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Abstract. We consider the effects of backreaction on axion-SU(2) dynamics during infla-
tion. Accounting for the backreaction leads to a new late-time dynamical attractor solution
for the axion field and the vacuum expectation value of the gauge field, where the latter has
a sign-flipped value with respect to the chromo-natural inflation solution. Our findings are
of particular interest to the phenomenology of axion-SU(2) inflation, significantly broaden-
ing the viable parameter space. In addition, the backreaction effects lead to characteristic
oscillatory features in the primordial gravitational wave background, potentially detectable
in upcoming observational experiments.[OI: add linear approximation, Hartree]
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1 Introduction

Natural inflation was originally proposed in order to address the UV sensitivity problem of
inflation [1, 2]. By identifying the inflaton with an axion, a pseudo-scalar field possessing
a shift symmetry, the infinite series of higher-order terms in the potential are set to zero.
The inflationary potential is generated through instanton effects and in the early versions of
natural inflation the potential is a sinusoidal function of the field.

The shift symmetry also dictates the possible couplings of the inflaton to other fields.
In particular, an axion can only couple derivatively to other fields. Furthermore, the lowest
order coupling to fermions and gauge bosons are LZ_WHVE’OMZ)LZ) and ¢F F , respectively, where
F is the dual field strength tensor.

The coupling of an axion inflaton to gauge fields through a Chern-Simons term has
attracted significant attention in the literature. In the case of an Abelian field, the parity-
violating nature of the coupling leads to the two helicities developing a different effective
frequency. One of them can even become tachyonic, when the velocity of the inflaton is
high enough. After the end of inflation, tachyonic production of gauge fields can lead to
instantaneous preheating. Identifying the gauge field with the hypercharge sector of the
Standard Model can lead to the generation of observationally relevant cosmological magnetic
fields. During inflation, the production of gauge fields can lead to observable non-Gaussianity.

Depending on the axion-gauge coupling strength, the tachyonic amplification of the
gauge fields can arise during inflation. In this case, the generation of gauge fields leads to a
significant backreaction on the inflaton, leading to a sudden drop of its velocity. Once the
gauge fields are diluted by the expansion of space-time, the backreaction term subsides and



the inflaton starts rolling again. This can lead to periodic bursts of gauge field production
during inflation [3-6], as has been shown analytically and numerically. However, recent lattice
simulations showed that the inclusion of inhomogeneous backreaction and a larger dynamical
range can significantly change the resulting dynamics [7].

Despite the interesting backreaction dynamics that occurs for large axion-gauge cou-
pling, the rolling of the axion is in the linear regime determined by the potential and Hubble
friction. By replacing the Abelian field with a non-Abelian one, this ceases to be true. The
fact that SU(2) fields (see ref. [8] for the generalization to SU(N) fields) possess a non-trivial
vacuum structure leads to a new inflationary attractor, in which the dominant source of
friction for the rolling axion is not the Hubble term, but the non-Abelian field VEV [9-12].

This family of models, collectively named chromo-natural inflation, allows for slow-roll
inflation even in steep potentials. Due to the parity-violating Chern-Simons coupling, one of
the tensor modes of the SU(2) sector experiences a similar instability to one of the helicities
in the Abelian case. However, the fact that the SU(2) tensor mode is linearly coupled to the
gravitational sector leads to a similar enhancement of chiral gravitational waves.

While chromo-natural inflation with a cosine potential has been shown to be incom-
patible with CMB observations [9], spontaneous breaking of the SU(2) symmetry brings the
model in agreement with current data [13]. A further generalization of CNI was proposed
in ref. [14], where the axion-SU(2) action was treated as a spectator sector. This separates
the inflationary sector, which is responsible for scalar fluctuations, from the chromo-natural
sector, which can produce detectable B-modes, while remaining subdominant in both scalar
fluctuations and energy density during inflation. This family of models can be described as
“spectator chromo-natural inflation” (SCNI) and their GW spectra are directly related to
the shape of the axion potential [15].

In this work, we go beyond previous studies of axion-SU(2) dynamics during inflation by
considering the effects of backreaction. We use the linear equations of motion for the tensor
SU(2) fluctuations and self-consistently solve the background equations for the axion and
SU(2) VEV, including the homogeneous (averaged) backreaction from tensor fluctuations.
This is in spirit similar to the analysis performed in ref. [3] for the Abelian case. We must
note that ref. [6] largely validated these calculations, while more recent simulations [7] point
out the importance of inhomogeneous effects during the strong backreaction regime. Our
analysis can therefore be considered an important and necessary first step into the uncharted
mild backreaction regime of axion-SU(2) dynamics during inflation.

