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In the primordial plasma, at temperatures above the scale of electroweak symmetry breaking, the
presence of chiral asymmetries is expected to induce the development of helical hypermagnetic fields
through the phenomenon of chiral plasma instability. It results in magnetohydrodynamic turbulence
due to the high conductivity and low viscosity and sources gravitational waves that survive in the
universe today as a stochastic polarized gravitational wave background. In this article, we show that
this scenario only relies on Standard Model physics, and therefore the observable signatures, namely
the relic magnetic field and gravitational background, are linked to a single parameter controlling
the initial chiral asymmetry. We estimate the magnetic field and gravitational wave spectra, and
validate these estimates with 3D numerical simulations.

I. INTRODUCTION

The excess of matter over antimatter on cosmological
scales in the universe today is well measured but its origin
is not yet established. In studies of early universe cosmol-
ogy, it is typically assumed that the matter-antimatter
asymmetry arose dynamically in the first fractions of a
second after the Big Bang through a process called baryo-
genesis [1]. In addition to creating the baryon asymme-
try, e.g., the excess of nuclei over antinuclei, baryogen-
esis may have created other (possibly unstable) particle
asymmetries as well; a few examples include lepton asym-
metry [2], Higgs asymmetry [3], neutrino asymmetry
[4, 5], and right-chiral electron asymmetry [6]. Some of
these are examples of chiral asymmetries, n5 = nR −nL,
namely an excess (or deficit) of right-chiral particles and
antiparticles over their left-chiral partners. A particular
linear combination of various particle asymmetries, which
we call the hypercharge-weighted chiral asymmetry, has
attracted interest because of its connections with primor-
dial magnetogenesis [7] through a phenomenon known as
the chiral plasma instability [8].

The primordial magnetic field may survive in the uni-
verse today as an intergalactic magnetic field, thereby
opening a pathway to test this scenario [9, 10]. In ad-
dition, the primordial magnetic field and its interaction
with the turbulent plasma are expected to source gravi-
tational radiation; see Ref. [11] for pioneering work and
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Ref. [12] for numerical simulations of the gravitational
waves induced by the primordial magnetic field originat-
ing from the chiral plasma instability. In this work, we
investigate the gravitational wave signatures of a primor-
dial hypercharge-weighted chiral asymmetry via the chi-
ral plasma instability.
Contrary to earlier numerical simulations, we study

here a parameter regime that is more realistic in various
respects. The resulting gravitational wave energy from
our simulations confirm the scaling with the sixth power
of the chiral chemical potential and the fifth power of
the inverse square root of the chiral dilution parameter,
which can be combined into a single parameter, as al-
ready found previously [12].

II. DESCRIPTION OF THE MODEL

We consider the primordial Standard Model plasma at
temperatures T >∼ 100 TeV in the phase of unbroken elec-
troweak symmetry. We remain agnostic as to the physics
of baryogenesis, but assume that a nonzero hypercharge-
weighted chiral asymmetry is present in the plasma ini-
tially. We study the growth of an initially vanishingly
small hypermagnetic field via the chiral plasma instabil-
ity and calculate the resulting gravitational wave radi-
ation. The hypermagnetic field generated by the chiral
plasma instability is always maximally helical and there-
fore also leads to the production of maximally circularly
polarized gravitational waves. The present work is con-
ceptually different from that of Refs. [13, 14], where a
helical magnetic field was present initially such that the
net chirality of the system was balanced to zero by a
fermion chirality of opposite sign.
One appealing aspect of our approach is its minimal-

