1 New runs

All runs have $\mu_{50} = 10^6$, $\tilde{\lambda}^{1/2} = 7 \times 10^{11}$, and $\nu = \eta = D = 5 \times 10^{-8}$. Thus, we have

$$v_{\lambda} = \mu_{50} / \lambda^{1/2} = 1.4 \times 10^{-6},$$
 (1)

and

$$v_{\mu} = \mu_{50}\eta = 5 \times 10^{-2}, \tag{2}$$

corresponding to regime II.

Figure 1: pcomp_D512_1e5_1e6_49e22_5em8a4

The difference between the four runs is the minimum wavenumber, k_1 , available in the simulations (ideally, it should be $\rightarrow 0$). Figure 1 shows the time traces for those runs. They are all reasonably similar, except for $h_{\rm rms}$ and $\mathcal{E}_{\rm GW}^{\rm sat}$, which drop significantly for large k_1 .

The chiral chemical potential drops rapidly when the linear phase of the chiral plasma instability is over $(t \approx 1.001)$. It then levels off near 10⁵, which

Figure 2: EEGW_vs_EEKM

corresponds to the wavenumber where the magnetic energy spectra peak; see below.

Figure 2 compares \mathcal{E}_{M}^{max} and \mathcal{E}_{GW}^{sat} with those of earlier runs. The efficiency of GW production is very low.

Figure 3: pspec_sat_D512_1e5_1e6_49e22_ 5em8a4_k5e3

Figure 3 compares magnetic and GW energy spectra. As found in our 2021 paper, the GW energy spectra don't capture the lowest wavenumber and therefore the GW energies are not converged.

2 Next?

It would be useful to have a model of how μ_5 builds up.