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Circular Polarization of Gravitational Waves from Early-Universe Helical Turbulence
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We perform direct numerical simulations to compute the net circular polarization of gravitational
waves from helical (chiral) turbulent sources in the early universe for a variety of initial conditions,
including driven (stationary) and decaying turbulence. We investigate the resulting gravitational
wave signal assuming different turbulence geneses such as magnetically or kinetically driven cases.
Under realistic physical conditions in the early universe we compute numerically for the first time
the total (integrated over all wavenumbers) polarization degree of the gravitational waves. We find
that the spectral polarization degree strongly depends on the initial conditions. The peak of the
spectral polarization degree occurs at twice the typical wavenumber of the source, as expected,
and for fully helical decaying turbulence, it reaches its maximum (100%) only at the peak. We
determine the temporal evolution of the turbulent sources as well as the resulting gravitational
waves, showing that the dominant contribution to their spectral energy density happens shortly after
the source activation. Only through an artificially prolonged decay of the turbulence can further
increase of the gravitational wave amplitude be achieved. We estimate the detection prospects for
the net polarization arguing that its detection contains clean information (including the generation
mechanisms, time and strength) about the sources of possible parity violations in the early universe.

PACS numbers: 98.70.Vc, 98.80.-k

A remarkable possible source of stochastic gravita-
tional waves (GWs) from the early universe is turbulence
in the primordial plasma induced either from cosmolog-
ical first-order (electroweak or QCD) phase transitions
[1–3], or from the primordial magnetic fields that are cou-
pled to the cosmological plasma [4–7]. The GW signal is
potentially detectable by the Laser Interferometer Space
Antenna (LISA) in the case of strong enough turbulent
motions present at the electroweak scale (assuming that
the total energy in turbulence is up to 1–10% of the
total thermal energy at the moment of generation) [8–
12]. Interestingly, if the GWs are produced during the
QCD phase transitions, they are potentially detectable
through Pulsar Timing Arrays (PTAs) and this has been
proposed to explain the reported NANOGrav signal [13].
Since GWs propagate almost freely from the moment of
generation until today1, the detection of GWs sourced by
primordial turbulence will open a new window to under-
stand physical processes in the very early stages of the
evolution of the universe (at the femtoseconds timescale);
see Ref. [17] and references therein. Moreover, several

∗Electronic address: tinatin@andrew.cmu.edu
1 We discard the GW damping due to neutrino free streaming
[14, 15] or from anisotropic stresses [16].

theoretical extensions of the standard model (SM) of par-
ticle physics and cosmology (which is insufficient to ex-
plain the matter-anti-matter asymmetry in the universe)
imply parity symmetry violation at the electroweak en-
ergy scale being possibly manifested through helical (chi-
ral) turbulent motions and/or magnetic fields [18, 19].
As expected, such parity-violating turbulent sources will
produce circularly polarized GWs [20–26] analogously to
the GWs produced via Chern-Simons coupling [27], and,
if detected, the GW polarization can be a clean measure
of the deviations from the SM and will provide us with
a better understanding of the nature of parity symmetry
and its violation.

The detection of circular polarization of the stochastic
GW background is a challenging task [28, 29], and the
planar interferometers cannot measure net polarization
in the case of isotropic backgrounds [30, 31]. However,
the dipolar anisotropy induced by our proper motion with
respect to the cosmic reference frame makes it possible
to measure the net circular polarization of the stochas-
tic GW background [32, 33], and recently it has been
shown that the net polarization of GWs could be de-
tected with a signal-to-noise ratio of order one by LISA if
the strength of the signal achieves h2

0ΩGW ∼ 10−11 (with
ΩGW the fraction between the GW energy density EGW

and the critical density today Ecr = 3H2
0/(8πG), with

H0 = 100h0kms−1Mpc−1 the Hubble parameter today
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and G is the gravitational constant) [34]. These find-
ings make it extremely important to properly compute
all characteristics (such as the amplitude, the spectral
shape, and the polarization degree) of the GW signal
from primordial helical (chiral) sources.