ism: we only assume Standard Model particle physics and
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the standard cosmological model after reheating. Our
only free parameter is the initial hypercharge-weighted
chiral asymmetry, which presumably arises from physics
beyond the Standard Model. We work in the Lorentz-
Heaviside unit system with h̄ = c = kB = 1. We account
for the cosmological expansion using an Friedmann-
Lemâıtre-Robertson-Walker metric with dimensionless
scale factor a(t) and set a0 = 1 today. Unless otherwise
specified, all dimensionful variables are comoving; this in-
cludes conformal time dt = dtphys/a, comoving magnetic
field B = a2Bphys, comoving magnetic correlation length
ξM = ξM,phys/a, comoving temperature T = aTphys, co-
moving wavenumber k = akphys, comoving Hubble pa-
rameter H = aHphys (with H ≡ (da/dt)/a), comov-
ing energy density of any relativistic component (includ-
ing frozen-in magnetic fields, gravitational waves, etc)
E = Ephysa4 for the relativistic plasma, and so on. We
denote Newton’s gravitational constant by G, the Planck
mass by MPl = 1/

√
G = 1.2 × 1019 GeV, the physical

Hubble constant by Hphys,0 = 100h0 km/sec/Mpc, and
the critical energy density today by Ecr = 3H2

0/(8πG).
We use the subscript “CPI” to denote the time when
the chiral plasma instability (CPI) develops. Assum-
ing that the plasma’s entropy density is conserved be-
tween the CPI epoch and today leads to the relation
g∗S,cpia

3
cpiT

3
phys,cpi = g∗S,0a

3
0T

3
phys,0. Taking g∗S,0 = 3.91

and Tphys,0 = 0.234meV gives

acpi
a0

= (8× 10−19)

(

g∗S,cpi
106.75

)−1/3(
Tphys,cpi

100TeV

)−1

. (1)

We fiducialize the effective number of relativistic degrees
of freedom during the CPI epoch to g∗S,cpi = 106.75,
which is the expected value for Standard Model cos-
mology at temperatures above 100GeV. We fiducialize
the physical plasma temperature at the CPI epoch to
Tphys,cpi = 100TeV, and the expected value varies ac-
cording to Eq. (2).

a. Chiral magnetic effect. The chiral plasma in-
stability and chiral magnetic effect (CME) were first
studied in the context of a relativistic electron-positron
plasma described by quantum electrodynamics (QED).
Although chirality is conserved at the classical level for
massless electrons, chirality is broken in the quantum
theory and this is expressed by the Adler-Bell-Jackiw
axial anomaly [15, 16]. A manifestation of the anoma-
lous chiral symmetry is the CME [17]: in a QED plasma
that possesses a chiral asymmetry, a magnetic field in-
duces a proportional current. The CME corresponds to
an anomalous contribution to the electric current density
J(x, t) = µ5(t)B(x, t) where µ5 = 2αµ̃5/π is propor-
tional to the chiral chemical potential µ̃5, α = e2/4π ≈
1/137 is the electromagnetic fine structure constant, and
B is the magnetic field. Implications of the CME for
a turbulent QED plasma have been studied extensively
with a combination of analytical techniques and numer-
ical simulations [12, 14, 18–21]; see also Ref. [22] for a
recent review article.

b. Adaptation to hypercharge. The formalism
used to study the CME in QED is easily adapted to the
hypercharge sector of the Standard Model for a plasma in
the phase of unbroken electroweak symmetry at temper-
atures Tphys

>∼ 100 GeV. The quantity of interest is the
hypercharge-weighted chiral chemical potential µ̃Y,5(t),
which is given by µ̃Y,5(t) =

∑

i εigiY
2
i µ̃i(t), where the

sum runs over all Standard Model particle species (in-
dexed by i), εi = ±1 for right/left-chiral particles (and
0 otherwise), gi is a multiplicity factor (counting color,
spin, etc), Yi is the hypercharge of species i, and µ̃i is
the chemical potential that parameterizes the asymmetry
(excess of particles over antiparticle partners) in species
i via ni ∝ µ̃iT