Our manuscript is organized as follows. In section 2 we review spectator chromo-natural
inflation and provide the necessary equations and analytical solutions. The numerical pro-
cedure is described in section 3, followed by the results and semi-analytical analysis of the
solution. We conclude in Section 4.

2 Review of spectator axion-SU(2) inflation

In this section, we review the spectator axion-SU(2) inflation or the spectator chromo-natural
inflation model, outlining the background and perturbation analysis based on previous works
[9, 11, 14].



2.1 Model and background evolution
The action for spectator axion-SU(2) inflation is given by [14]

M2 _

5= [ doy/~detln) |*FR - 5007 - V(6) - 500 U0 ~ {FRE 4 KELE).
(2.1)
where R is the space-time Ricci scalar, ¢(t) and V' (¢) are the inflaton field and its potential,
respectively, x(t) and U(x) are the axion field and its potential, Fl, = 0,A) — 0,4} —

geabcAZAﬁ is the field strength of the SU(2) gauge field A%, Fer = eHPIFg,/ (2 —detg,“,)

o
is its dual (¢#**? is the antisymmetric tensor and 123 = 1), ¢ is the gauge field coupling,
A is the coupling constant between the gauge and axion sectors, and f is the axion decay
constant.

In this work we use the axion potential of the form

U(x) = p* (1 + cos jﬁ) : (2.2)

where p is a constant that sets the energy scale of the axion field. In this convention, the axion
field takes values x € [0, 7 f]. The potential for the inflation field, V(¢), is left unspecified.
We work with the FLRW metric

ds? = —dt* + a(t)*6;da’da?, (2.3)

where 1, j indicate the spatial directions. An isotropic solution for the background is given
by the gauge field configuration

Aj =0, A =la(t)Q(1), (2.4)

which is also an attractor [16]. For this ansatz, the closed system of equations for the vacuum
expectation value (VEV) of the gauge field Q(¢) and the Hubble parameter H (t) is given by

M H = —%q’ﬁz - %58 - Q@+ HQ? + Q" (2.5)

2 2 O X 3/ 2 3 5 4
SMAH? = 5 +V(0)+ 5 +U00 +5 (Q+HQ) +354°Q" (2.6)
O+3HO + (H + 2H2) Q +252Q° = gf)‘xQQ, (2.7)
X+ 3HX 4+ Uy (x) = —?’JQCAQQ (Q+HQ>, (2.8)
¢+ 3Ho + Vy(¢) = 0, (2.9)

where Vy(¢) = 0V (¢)/0¢, Vy(x) = 0U(x)/0x, and an overdot denotes a derivative with
respect to cosmic time t. The Hubble slow-roll parameters are defined as

. H s
€H = ~ 2> NH = ToHH
which are much smaller than unity during inflation. The first slow-roll parameter ez contains

contributions from the inflaton field ¢ and the spectator sector that consists of the axion and
gauge fields

(2.10)

€H = €4+ €Qy T E€Qp + €y (2.11)



The various contributions are defined as

¢? (Q+ HQ)? *Q* X2
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For the axion-gauge sector to remain a spectator, their energy densities must be subdominant
to that of the inflaton, i.e.,

0o > Pxs PQp> PQp> (2.13)

where the energy densities are given by

1. 1 3, . 3
po =50 +V(0), =5 +UN), pos=5(Q+HQ?, poy =59°Q" (2.14)

The original chromo-natural inflation model in the slow-roll approximation has an at-
tractor solution [9, 11]

A 2H?
X =29Q + —,
f 9@
U (2.15)
)=—HQ+ —— =X,
Q Q@+ 307 07
The VEV of the gauge field that minimizes the axion effective potential is
—fU 0\
~ | === 2.16
o=(50) (2.16)
which is a solution of Eq. (2.15) when @ is small. It is convenient to introduce the parameters
9< A
= 7% = 2.17

where the dimensionless mass parameter mg characterizes the mass of the gauge field fluctu-
ations and controls their amplification. On the chromo-natural inflation attractor, mg and
¢ are related via § ~ mg + 1/mg.