When computing the GW signal from early-universe
turbulent sources, previous studies (with the exception
of Ref. [35]) assumed stationary hydrodynamic turbu-
lence and a turbulence duration set by a fraction of the
Hubble time at the moment of generation (H−1

⋆ ), mak-
ing it possible to use the simplified GW equation with a
discarded term that describes the expansion of the uni-
verse (∼ H = a−1da/dtph, where tph denotes the physical
time, and a is the scale factor). Moreover, the magnetic
field and primordial plasma coupling, and correspond-
ingly, the turbulence decay have been neglected, making
it impossible to study the GW source dynamics and the
temporal dependence of the GW amplitude and spectral
characteristics beyond the dilution due to the universe
expansion, i.e., EGW ∝ a−4.

Recently we have performed for the first time direct
numerical simulations of magnetohydrodynamic (MHD)
turbulence in the early universe accounting for the ex-
pansion of the universe using the Pencil Code [36],
and numerically computed the resulting stochastic GW
background and relic magnetic fields [35]. To scale out
expansion effects, we use appropriately scaled comoving
variables and conformal time. The full set of MHD equa-
tions is then similar to the usual MHD equations [4],
and the GW equation is written for the scaled strains
and the comoving total (magnetic and kinetic) traceless-
transverse stress tensor TTT

ij . These simulations allowed
us to conclude that the proper inclusion of coupling ef-
fects results in the extension of the GW spectrum at lower
frequencies due to the power transfer at large scales, until
the causal horizon determined by the comoving Hubble
frequency, fH = 1.65 · 10−5Hz (g⋆/100)

1/6(T⋆/100GeV)
with g⋆ and T⋆ being the relativistic degrees of freedom
and the temperature at the moment of the GW source
activation. In terms of the GW energy density per loga-
rithmic frequency interval as a fraction of critical density
today, h2

0ΩGW(f), the spectrum in the frequency range
fH ≤ f ≤ fS (where the typical frequency of the source is
fS = 2NfH

2, and N determines the number of turbulent
eddies per linear Hubble length scale)3 is ∝ f as opposed
to f3 for the causal low-frequency (f < fH) tail obtained

2 The factor “2” is due to the quadratic nature of the turbulent
source.

3 The parameter N is determined by the physical stirring

wave number of the source, kphys0 , via H⋆/N = 2π/kphys0 ,
and to the comoving peak wave number through k0 =

kphys0 (a⋆/a0). Here a⋆ and a0 are scale factors correspond-
ing to the moment of generation and today, and a⋆/a0 =
8.0× 10−16(100/g⋆)1/3(100GeV/T⋆).

analytically [11], while in terms of the comoving dimen-
sionless strain amplitude hc, conventionally written as

hc(f) = 1.263 · 10−18(f/1Hz)−1 [h0ΩGW(f)]
1/2

[37], we
observe the scaling hc ∝ f−1/2 in the frequencies range
fH < f < fS . At this point we distinguish three parts of
ΩGW(f): the low-frequency region below causal horizon
f < fH , the intermediate region fH < f < fS , and the
high-frequency region f > fS . However, due to compu-
tational limitations, we are unable to reproduce the en-
tire spectrum in our numerical simulations. At high fre-
quencies, f > fS, numerical simulations agree well with
the analytical estimate; see Ref. [35] for more details:
in particular, for Kolmogorov turbulence with a slope
−5/3, the high frequency tail hc(f) (ΩGW(f)) scales
as ∝ f−7/3 (∝ f−8/3). Earlier work [25] showed that
the high-frequency scaling of the GW spectrum depends
strongly on the assumptions about the turbulence and
the modeling of the time-decorrelation function. Since
the spectrum of the stochastic GW background deter-
mines the detectability of GWs in a given experiment,
realistic turbulence simulations are essential for estab-
lishing the sensitivity of upcoming GW experiments to
early-universe physics [37].
Interestingly, the spectral form of the GW spectrum

at low frequencies is independent of the initial condi-
tions and the turbulence model while the amplitude of
the signal strongly depends on the model chosen. The
universal form of the GW spectrum does not allow us to
discriminate between helical and nonhelical sources and
thus limits our ability to determine the parity violation
in the early universe. This leads us to the present study
with its main focus on GW circular polarization estimates
and the question whether the detection of polarization
can help in the identification of distinct properties of the
source.
As it was shown in Ref. [35], the GW spectrum be-