2; see Refs. [23, 24] for additional details.
c. Chiral plasma instability. In the presence of

a chiral asymmetry, the equations of magnetohydrody-
namics (MHD) are modified due to the CME, and the
new equations exhibit a tachyonic instability toward the
growth of long-wavelength modes of the magnetic field,
which is known as the chiral plasma instability [8]. To
illustrate the instability in the hypercharge sector of the
primordial plasma, we present the evolution equation for
the hyper-magnetic field assuming negligible plasma ve-
locity: ḂY = ηY ∇2BY + (2αY µ̃Y,5/π)ηY ∇×BY . Here
and below, dots represent partial derivatives with respect
to conformal time, BY (x, t) is the hypermagnetic field,
ηY = 1/σY is the hypermagnetic diffusivity, σY is the
hypercharge conductivity, and αY = g′2/4π ≈ 0.01 is the
hypercharge fine structure constant. Long-wavelength
modes of the hypermagnetic field with wave number
k < kcpi = 2αY |µ̃Y,5(t)|/π experience a tachyonic insta-
bility in one of the two circular polarization modes, and
their amplitude increases exponentially ∝ exp(t/tcpi).
The fastest growing modes have k = kcpi/2, and for these
modes tcpi = 4/ηY k

2
cpi = π2/ηY α

2
Y |µ̃Y,5|2. Assuming a

radiation-dominated cosmology with g∗ = 106.75, the
physical plasma temperature at this time is

Tphys,cpi =
(

70 TeV
)

(

ηY
0.01T−1

)( |µ̃Y,5|/T
10−3

)2

. (2)

In other words, although the chiral asymmetry may be
present in the plasma from a very early time, its effect on
the hypermagnetic field does not develop until (possibly
much) later when the age of the universe is compara-
ble to conformal time tcpi and the plasma has cooled to
temperature Tcpi. Reducing the magnitude of the chi-
ral asymmetry, i.e., assuming a smaller |µ̃Y,5|/T initially,
delays the onset of the chiral plasma instability.
d. Chiral asymmetry erasure. In a relativistic

electron-positron plasma described by the theory of
QED, the electromagnetic charge is exactly conserved
and the chiral charge is approximately conserved. The
chiral charge changes in a scattering that converts right-
chiral particles into left-chiral particles, or vice versa,
and the rate for such ‘spin-flip’ scatterings is propor-
tional the squared electron mass (m/T )2. Although the
chiral charge is not exactly conserved, it is important
to recognize that it is approximately conserved on time
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scales that are small compared to the inverse slip-flip
rate. Similarly, the hypercharge-weighted chiral asymme-
try is eventually driven to zero by scatterings involving
the Yukawa couplings; the most relevant processes are
Higgs decays and inverse decays with right-chiral elec-
trons. The rate for these chirality-changing reactions is
Γf ≈ 10−2y2eT , with ye electron Yukawa coupling ye =√
2me/v ≃ 3× 10−6 and assuming a standard radiation-

dominated cosmology, these reactions come into equilib-
rium when the plasma cools to a physical temperature of
(T/a)f ≃ 80 TeV [25]. To ensure that the chiral plasma
instability develops before the hypercharge-weighted chi-
ral asymmetry is erased by Higgs decays and inverse de-
cays, it is necessary to have |µ̃Y,5|/T > 10−3. For ref-
erence, the observed baryon asymmetry of the universe
today corresponds to a much smaller chemical potential
of µ̃B/T ≈ 10−8, but it is not unusual for large chemical
potentials to be generated during the course of baryo-
genesis. New physics such as a matter-dominated phase
or an injection of eR asymmetry can change the temper-
ature of chiral asymmetry erasure; for an example, see
Ref. [26].
e. Magnetogenesis. As the chiral plasma instabil-

ity develops, the growing helical hypermagnetic field is
accompanied by a depletion of the hypercharge-weighted
chiral asymmetry. This is because the hypercharge-
weighted chiral number density nY,5 = µ̃Y,5T

2/6 and
the hypermagnetic helicity HB are linked by the chi-
ral anomaly, which imposes ṅY,5 ∝ −αY ḢM/π [7].
If the chiral plasma instability shuts off after the
hypercharge-weighted chiral asymmetry depletes by an
order one factor, the hypermagnetic helicity can be es-
timated as HM,cpi ∼ π|µ̃Y,5|T 2

cpi/6αY . The coherence
length and field strength are estimated as ξM,cpi ≈
2π/(kcpi/2) and Bcpi ≈