2.2 Perturbations

Let us now review the perturbations in the spectator axion-SU(2) model. We adopt the
gauge choice and decomposition for field fluctuations following ref. [17] of the form

¢ =0¢+do,
X =Xx+0X,
Al =a (Y1, Q+0Q+ty, tx, 0: M), (2.18)

Ai - G(YQ, t><7 Q + 5Q - t+7 8ZM2)7
AS =a (Y2, 0,0, Q+0Q+ 9.0.M),

together with
—-1+2p B By 0.B
1+h h 0
_ 2 + X
G =@ 1—hy O
1

(2.19)



The perturbations consist of seven scalar modes (d¢, dx, Y, 6Q, M, ¢, B), six vector modes
(Y12, Mj 2, By 2) and four tensor modes (t, tx, hy, hy). At the linear level, all perturba-
tions are decoupled from each other. Vector perturbations decay on super-horizon scales and
at the linear level metric fluctuations can be neglected [17].

The scalar perturbations have been studied in detail at the linear (add more citations)
and nonlinear levels [18]. It was shown that for mg < /2, the scalar perturbations are
tachyonically unstable [17]. The combination from linear and nonlinear analyses leads to the

constraint [18]
2

1/4
V2 <mo < 9 ~ 35,/9, 2.20
Q= 327T2 P(,CMB \/§ ( )
on the parameter mg, where Pr cmp = 2.1 - 1079.
Let us now turn to the discussion of tensor perturbations. It is convenient to express
the plus and cross polarizations of tensor perturbations via the left-handed and right-handed
polarizations as

hr + hg hr, — hgr _tr+ir _tr—1tRr

B — . hy = .ty = , ot 2.21
+ \/i X Z\/§ + \/i X Z\/i ( )
We canonically normalize them by introducing
hig = bp = T (2.22)
LE= 37 L,R = Joa L,R- .

We will work with conformal time defined as

todt
77:/0 ot (2.23)

which, with the near de Sitter expansion, leads to

1
a=—-—— 2.24
i (2.24)
for the scale factor. In the following, derivatives with respect to n are denoted by primes.
In conformal time and to leading order in slow-roll, the equations of motion for the tensor
perturbations are

2. /€ 2./€
nQE Tpp + ngQB (mq £ kn)Tr,L,

(2.25)

2
¢3L+< —772>¢R,L=

2\/ 6QE

2
Tp + {kQ + ) [mq& £ kn(mq + 5)]} Trr =— VR

+ ?722 [\/eCTB(mQ + kn) + eon| VrL- (2.26)

Here k is the wave number. The spectator axion-SU(2) model is known to have a transient
growth of one of the polarizations of the gauge field tensor modes that leads to the production
of chiral gravitational waves (GW). The produced GW background is enhanced with respect
to the standard single-field slow-roll models of inflation with predicted amplitudes potentially
observable by near-future B-mode experiments.



The total GW power spectrum is defined as
Y (hij(R)hig(R) = (2m)%6° (k + K) Py (k), (2.27)
2%
where P;°(k) can be expressed in terms of left and right polarization modes as

Prot(k) = 2PL (k) + 2Pf (k), (2.28)

where P}(ls) is the late-time sourced GW power spectrum, defined as

L |vaE (—) tim ) (k. ) (2.20)

oar2
7rMPl

It is convenient to introduce a parameter that characterizes the enhancement of the GW
background with respect to the vacuum prediction,

7)(3)
Raw = ks, (2:30
P

h
where the vacuum prediction for the power spectrum is given by

2H?

= —. 2.31
w2 M3, ( )

In order to have sizable GW production, the parameter range of the model has to be chosen
such that Rgw 2 1. This requirement leads to the constraint [18]

9 < 1.8-107°mg et e, (2.32)

The growth of tensor modes results in the backreaction [14, 18, 19] on the background
equations of motion (2.5)—(2.9). Taking into account the contribution from backreaction, the
background equations of motion in conformal time take the form

gA
Q" +2HQ + (H' + 1) Q + 29°a*Q° — X 'Q* + a*Th = 0, (2.33)
3gA
X'+ 2Hy + a2Uy(x) + ? aQ* (Q' + HQ) + T, =0, (2.34)
with H = a’/a and

_ 9 &k £H—ﬁ |T|? (2.35)

BR ™ 342 | (27)3 a El '

A d d3k

X H — k) |Tr|? 2.

7;3R a4fd77/( ) (amQ k)‘ R’ ( 36)

It is worth noting that in this work we consider homogeneous backreaction, where the spatial
gradients of inflation and axion fields are neglected, keeping these fields homogeneous during
inflation.
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Figure 1. Constraints on the spectator axion-SU(2) model similar as in ref. [18] with indication of
parameters used in the current work. The stars correspond to the parameters (from left to right)
mqg = 2.44, 3.58, 4.19 with g = 0.011 (runs g1, f4, 5 from Table 1.)