comes stationary shortly after the driving of the source
ends (i.e., when the free decay stage of the source starts),
while the energy density of the source is still present. To
demonstrate this, we drive magnetic fields with an elec-
tromotive force consisting of plane waves that are delta-
correlated in time. In Fig. 1, we show the temporal evo-
lution of the source and the growth of the GW energy
density for the driven (1 < t < 1.1) and decaying stages
(t > 1.1), where the driving decreases linearly for a time
τ = 0.1–2, although τ > 0.5 may be unrealistic. During
the statistically stationary stage, the GW energy den-
sity growth rate is proportional to the duration of turbu-
lence, as was estimated through analytical modeling of
Ref. [10]. In reality, the driving stage is short compared
to the Hubble time-scale, and consists of the few largest
eddy turnover times.
Moreover, the GW generation can be split into three

cases (see Fig. 2 for kinetically and magnetically driven
turbulence): non-helical, partially helical (the fractional
helicity is described by the ratio σ < 1 of actual to max-
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FIG. 1: Evolution of magnetic energy (left) and growth of GW energy density (right) for simulations where the driving is
turned off at t = 1.1 (black dotted line), or the strength of the driving is reduced linearly in time over the duration τ = 0.2
(green), 0.5 (blue), 1 (red), or 2 (black). Time is in units of the Hubble time at the moment of source activation.

FIG. 2: Evolution of (a) ΩK, (b) ǫK, and (c) ΩGW for kinetically driven cases with σ = 0 (black), 0.5 (blue), and 1 (red), and
of (d) ΩM, (e) ǫM, and (f) ΩGW for magnetically driven cases with σ = 0 (black), 0.3 (blue), and 1 (red).

imally allowed helicity), and fully helical. Surprisingly,
the kinetically driven turbulence is more efficient in pro-
ducing GW energy; see Figs. 2(c) and (f). However in this
case the presence of kinetic helicity does not affect the
source amplitude – contrary to the magnetically driven
case where the amplitude of the source increases substan-
tially with increasing fractional helicity; see Figs. 2(a)
and (d). We also present the kinetic and magnetic en-
ergy dissipation rates, ǫK and ǫM, respectively. The dis-
sipation rates remain almost unchanged during the sta-
tionary stage as we can expect. In addition, we see that
they are almost unaffected by the presence of helicity.
One may have expected a correlation between ǫK (or ǫM)
and ΩGW(f), but in the magnetically driven case, larger
values of σ produce even slightly less dissipation at early
times. Nevertheless, ΩGW(f) clearly increases with σ.

To estimate the polarization degree, we follow the stan-
dard procedure described in Refs. [37, 38]. Using the
usual circular polarization basis tensors, we decompose
the Fourier transform of the GW strains into two states

– right- (h+) and left-handed (h−) circularly polarized
GWs, and the polarization degree is defined P(k) =
H(k)/H(k), where H(k) = 〈h⋆

+(k)h+(k
′)−h⋆

−(k)h−(k
′)〉

and H(k) = 〈h⋆
+(k)h+(k

′) + h⋆
−(k)h−(k

′)〉 characterize
the GW amplitude and polarization, respectively.

The GW polarization degree depends, as expected, on
the fractional helicity of the source. On the other hand,
the evolution of helical sources is determined by the ini-
tial fractional helicity: the coupling between the partially
helical magnetic field and the plasma motions leads to
a reconfiguration of the magnetic field at large scales
through free decay, resulting in the growth of the frac-
tional helicity due to the increase of the correlation length
and the corresponding decrease of the magnetic energy
until the fully helical stage is developed and inverse cas-
cading starts [39]. However, for weakly helical sources, a
substantial time-period is needed to reach a fully helical
configuration. On the other hand, our simulations show
that the dominant contribution to the GW signal occurs
shortly after the source has reached its maximum: the
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FIG. 3: Degree of circular polarization for (a) kinetically and
(b) magnetically forced cases with σ = 0 (black) 0.1 (blue),
0.3 (green), 0.5 (orange), and 1 (red). Approximate error bars
based on the temporal fluctuations and statistical spread for
different random seeds of the forcing are shown as solid black
lines for σ = 0 and as dotted lines otherwise.