√

HM/ξM,cpi, which gives
ξM,cpi ≈ (5 × 105 cm)(|µ̃Y,5|/10−3T )−1 and Bcpi ≈ (5 ×
10−11 G) (|µ̃Y,5|/10−3T ). If the magnetic field evolves ac-
cording to the inverse cascade scaling (in the fully helical
case), ξM ∝ t2/3 and B ∝ t−1/3 [27], until recombination,
then the physical coherence length and field strength to-
day (assuming a frozen-in magnetic field and neglecting
MHD dynamics at late epochs, after re-ionization) are
expected to be on the order of

ξM,phys,0 =
(

1× 10−3 pc
)

(

ηY
0.01T−1

)2/3( |µ̃Y,5|/T
10−3

)1/3

,

Bphys,0 =
(

7× 10−16 G
)

(

ηY
0.01T−1

)−1/3( |µ̃Y,5|/T
10−3

)1/3

.

(3)

A larger chiral asymmetry leads to a stronger magnetic
field on larger length scales today.
f. Gravitational wave generation. The

anisotropic stress of the growing hypermagnetic
field provides a source of gravitational wave radiation
[11]. As the chiral plasma instability develops, most
of the magnetic energy is carried by the modes with
coherence length ξM,cpi (i.e., the magnetic energy is

characterized by the spectrum at the peak at wave
number kI ≃ 1/ξM,cpi). As long as the magnetic field
is still growing, however, the induced gravitational
wave spectrum peaks at the characteristic wave number
k = 2/tcpi = k2cpi/(2σY ) [12]. For kcpi/(2σY ) < 1,
this wave number is below the cutoff wave number for
gravitational waves, kcpi. Above this wave number, very
little gravitational wave energy is produced by the chiral
plasma instability [12]. The gravitational wave cutoff
frequency is fGW ≃ 2kI/(2π) ≃ 2/ξM,cpi (the factor “2”
is due to the quadratic nature of the source). Since
the gravitational waves’ comoving frequency remains
constant, the physical frequency today corresponds to
fGW,0 = 2/ξM,cpi. Once the CPI stops and µ̃Y,5 becomes
depleted, the low wave number part of the gravitational
wave spectrum becomes shallower and the peak moves
toward smaller wave numbers.
The energy density carried by the gravitational waves

is estimated as EGW ∼ (G/2π)a−2
cpiξ

2
M,cpiB

4
cpi. This

estimate follows from writing the energy density as
EGW(x, t) = [ḣij(x, t)]

2/(32πG) where hij(x, t) is the
transverse and traceless tensor mode of the metric per-
turbations, and using the gravitational wave equation
∂2
t hij − ∇2hij = 16πGTij/a where Tij ∼ B2/2 is the

transverse and traceless part of the anisotropic part of
the magnetic field stress-energy tensor, to estimate the
field amplitude [28, 29]. After volume averaging, we de-
fine ΩGW = EGW/Ecr to be the gravitational wave energy
fraction today.
Numerical estimates give

fGW,0 =
(

1× 105 Hz
)

( |µ̃Y,5|/T
10−3

)

,

ΩGWh2
0 =

(

7× 10−39
)

(

ηY
0.01T−1

)2( |µ̃Y,5|/T
10−3

)6

.