In the small-backreaction regime with an approximately constant mg parameter, the
spectator axion-SU(2) model can be solved analytically [10]. The regime of small backreaction
is achieved with the constraint [18]

2472 1 2
g < — . (2.37)
Q

2.3-e39mQ 1 1

In figure 1, we plot the three constraints (2.20), (2.32), and (2.37) on the parameter range of
the theory, indicating the fiducial parameters used in the current work.

3 Numerical treatment of the backreaction

To study the backreaction in axion-SU(2) inflation, we now solve the perturbation equations
along with those for the background numerically. We begin by describing the numerical
method and then discuss the results.

3.1 Numerical implementation

We solve Equations (2.25) and (2.26) for both the left- and right-handed components of Tx f,
and ¢p 1. For each perturbation variable, we solve the equations for the real and imaginary
parts and represent them on a k mesh to compute the integrals in (2.35) and (2.36). For
most of our studies, we use the logarithmic wave number along with conformal time as the
independent coordinates. In that case, we use ni points in In k that are separated by uniform
intervals in In k in the range

Nmin < In(k/agH) < npax. (3.1)

To solve the background (2.33) and (2.34), we compute the integrals (2.35) and (2.36)
up to second-order accuracy. We advance the solution in conformal time using a third-order
time-stepping scheme. The initial conformal time is 7; and the final one is ny. In practice,
we choose 1; = —7—[;1 with H; = a;H and a; = 1 along with ny = —1075, which corresponds
to a total duration of N = 25 e-folds. The length of the conformal time step is then usually
chosen to be Anp = 1075/H.
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Figure 2. Evolution of Q and x with N is shown for different initial parameters. The red, black,
and blue curves correspond to runs pl, p4, and pb respectively from table 1 with ¢ = 0.011 and
mq = 2.44, 3.58, 4.19 (from left to right). For the blue curve, the backreaction is negligible therefore
the value of () remains constant. However, for a larger value of mg (black and red curve), the
backreaction effects are important. [OI: can we do solid, dotted and dashed plot styles for curves as
in fig.37]

It is convenient to use the compute and data management infrastructure provided by
the PENCIL CODE [20], which allows for efficient parallelization using the Message Passing
Interface library. In some exploratory cases, we also solved the equations on a mesh where
Nmin and Nyax grow in time such that the main contributions to the integral are captured
during the entire evolution.

We initialize the perturbation variables with the Bunch-Davies initial condition. Specif-
ically, we set the initial conditions for the real and imaginary parts of the perturbation
variables as follows:

e—ikn

Trr ="
R,L ok

The same initial conditions are used for ¥g . To discard the contributions from quantum
vacuum fluctuations of T 1 in the calculation of the integrals in (2.35) and (2.36), we use
the criterion that for wave numbers where |Tr 1|? < 1/2k, the value of |Tg 1|? is replaced by
Z€ero.

T}, = —ik TR (3.2)

3.2 New late-time attractor solution

We have performed a range of simulations with different values of u, g, and \; see Appendix A
for a summary. When p and therefore also mg are large enough, the system undergoes a
transition to a new late-time attractor with negative values of @) after about N = 2-10
e-folds; see figure 2. [OI: mention y evolution]

For the test of our numerical implementation, we choose the initial value of u and g for
one of the runs such that the backreaction of the perturbations on the background evolution
is negligible. Run p1 is an example of such a case. It is evident from figure 2 that ) remains
constant in time for run ul, as expected from the analytical results. Furthermore, we have
compared our numerical results for the v/2k(2|Tg 1|) and v2k(z|¢g 1|) with the analytically
expected results and show the comparison in the upper panel of figure 3 for ¥ = 1074, In
this figure, the red and blue curves show the numerical result for the right and left-handed



polarization respectively and the green curve shows the analytic solution obtained using the
homogeneous solution of the Tr Equation (2.25). This solution is given by [14],

Th = \/sziﬁwg,a(%kn). (3.3)
Here, Wg o(2ikn) is the Whittaker function with § = —i(mg+¢), and o = —iy/2mg& — 1/4.
The Whittaker solution provides a good analytical solution for Tz for a particular wave
number approximately until the Hubble horizon crossing. However, the solution starts to
differ in the deep super Hubble horizon regime due to the contribution from the metric
tensor perturbations. It is evident from the upper panel of figure 3 that our numerical
solution matches well with the analytically expected one in the regime where the analytical
solution is valid.

