
s ·∇h(B) + s(B) ·∇h(0)

)′]
/c2s ,

Dh(B) =−U ·∇h(B) − u(B) ·∇H −
(
u ·∇h(B) + u(B) ·∇h(0)

)′
− c2s∇ · u(B), (B3)

where the nonlinear terms are here written in the same way as described in Sect. 2.1.4 for the ju flavor of the test problems.
Accordingly, the mean EMF is expressed as E(B) = u× b(B) + u(B) × b(0). Note, though, that here these writings represent
equivalent rearrangements. Now let us multiply the equations with a constant factor g and redefine the variables as a(B) := ga(B),
u(B) := gu(B), h(B) := gh(B), and E(B) := gE(B). Of course, for g 6= 1, no longer a = a(0) + a(B) etc. holds. We see that
the system is now equivalent to that of flavor ju of the test problems with the test field BT set equal to the uniform field gB0

(that is, BT = B(1) or B(3) with kB = 0 in Equations (25) and (26) ). Inverting the relation E(B)

i = αijB
T
j employing E(B)

derived from the test solution must hence yield the same result as inverting E(B)

i = αijB0,j with E(B) derived from the main run
(that is, employing the imposed field method). For any other flavor, the same reasoning can be put forth, so they have to yield
identical results. If B0 is, say, in x direction, the CTFM with kB = 0 yields thus the correct αix for arbitrary strengths of the
imposed field and hence the nonlinearity. However, αiy cannot correctly be determined as only one of the test fields can be set
proportional toB0.
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