(4)

A larger hypercharge-weighted chiral asymmetry moves
the peak of the gravitational wave spectrum to higher fre-
quencies (since the chiral plasma instability develops ear-
lier) and increases the gravitational wave strength. For
reference, the LIGO-Virgo-KAGRA gravitational wave
interferometer array is sensitive to a stochastic gravita-
tional wave background at the level of ∼ 10−7 for fre-
quencies of ∼ 10–100 Hz [30]. The future space-based
interferometer LISA will push this sensitivity down to
∼ 10−12 at frequencies of ∼ 1 − 10 mHz [31–33]. Vari-
ous strategies for probing higher-frequency gravitational
waves, even up to the GHz band, have been explored in
recent years; see Ref. [34] for a review of these activities.
Nevertheless, a detection of gravitational wave radiation
at the level expected here, even for |µ̃Y,5|/T ≈ 1, seems
far out of reach.
g. Baryon number overproduction. The pres-

ence of a helical hypermagnetic field in the early uni-
verse is expected to give rise to a baryon asymmetry
[23, 24, 35]. This is because time-varying hypermagnetic
helicity sources baryon and lepton number through the
electroweak anomaly [36]. Specifically, the conversion of
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a hypermagnetic field into an electromagnetic field at the
electroweak epoch at Tphys ≈ 100 GeV sources baryon
number after the electroweak sphaleron has gone out of
equilibrium, leading to a boost in the baryon asymmetry
[24].

The baryon number can easily be over-produced if the
magnetic field strength is too large. Avoidance of this
baryon-number overproduction imposes an upper bound
of |µ̃Y,5|/T <∼ 10−2 [37]. This bound is somewhat uncer-
tain as the baryon production calculation depends on a
detailed modeling of magnetic field evolution at the Stan-
dard Model electroweak crossover [24], which is not well
understood.

III. NUMERICAL SIMULATIONS

In order to validate the preceding estimates, we have
performed three-dimensional numerical simulations us-
ing the Pencil Code [38]. These simulations allow us
to study the growth and evolution of the magnetic field
during the chiral plasma instability and to evaluate the
spectrum of the resulting gravitational wave radiation.

We model the Standard Model matter and radiation
as a single component plasma of charged particles inter-
acting with the hypermagnetic field. Several properties
of the plasma are relevant to the evolution: the magnetic
diffusivity (for simplicity here and below we suppress the
subscript “Y ”) η(t) = 1/σ(t), the kinematic viscosity
ν(t), the chiral diffusion coefficient D5(t), the chiral de-
pletion parameter λ(t), and the chiral chemical potential
µ50 ≡ µ5(x, 0) = 2αµ̃5/π that enters as an initial condi-
tion. One can calculate σ, η, ν, and D5 from first princi-
ples using Standard Model particle physics. The hyper-
charge conductivity is predicted to be σ ∼ T/α ≈ 100T
[39] implying η ≈ 0.01T−1, and we assume for simplicity
η = ν = D5. The chiral depletion parameter λ arises
from the Standard Model chiral anomalies, and past
studies have obtained the prediction λ = 192α2/T 2 ≃
0.02T−2 [21, 40]. The initial chiral chemical potential
can be written as µ50 ≈ (6 × 10−6 T )(µ̃5/T/10

−3) by
fiducializing to µ̃5/T = 10−3.

Given the limited dynamic range of numerical simula-
tions, it is not possible to set the parameters, η, ν, D5,
λ, and µ50, equal to the Standard Model predictions.
Instead we consider sets of simulations with different pa-
rameters. They can be distinguished by the relative or-
dering of the characteristic quantities vλ = µ50/(ρλ)

1/2

and vµ = µ50η, where ρ is the initial volume-averaged
energy density. We consider runs in regimes I (where
vλ > vµ) and II (where vλ < vµ).

The simulations solve a coupled system of partial dif-
ferential equations that account for MHD and the CME
[21] to determine the evolution of the magnetic field
B(x, t), the energy density of the plasma ρ(x, t), the
plasma velocity u(x, t), and the chiral chemical poten-
tial µ5(x, t). In the following, we solve the following set

of equations [40]

∂A

∂t
= u×B + η(µ5B − J), (5)

∂µ5

∂t
= −∇ · (µ5u)− λη(µ5B − J) ·B +D5∇2µ5, (6)

Du

Dt
=

2

ρ
∇ · (ρνS)− 1

4
∇ ln ρ+

u

3
(∇ · u+ u ·∇ ln ρ)

−u

ρ

[

u · (J ×B) + ηJ2
]