In figure 2, we show the time evolution of @) and x for simulations p1, pd, and upb
having different values of ;1 that corresponds to mg, = 2.44, 3.0, and 3.58. For the run where
mq, = 3.58, the backreaction of the perturbations becomes important, and because of this,
Q starts to change with time. However, it stabilizes to another constant value at a later time.
We show the evolution of the v/2k(x|Tx 1|) and v/2k(z|¢g,1|) for this run in the middle panel
of figure 3 and the evolution of the integrand of the backreaction integrals 7—§2R and T3 in
figure 4. Here x = —kn is the dimensionless time variable.

From figure 4, we conclude that most of the contribution to the backreaction comes from
a fixed narrow range of wave numbers. This range is different for different values of mg. For
the run u3, the range is around In k/(apH) ~ 10 and for the run p5, it is Ink/(agH) ~ 3. We
also consider variable k range for these runs. However, these runs lead to some unphysical
oscillatory features in the background evolution as shown in Appendix B. [OI: Comment on
superhozion mode]

3.3 Semi-analytical modelling

In this section, we provide a semi-analytical analysis to approach the new attractor solution
at late times. In order to provide some intuition on dynamics in the backreaction regime, it
is instructive to investigate the evolution of each contribution to equations of motion (2.33)—
(2.34). The time dependence of contributions is shown in figure 5. Following the evolution
of the backreaction terms TBQR, 7§<R, three distinct phases of dynamics can be distinguished.
From the top left and bottom left panels of figure 5 one can see that the backreaction
contributions (solid black curves) grow exponentially in absolute value up to around 8 e-
folds. We will refer to the stage of exponential growth of backreaction as Stage I. When
the backreaction contributions become comparable to one of the terms in the equations of
motion, Stage II begins. At this stage, the backreaction terms change their behavior, start
to decrease, and eventually cross zero. Following this stage, the system converges to the final
solution (the top right and bottom right panels of figure 5) which we refer to as Stage III.
The dynamics during different stages is described in more detail in Appendix C.

Let us turn right away to the discussion of the new late-time dynamical attractor. At
Stage III, all the contributions to equations of motion become nearly constant. In addition,
the term —(g\/f) ax’@Q? becomes nearly equal to the contribution 2H?Q in the equation of
motion (2.33)}, that leads to

2
;}X’ ~ —2;2;, QQ ~ const. (3.4)

"We used H' = a®>H + H? and H = 0 in numerical simulations.
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Figure 3. \/ﬁ:z:|TR7L| and \/ﬂx\d;R,ﬂ vs N for k = 10~* for Runs pl (top panel), p (middle
panel). In the top and middle panels, the red and blue curves represent the numerical results for the
right and left-handed polarization respectively. In bottom panel we show a comparison between of
V2kz|Tg| and v/2kz|{z| for the runs pl and p4. [OI: “Whittaker”, not “WhittakAr” in the legend.
I think we can remove a lower panel and also k = 1.0e — 04 from legends since it is the same for all

plots.]

This solution resembles the original chromo-natural attractor solution given in Eq. (2.15)
with () = const and just with the second term present that has an opposite sign. It follows
on the late-time attractor £ ~ —1/mg. In figure 6, we show that Equation (3.4) does indeed
hold. With (3.4), the equations of motion on Stage III become

AH?Q + 29°Q° + TS, ~ 0, (3.5)
39\
Uy + %HQ?’ T ~ 0, (3.6)

where we have taken into account that terms with derivatives at the last stage are negligible.
Let us now take a closer look into the time dependence of each component of the
backreaction integrals (2.35) and (2.36). Backreaction terms may be written in conformal

~10 -
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Figure 4. The integrands of Té’?R and T3y, denoted here by dT]_)(,"QR /dInk and dT5y /dIn k, respectively,
for p=1.5x 107* (Run u3) and g = 2.1 x 10~ (Run p5). The white line indicates the position of
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time as
g 1
Tih = ot (e 0TP) — LuT?) ) = 78+ 72, (37)
A 1
T = —go7 [ QTR = LUTEY + (amol? + Q) (TP = 9
= T+ T AT 4T (3.9)
where we have denoted the integrals over wave numbers by
3k 3k
T = [ ——= (|1T* + |TL|? T2:/— Tr> - |TL?) . 1
(TR = [ oy (Taf + TLP) . TR = [ sk (Tl =) (310

It is worth noting that in all our cases, the contributions from |77, | are negligible. In figure 7,
we show the time evolution of the different contributions to the 7g% and T3y integrals. There
is a clear correspondence between the background dynamics and backreaction integrals, and
vice versa. We refer the interested reader to the detailed discussion in Appendix C.