subsequent decay of the magnetic field causes a decline
of the turbulent driving of GWs. This decline is further
enhanced by the expansion of the universe, although this
effect is small if the decay time of the turbulence is short
compared with the Hubble time; see Fig. 1. We see that,
even with a substantially extended decay phase of the
turbulence of twice the Hubble time, the final GW pro-
duction is enhanced by only a factor of about four. Thus,
the GW polarization will retain information about the
initial fractional helicity of the source.
As we have highlighted above, previous works [20, 22]

considered stationary turbulence with two different mod-
els for helical turbulence realization: (i) Kolmogorov-
like helical turbulence with two different spectral slopes,
−5/3 and −11/3 for the spectral energy and helicity den-
sities, EM(k) and HM(k), respectively, and (ii) helicity-
transferring turbulence (if helicity transfer and small-
scale helicity dissipation dominates [40]) with the spec-
tral indices −7/3 and −10/3 for EM(k) and HM(k) [41]4.
The former case seems most suitable for describing the
usual nonhelical turbulence experiencing forward cascad-
ing [42]. The difference in using these spectral shapes is
determined by the effect of helicity on the energy dissi-
pation length. For highly helical turbulence, the helicity
dissipation length is larger, so the two region description
[20] might be justified using Kolmogorov-like turbulence

4 Note that Ref. [20] used the different convention for the spectral
indices referring to the power spectra for the symmetric (PS(k) ∝
EM(k)/k2) and the antisymmetric parts (PA(k) ∝ HM(k)/k).

at large wavenumbers and approximating the low wave
number tail with helicity transfer turbulence [43]. Fol-
lowing this description, Ref. [21] and later also Ref. [26]
discussed two stages – first the fractionally helical one
and later the fully helical one with inverse transfer to de-
scribe more precisely the GW generation by helical MHD
turbulence. However, these estimates suffer due to (i)
the assumption of stationary turbulence; (ii) neglecting
the decay and correspondingly temporal dynamical ef-
fects (the GW spectrum becomes stationary shortly after
source activation).

We show the polarization degree spectra in Fig. 3 for
continuous pumping of kinetic or magnetic energy and
helicity at intermediate scales. We see a substantial dif-
ference between the kinetic and magnetic initial sources
at the low frequency tail due to the inverse cascade for the
magnetic sources that is absent in the kinetically driven
case: more precisely the energy density spectrum is un-
changed after the decay stage starts, while the transfer
of magnetic helicity to the large scales results in the in-
creasing of the polarization degree. These results confirm
that the polarization degree is scale dependent: ∝ k−0.5

at large wavenumbers, which is shallower than the k−1

expected for Kolmogorov-like helical turbulence with dif-
ferent spectral indices for the magnetic spectral energy
density (nS = −5/3) and the spectral helicity density
(nH = −11/3). In our simulations, the actual indices
are a bit smaller [38], which also explains the shallower
slope in the polarization degree. The departure from the
theoretical predictions is due to the assumption of a scale-
independent time-decorrelation function for magnetic en-
ergy and helicity densities. Interestingly, the spectral
shape of the polarization degree is independent of the
actual indices for energy and helicity, but depends on
the difference between them [20]. Obviously, in a real-
istic case, the proper consideration of time-decorrelation
and its dependence on wave numbers is required. In fact,
even in the simplified description, different forms of the
time-decorrelation function for different models of tur-
bulence (including both compressible and incompressible
cases) and its scale-dependence leads to different scaling
of the GW spectrum at high frequencies [25].

In this Letter we present the first numerical simula-
tions of the circular polarization degree of GWs gener-
ated through parity violating turbulent sources in the
early universe. We present our results for GWs gener-
ated at electroweak energy scales, but the formalism is
not limited to the specific moment of GW generation,
and can be adjusted to primordial turbulence sources at
any time after inflation and before recombination epochs.
We have confirmed that the GW signal reaches its maxi-
mal strength faster then the turbulence decays. We have
also shown that the slope of the low frequency tail of
the GW spectrum is independent of the nature of the
turbulent source (i.e., the nature of initial driving, the
presence of helicity, etc). This restricts the discrimina-
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tion between helical and non-helical sources as well be-
tween kinetic and magnetic drivings if the signal will be
detected. On the other hand, the polarization spectrum
not only retains information about the initial character-
istic frequency (as well as the GW signal does) and the
strength of parity violation of the source, but also man-
ifests the dependence on the driving mechanisms. We
have shown that the previously used assumption of sta-
tionary turbulence does not predict the GW polariza-
tion spectrum for realistic turbulence (the scaling of the
spectrum at low and high frequencies, the peak position,
etc), and thus might result in inadequate estimates of the
detection prospects. Fortunately, numerical simulations
have now become an affordable tool to address these and
other questions of relic GW generation and give a more
complete picture for the detection prospects by LISA (as
for electroweak phase transitions) and by PTAs (as for
QCD phase transitions), and/or any future planned mis-
sions, including atomic interferometry [44].