+
3

4ρ
J ×B, (7)

∂ ln ρ

∂t
= −4

3
(∇ · u+ u ·∇ ln ρ)

+
1

ρ

[

u · (J ×B) + ηJ2
]

, (8)

where Sij = (∂jui + ∂iuj)/2 − δij∇ · u/3 are the com-
ponents of the rate-of-strain tensor. We solve Eqs (5)–
(7) using the Pencil Code, which is a massively paral-
lel MHD code using sixth-order finite differences and a
third-order time stepping scheme [41].
The linearized gravitational wave equations are solved

in wave number space [29],

∂2

∂t2
h̃+/×(k, t) + k2h̃+/×(k, t) =

6

t
T̃+/×(k, t), (9)

where h̃+/× = e
+/×
ij (PilPjm − 1

2
PijPlm) h̃lm(k, t) are the

Fourier-transformed + and × modes of h, with e
+
ij(k) =

e1i e
1
j − e2i e

2
j and e

×
ij(k) = e1i e

2
j + e2i e

1
j being the lin-

ear polarization basis, e1 and e2 are unit vectors per-
pendicular to k and perpendicular to each other, and
Pij(k) = δij − kikj is the projection operator. T̃+/× are
defined analogously and normalized by the critical den-
sity. We solve Eq. (9) accurate to second order in the time
step and use 10243 mesh points in all of our calculations.
Our initial conditions have a weak seed magnetic field
and vanishing plasma velocities, and the chiral chemical
potential is homogeneous and equal to the value given
above. At each time step, we calculate the spectrum of
gravitational wave radiation by solving the gravitational
wave equation sourced by the stress-energy of the plasma
and magnetic field; see Ref. [29] for details regarding our
computational approach.
In Table I, we summarize our results, where η, λ, µ50,

and the smallest wave number, k1. We consider two series
of runs that we refer to as X and Y. They are subdivided
further into Runs X1–X4 and Runs Y1–Y3. Our runs
of series X have increasing values of vµ and cross from
regime Y (for Run I1) into regime I (for Run I4). For the
runs of series X, we take η = ν = D5 = 5 × 10−11/H∗,
ρλ = 1020 H2

∗ , and µ50 = 106 H∗. We also give the wave
number corresponding to the outer scale of the k−2 in-

verse cascade range, kλ ≈ (E
1/2
∗ t∗/l

5/2
∗ )4µ50ηλ

1/2, as well
as the efficiency of gravitational wave production,

q = (kpeak/H∗)
√

Esat
GWEcr

/

Emax
M , (10)
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TABLE I: Summary of Runs discussed in this paper. Runs B1, B10, A1, and A12 of Ref. [12] are included for comparison. In
the last row, theoretically expected values are listed where η2 = ηY /(0.01T−1) and µ3 = µY,5/10

−3T .