The backreaction integrals include crucial information that governs the evolution of the
whole system. It is therefore convenient to introduce a new parameter that quantifies the
ratio of two backreaction integrals o

BR

X
Tor

. (3.11)
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Figure 5. Top left: Contributions to the equation of motion for the VEV of the gauge field, @, with
respect to the number of e-folds at the initial stage and when backreaction is turned on. The three
vertical gray grid lines correspond to the moments when Q” = 0, Q' = 0, and then again Q" = 0
(from left to right) respectively. Top right: Contributions to the equation of motion for @ during
the transition to the final attractor solution. Vertical gray grid lines correspond to the moments
when Q =0, Q" = 0, Q" = 0 (from left to right) respectively. Bottom left: Contributions to the
equation of motion for the axion field, x, with respect to the number of e-folds at the initial stage
and when backreaction is turned on. Grid lines are the same as in the top left panel. Bottom right:
Contributions to the equation of motion for x during the transition to the final attractor solution.
Grid lines are the same as in the top right panel.
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Figure 6. Verification of equation (3.4), showing (Ax’/af)an versus —2H?/gQgn, where Qg, denotes
the value of @ at the final attractor for multiple series of runs from table 1.
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Figure 7. Left: Backreaction terms 7]3QR and their contributions with respect to the number of e-
folds. Right: Backreaction terms 73y with contributions with respect to the number of e-folds. Grid
lines are the same as in figure 5.

From equations (3.5)—(3.6), one can find the relation between y and @ on the final attractor

3gA 1
Uy, = —%HQ?’ +— (4H7Q +29°Q°). (3.12)
At the final stage it holds Tlf)R ~ TlQ and Tﬁ‘R ~ TX + 73", therefore, the parameter a can
be expressed as

2 Hf
a=-—2_ (3.13)
9 N9 Qf,
where we used {(|T|?)" ~ 2aH{|T|?) and Qg, denotes the value of Q at the final attractor.
The dependence of o on the parameters A, g, and p is confirmed in figure 8 for runs of the
three families. To sum up, the late-time dynamical attractor is given by equations (3.4),
(3.12) and (3.13).
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Figure 8. Dependence of the parameter a versus Qg, for three series of runs.
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Figure 9. 2k2?|T|? vs k/kg and Qgw vs f/fx is shown for the runs p4, u5 and p9.

3.4 Observational signatures

The GW energy density power spectrum can be approximated as [21]

3 1 (keq\? 16
Qaw(k) = —=QuaaPi(k) [= [ =2 — 3.14
e (k) 128rad7>h<>[2(k + 39 (3.14)
where Qp,q ~ 2.47 x 107° is the present radiation density parameter and keq >~ 1.3 X
102 Mpc ™! is the wave number entering the horizon at matter-radiation equality. To express
Qaw as a function of frequency, we use f ~ 1.5 x 1071% (k/Mpc~!) Hz.

In figure 9, we show 2kx?|T|? vs k/ky, and Qaw vs f/fu for the runs pl and w5,
respectively. The upper and lower panels correspond to the run pl and ub, respectively.
In this figure, we have normalized the wave number and GW frequency using the values
corresponding to the Hubble horizon size (k) at the end of inflation and the corresponding
frequency (fr). These quantities are given by

k
k= 2 H =23 x 102Mpe!,  fy = 2 —3.5x 107Hz. (3.15)
ag 2w
Here, H = 1.04 x 10~%Mp; and we assume the adiabatic evolution of the Universe to calculate
ae/agp, given by

1/3 15
Qe _ <908> E _ 58 x 10729 gos 106.75 Ty 1.3 x 10 ' (316)

ag Grs T, 394 g, 273K T,

In the above expression, g.s and ggs denote the effective degrees of freedom in the entropy
at the end of inflation and the present epoch, respectively, and T, denotes the reheat-
ing temperature assuming instantaneous reheating. We estimate 7, by using the relation
3H2ME = (7%/30)g, T2

As is evident from figure 9, the modes that are amplified around horizon crossing give
the largest values of Qagw.

4 Summary and discussion

In this work, we simulated an axion-SU(2) sector, which is a spectator during inflation,
meaning that its energy density is subdominant to the inflaton and that both the Hubble rate
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and the density perturbations are unaffected by its presence. The simulations are performed
in what can be called the mild backreaction regime. This is because the fluctuations are
computed using the linearized equations of motion, even though their effect on the axion and
gauge field VEV is computed self-consistently, but averaged over the simulation domain. This
method is similar in spirit to the one followed in ref. [3] in the case of axion-U(1) inflation,
where the gauge fields are computed using linear equations of motion and their collective effect
is considered a background quantity and added to the corresponding background equations.
In the case of the Abelian model, an oscillatory result was found that can be understood
in the following way: an increase in axion velocity leads to an increase in the gauge field
amplification. This results in an increased backreaction on the rolling axion through the
(E - B) term. This backreaction leads to a slow-down of the axion, which, in turn, reduces
the subsequent amplification of gauge fields. Since the gauge fields are already produced
red-shifted, their backreaction will also reduce, leading to a speed-up of the axion and the
whole process will start anew, thus leading to periodic bursts of gauge field production.