Data availability—The source code used for the simu-
lations of this study, the Pencil Code, is freely avail-
able from Ref. [36]. The simulation setups and the cor-
responding data are freely available from Ref. [45].
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Supplemental Material

1 Polarization Degree

To compute the polarization degree we follow the standard procedure: choosing the coordinate system so that unit
vector ê3 points in the GW propagation direction (k̂ = k/k with k = |k| is the unit vector) and using the usual
circular polarization basis tensors e±ij = −(e1 ± ie2)i × (e1 ± ie2)j/

√
2, we decompose the Fourier transform of the

GW strains hij(k) =
∫
d3x eik·xhij(x) into two states – right- (h+) and left-handed (h−) circularly polarized GWs

hij = h+e
+
ij + h−e

−

ij . The GW circular polarization degree is given by [20]5

P(k) =
〈h⋆

+(k)h+(k
′)− h⋆

−(k)h−(k
′)〉

〈h⋆
+(k)h+(k′) + h⋆

−(k)h−(k′)〉 =
H(k)

H(k)
, (1)

where H(k) and H(k) characterize the GW amplitude and polarization (chirality) defined through the Gaussian-
distributed GWs wave number-space two-point function (for simplicity of notations we omit the time-dependence):
〈h⋆

ij(k)hlm(k′)〉 = (2π)3δ(3)(k − k
′) [MijlmH(k) + iAijlmH(k)] , with 4Mijlm(k̂) ≡ PilPjm + PimPjl − PijPlm, and

8Aijlm(k̂) ≡ k̂q(Pjmǫilq + Pilǫjmq + Pimǫjlq + Pjlǫimq) are tensors, Pij(k̂) ≡ δij − k̂ik̂j is the projector operator, δij
and ǫijl are the Kronecker delta and the fully antisymmetric tensor, respectively.

2 Energy and helicity spectra

In Fig. 4 we show the numerator and denominator of the degree of polarization, H(k) and H(k), respectively. The
underlying kinetic and magnetic energy and helicity spectra are shown in Fig. 5.

FIG. 4: H(k) (left) and |H(k)| (right) for (a,b) kinetically and (c,d) magnetically forced cases with σ = 0 (black) 0.1 (blue),
0.3 (green), 0.5 (orange), and 1 (red).

5 As an alternative we can use the decomposition using the linear polarization basis tensors e+ij(k̂) = e1i e
1
j −e2i e

2
j and e×ij(k̂) = e1i e

2
j +e2i e

1
j

as hij(k) = h+(k)e+ij(k̂) + h×(k)e×ij(k̂) where h+ and h× are gauge independent components corresponding to two polarization modes.

In this case the polarization degree will be equal to P(k) = 〈h⋆
×
(k)h+(k′)− h⋆

+(k)h×(k′)〉/〈h⋆
+(k)h+(k′) + h⋆

×
(k)h×(k′)〉
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FIG. 5: (a) 2EK(k) and (b) |HK(k)/k| for kinetically forced cases, and (c) 2EM (k), and (d) |kHM (k)| for magnetically forced
cases with σ = 0 (black) 0.1 (blue), 0.3 (green), 0.5 (orange), and 1 (red).

Figure 4 shows that the GW polarization is larger at larger length scales. To see whether this could be related to
inverse cascading in the magnetic case, we now show in Fig. 5 the corresponding energy and helicity spectra. They
show clear inverse cascading of the magnetic energy and helicity spectra in the magnetically driven case. Inverse
cascading is clearly absent in the kinetic energy and helicity spectra in the kinetically driven case.