Run ηH∗ (ρλ)1/2/H∗ µ50/H∗ vµ vλ ηµ2
50/H∗ k1/H∗ E

max

M /Ecr E
sat

GW/Ecr q

B1 1× 10−6 2× 104 104 1× 10−2 5× 10−1 1× 102 1× 102 1.6× 10−2 4.7× 10−12 0.027

B10 1× 10−3 2× 104 104 1× 101 5× 10−1 1× 105 1× 102 6.0× 10−2 6.0× 10−9 12

A1 1× 10−6 5× 104 104 1× 10−2 2× 10−1 1× 102 1× 102 4.6× 10−3 8.9× 10−14 0.032

A12 5× 10−3 5× 104 104 5× 101 2× 10−1 5× 105 5× 101 9.2× 10−3 3.0× 10−10 18

X1 5× 10−8 1010 106 5× 10−2 1× 10−4 5× 104 5× 103 2.4× 10−9 8.8× 10−31 0.39

X2 5× 10−9 1010 106 5× 10−3 1× 10−4 5× 103 5× 103 2.4× 10−9 1.6× 10−30 0.53

X3 5× 10−10 1010 106 5× 10−4 1× 10−4 5× 102 5× 103 2.4× 10−9 1.1× 10−30 0.44

X4 5× 10−11 1010 106 5× 10−5 1× 10−4 5× 101 5× 103 2.3× 10−9 3.1× 10−31 0.12

Y1 5× 10−8 7× 1011 106 5× 10−2 1× 10−6 5× 104 5× 103 4.9× 10−13 3.6× 10−38 0.39

Y2 5× 10−8 7× 1011 106 5× 10−2 1× 10−6 5× 104 2× 103 4.4× 10−13 3.2× 10−37 1.3

Y3 5× 10−8 7× 1011 106 5× 10−2 1× 10−6 5× 104 1× 103 3.3× 10−13 6.9× 10−37 2.5

exp 10−15η2 6× 1012 5× 107µ3 6× 10−8η2µ3 8× 10−6µ3 3η2µ
2
3 — 6× 10−15µ2

3 7× 10−39η2
2µ

6
3 —

where we estimate kpeak = kµ min(1, vµ/vλ). This means
that kpeak = kµ when vµ > vλ (regime II) and kpeak =
kλ/4 when vµ < vλ (regime I); see Ref. [21].

The evolution of the magnetic and gravitational wave
energy spectra for Run I4 is shown in Fig. 1. The en-
ergy densities may be written as E =

∫∞

0
dk E(k) where

k is the wavenumber and E(k) is the energy spectrum.
For the Run I4 parameters, the instability length scale
corresponds to a wavenumber of kcpi = 106H∗, which
agrees with the wave number above which EGW(k) drops
sharply. The instability time scale normalized to the
Hubble time is tcpi/tH = 0.08 (with tH = H−1

∗ being the
Hubble time) which is about 100 times longer than the
time step. The magnetic energy spectrum grows initially
for modes with k ≈ kcpi/2 = 5 × 105H∗ (see the upper
set of dotted lines in Fig. 1). Later, the peak evolves
to smaller k with an inverse cascade scaling, which is
consistent with earlier simulations [21]. The generated
magnetic field is then maximally helical; see Fig. 8(b) of
Ref. [42].

The gravitational wave energy spectra grow in time
as long as the magnetic energy has not yet reached its
maximum. In this phase, as discussed above, the gravi-
tational wave spectrum is expected to peak at the char-
acteristic wave number k = 2/tcpi = ηk2cpi/2 = 25H∗,
which is here much smaller than kcpi = 106H∗, but larger
than the horizon wave number, k = H∗. When the mag-
netic energy density has reached its maximum value, the
gravitational wave spectrum has nearly saturated and is
approximately independent of k for k < kcpi/2. In prin-
ciple, it is possible to have a declining k−2 spectrum in
the range ηk2cpi/2 ≤ k ≤ kcpi, but this is only seen in
our models with larger diffusivity. The absence of a k−2

subrange in the gravitational wave spectrum could also
be an artifact of insufficient numerical resolution. In any
case, once the gravitational wave spectrum saturates, we
would expect the development of a flat (EGW ∝ k0) spec-

FIG. 1: Spectra (per linear wave number interval) of magnetic
energy EM(k, t) (upper curves) and gravitational wave energy
EGW(k, t) (lower curves) from the chiral plasma instability
and turbulent MHD evolution for Run I, where µ5 = 106 H∗,
ρλ = 1020/H∗, η = 5×10−11 H∗ which implies vλ = 10−4 and
vµ = 5×10−5 (corresponding to regime I). The solid curves are
for tH∗ = 2.98, when EM is maximum. The dotted curves are
for tH∗ = 2.41 (black), 2.56 (red), and 2.71 (orange), before
EM is maximum, while the dashed curves are for tH∗ = 3.66
(blue) and tH∗ = 5.37 (green), when EM is decaying.