In the non-Abelian case, the initial stage is similar to the Abelian case: as the axion
picks up speed, the gauge fields (a tensor mode in this case) are exponentially amplified. This
leads to a backreaction on the equations of motion that define the VEV of both the axion
field as well as the SU(2) sector. This leads to both a slow-down of the axion, as well as a
completely new sign-flipped value for the gauge field VEV. Furthermore, in this new regime,
the super-horizon tensor modes of the gauge field do not redshift, as expected, but are instead
constant [ES:right?]. This leads to the absence of the periodic behavior found in the Abelian
case, because the backreaction of the gauge field fluctuations onto the background quantities
does not diminish with time (to the lowest order in slow-roll).

Having revealed this new regime, several questions remain to be answered. An intriguing
relation was found between the backreaction terms in the axion and gauge VEVs, leading to
a universal relation between the parameters of the potential and the late-time value of the
gauge VEV. However, we are not able to predict the gauge VEV itself in this new attractor.
We believe that the initial value of the gauge VEV (in the original chromo-natural attractor)
plays a role in determining its late-time value.

Furthermore, our analysis neglects spatially dependent backreaction effects that can lead
to mode-mode coupling of the gauge field, as well as the excitation of scalar fluctuations in
the axion sector. It has been shown in ref. [7] that space-dependent backreaction effects can
be very important in the Abelian case. It is thus important to revisit our calculation, solving
the full system on a lattice, without making any linear or Hartree-type approximations.

Furthermore, our calculation was performed with a constant Hubble scale, in an exact
de-Sitter background. While this can be an excellent approximation for several inflationary
models, it does not allow us to probe the evolution of this new attractor close to the end of
inflation, where |H/H?| ~ 1.

Finally, the flipped sign of the gauge field VEV provides the possibility of amplifying
the subdominant helicity of gauge tensor modes. Further analysis of this is left for future
work, as it can provide interesting scale-dependent observables.

. these retardation effects are not present. When the [ES: which are the dominant
terms in the gauge field eoms?] [OI: See Fig. 5]
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Run % g A mg, Qo Qfin a
pl  1.20x107% 1.11x 1072 500 244 229x107% 226 x107% —1.67 x 1072
p2 140 x107* 1.11x 1072 500 3.00 2.81x107* 2.77x107* —1.59 x 1072
p3  1.50x107% 1.11x1072 500 329 3.08x107% —1.36x10"%*  6.71 x 1073
pd  1.60x 107* 1.11x 1072 500 3.58 3.36 x 107 —1.45x10"* 591 x 1073
pd” 160 x 1072 1.11x 1072 500 77.2 7.23x107% —1.46x10"% 590 x 1074
p5  1.80x107* 1.11x 1072 500 4.19 3.93x107* —1.63x107* 4.72x1073
p6  1.90 x 107* 1.11x 1072 500 4.51 4.22x107% —1.71 x107*  4.27x 1073
p?7  210x107* 1.11x 1072 500 5.15 4.82x107*% —1.88x107*  3.55x 1073
pu8  2.45x107* 1.11x1072 500 6.32 592x107* —-215x107* 270 x 1073
gl 150x107% 1.11x1072 500 3.29 3.08x10~* —-136x10"* 6.71x 1073
g2 150x107* 1.50x 1072 500 4.02 2.79x107* —1.17x10™*  6.77 x 1073
g3 1.50x107* 2.00x 1072 500 4.87 253 x107* —1.00x10™*  6.91 x 1073
g4 150x107% 250x1072 500 5.65 2.35x107% —8.86x107°  7.06x 1073
g5 1.50x107% 3.00x 1072 500 6.38 221 x107% —8.01x10~°>  7.20x 1073
Al 1.50x107% 1.11x1072 600 3.09 290 x10~% 287 x107% —1.31x 1072
A2 150x107% 1.11x 1072 500 3.29 3.08x107* —-1.36x10"*  6.71 x 1073
A3 1.50x107% 1.11 x1072 400 3.54 3.32x107% —144x107* 753 x1073
M 1.50x107% 1.11x107%2 300 3.90 3.65x107* —1.54x10"* 877 x1073
A5 1.50x 107% 1.11 x 1072 200 4.46 4.18x107% —1.69x107*  1.10 x 1072
A6 1.50x107% 1.11x1072 100 5.62 527 x107* —1.96x10"*  1.62x 1072
Table 1. Summary of runs for the g, A, and u series. For each series, the first line refers to the

fiducial run with g = 1.5 x 1074, g = 1.11 x 1072, and A = 500. Run w4’ is the same as Run u4,
except that here H = 1.04 x 107° is 10 times larger than usual.