trum. Such a flat spectrum is expected to extend all the
way to the horizon wave number k = H∗ [43–45]. Since
the smallest wave number that is resolved in our simu-
lations is already larger than the horizon wave number,
we expect that the gravitational wave energy is underes-
timated by our simulations by an amount that depends
on the value of the smallest resolved wave number, k1.
In Fig. 2, we show gravitational wave spectra for a few

runs with smaller values of the minimum wave number in
the simulations. We see that the spectra remain nearly
flat, but the spectra are also becoming more irregular at
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FIG. 2: Comparison of h2
0ΩGW(f) versus f for runs with

k1/H∗ = 103 (blue), 2 × 103 (orange), and 5 × 103 (red),
with λ = 49× 1022H2

∗/Ecr,∗ and η = 5× 10−8H−1
∗ with H0 =

100h0 km s−1 Mpc−1. A run with with λ = 1020H2
∗/Ecr,∗ and

again η = 5×10−8H−1
∗ is shown as the black line for reference.

large wave numbers. This is likely an artifact of insuffi-
cient numerical resolution. We also see that most of the
gravitational wave energy is at frequencies below about
1 kHz, but this value would increase with increasing val-
ues of µ50, beyond the value of 106H∗ adopted here.
Earlier work showed that Esat

GW grows approximately

linearly with η and was proportional to (ρλ)−5/2, which
leads to the combined dependence [12]

Esat
GW/Ecr ≈ 6× 10−8 v5λvµ, (11)

which implies that Esat
GW ∝ µ6

50. In Fig. 3, we plot Esat
GW

versus v5λvµ for Runs X1–X4 and Y1–Y3. We see that
Eq. (11) agrees reasonably well with our numerical data.
Compared with the runs of Ref. [12], the new one in
Fig. 1 has much smaller values of vλ (here vλ = 10−4

instead of 0.5 for the old runs of Series B) and vµ (here
vµ = 5× 10−5 instead of 10−2, which was their smallest
value). This has been achieved by having kcpi much larger
(here 106 instead of 104, for example). This also means
that we have to choose a correspondingly larger value
of the minimum wave number, k1. This means that we
consistently underestimate the value of EGW, because the
contribution from low values of k are not resolved.

IV. CONCLUSIONS

Our estimates of the key variables are summarized in
Fig. 4. Since we assume Standard Model particles and
interactions, as well as a standard cosmology with ra-
diation domination at temperatures T > 100 TeV, the
observables depend only on the single dimensionless pa-
rameter |µY,5|/T , which controls the size of the initial
hypercharge-weighted chiral asymmetry. To ensure that
the instability develops before the chiral asymmetry is

FIG. 3: Dependence of Esat

GW on v5λvµ for our runs of Series X
(red) and Y (blue), as well as Series A (black) and B (orange)
of Ref. [12].

washed out by reactions such as Higgs decays and in-
verse decays, we need |µY,5|/T >∼ 10−3. On the other
hand, to avoid over-producing the baryon asymmetry we
need |µY,5|/T <∼ 10−2. This leaves an approximately one-
decade wide window of viable parameter space. The pre-
dicted magnetic field strength today, assuming inverse
cascade scaling from production until recombination, is
at the level of 10−15 Gauss. An intergalactic magnetic
field at this level is barely strong enough to explain ob-
servations of distant TeV blazars, which provide evidence
for a nonzero intergalactic magnetic field at the level
>∼ 10−16 Gauss [9]. The same magnetic field may help to
explain the origin of galactic magnetic fields by provid-
ing a seed for the galactic dynamo. The strength of the
gravitational wave signal is expected to depend strongly
on the value of |µY,5|/T , going as its sixth power. The
typical frequency of these this signal is expected to fall
near ∼ GHz, putting it a frequency band that is be-
ing targeted by several recently-proposed probes of high-
frequency gravitational wave radiation. However, within
the viable window, the gravitational wave signal is likely
far too weak for detection.
Data availability—The source code used for the sim-

ulations of this study, the Pencil Code, is freely avail-
able from Ref. [38]. The simulation setups and the cor-
responding data are freely available from Ref. [46].
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