A Full set of parameters

The full set of parameters used in the simulations is shown in Table 1. The fiducial parameters
are p = 1.5 x 1074, g = 1.11 x 1072, and A = 500. The runs are grouped separately for
runs pl-p8 with 1.2 < /107* < 2.45, runs gl-¢5 with 1.11 < ¢g/1072 < 3, and runs A1-\6
with 100 < A < 600. Only the runs with negative values of Qg, have undergone backreaction.

B Artifacts from not resolving the superhorizon modes

One might have expected that it is important to resolve the modes around the comoving
horizon. Looking at figure 4, this is not obvious, however. Once backreaction becomes
important, most of the contributions to the backreaction come from a fixed band of wave
numbers. It is instructive to examine the results where we allow for the possibility to move
the range of integration to a comoving strip with

Nmin < In[k/a(n)H] < Nmax- (B.1)

The result of numerical simulation using a comoving strip of wave numbers is shown in
figure 10.

As we see from the insets of figure 10, the corresponding evolution of @) is different in
cases where the modes in the proximity of the comoving horizon are resolved at the expense of
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Figure 10. ’TBQR for (Qo, 1)/107* = (3.2, 1.5) without shift for 0 < Ink < 12 (first panel), and with
shift for —12 < Ink/aH < 4, —=12 < Ilnk/aH < 4, —6 < Ink/aH < 4, and —2 < Ink/aH < 4 (the
other 3 panels). The insets show the corresponding evolution of Q.

not capturing any more the strongly super-horizon modes. We can conclude that this causes
numerical artifacts that look like periodic bursts of gauge field production during inflation.

C Detailed description of backreaction stages

At the initial stage, referred to here as Stage I, the solution follows the chromo-natural
attractor solution (2.15), where the three terms —(gA/af)x'Q?, 2¢°Q>, and 2H2Q/a® balance
each other in (2.33). Note that, in the present case of H = const, we have H' + H? = 2H2.
When the backreaction 7§R becomes important, the contribution —(gA/af) x'Q? becomes
more dominant compared to the rest of the terms (see purple dashed curve in the top left and
bottom left of figure 5). To compensate for the increase of the sum 7§R and —(g\/af) X' Q?
terms, the Q" contribution becomes negative. It causes the change in the sign of @’. This
changes the behavior and turns on the @’ term, 7., in the integral 74 of Equation (3.9),
which produces a bump in &; see figure 11. This happens around N = 8 e-folds. The change
in £ makes the two terms 7'1Q and 7'2Q in (3.7) almost cancel each other, see figure 7. As a
result, the TBQR term becomes first negative and is then close to zero. This causes a decrease
of Q). The steps at Stage I can be described by the following chain sequence:

7;%—)@”—)@'—)7?1;{—)5()(/)—)7-&—)@.
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Stage | Stage 11 Stage 111
T o exp (O(1)N) T ~ 0 AH?Q + 29°Q3 + T3, ~
|T3R| o exp (O(1)N) Uy + BgNHQ? + Tq ~0 | Uy + BgA/[)HQ? + T ~0

Table 2. The three stages of dynamics in axion-SU(2) inflation with backreaction.
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Figure 11. Left: The VEV of the gauge field ) versus the number of e-folds. Grid lines are the
same as in figure 5. Right: The evolution of £ parameter defined in equation (2.17) with respect to
the number of e-folds.

The next stage, Stage I, is characterized by a continuous decrease of (). The backre-
action TBQR ~ 0 remains small, and 7§<R ~ const.

The last stage, Stage III, begins when the gauge field VEV reaches zero, i.e., @ = 0.
This changes the sign of terms with mg, i.e., 7;* and 75" from (3.9). This governs the change
in £ and causes the inflection of the 7-1Q contribution. As a result, the solution arrives at the
final attractor (3.4) with 7X = TX + T;¥ ~ const and 7@ = T;* ~ const. At Stage III, we
observe the following chain sequence:

Q—>mQ—>7§‘R—>§(X’)—>T§2R—>Q.

The three stages of evolution are summarized in Table 2.

D Example plots (only for the draft)
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