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1 Introduction

Natural inflation was originally proposed in order to address the UV sensitivity problem of
inflation [1, 2]. By identifying the inflaton with an axion, a pseudo-scalar field possessing
a shift symmetry, the infinite series of higher-order terms in the potential are set to zero.
The inflationary potential is generated through instanton effects and in the early versions of
natural inflation the potential is a sinusoidal function of the field.

The shift symmetry also dictates the possible couplings of the inflaton to other fields.
In particular, an axion can only couple derivatively to other fields. Furthermore, the lowest
order coupling to fermions and gauge bosons are ψ̄γµγ

5∂µφψ and φFF̃ , respectively, where
F̃ is the dual field strength tensor.

The coupling of an axion inflaton to gauge fields through a Chern-Simons term has
attracted significant attention in the literature. In the case of an Abelian field, the parity-
violating nature of the coupling leads to the two helicities developing a different effective
frequency. One of them can even become tachyonic, when the velocity of the inflaton is
high enough. After the end of inflation, tachyonic production of gauge fields can lead to
instantaneous preheating. Identifying the gauge field with the hypercharge sector of the
Standard Model can lead to the generation of observationally relevant cosmological magnetic
fields. During inflation, the production of gauge fields can lead to observable non-Gaussianity.

Depending on the axion-gauge coupling strength, the tachyonic amplification of the
gauge fields can arise during inflation. In this case, the generation of gauge fields leads to a
significant backreaction on the inflaton, leading to a sudden drop of its velocity. Once the
gauge fields are diluted by the expansion of space-time, the backreaction term subsides and
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the inflaton starts rolling again. This can lead to periodic bursts of gauge field production
during inflation [3–6], as has been shown analytically and numerically. However, recent lattice
simulations showed that the inclusion of inhomogeneous backreaction and a larger dynamical
range can significantly change the resulting dynamics [7].

Despite the interesting backreaction dynamics that occurs for large axion-gauge cou-
pling, the rolling of the axion is in the linear regime determined by the potential and Hubble
friction. By replacing the Abelian field with a non-Abelian one, this ceases to be true. The
fact that SU(2) fields (see ref. [8] for the generalization to SU(N) fields) possess a non-trivial
vacuum structure leads to a new inflationary attractor, in which the dominant source of
friction for the rolling axion is not the Hubble term, but the non-Abelian field VEV [9–12].

This family of models, collectively named chromo-natural inflation, allows for slow-roll
inflation even in steep potentials. Due to the parity-violating Chern-Simons coupling, one of
the tensor modes of the SU(2) sector experiences a similar instability to one of the helicities
in the Abelian case. However, the fact that the SU(2) tensor mode is linearly coupled to the
gravitational sector leads to a similar enhancement of chiral gravitational waves.

While chromo-natural inflation with a cosine potential has been shown to be incom-
patible with CMB observations [9], spontaneous breaking of the SU(2) symmetry brings the
model in agreement with current data [13]. A further generalization of CNI was proposed
in ref. [14], where the axion-SU(2) action was treated as a spectator sector. This separates
the inflationary sector, which is responsible for scalar fluctuations, from the chromo-natural
sector, which can produce detectable B-modes, while remaining subdominant in both scalar
fluctuations and energy density during inflation. This family of models can be described as
“spectator chromo-natural inflation” (SCNI) and their GW spectra are directly related to
the shape of the axion potential [15].

In this work, we go beyond previous studies of axion-SU(2) dynamics during inflation by
considering the effects of backreaction. We use the linear equations of motion for the tensor
SU(2) fluctuations and self-consistently solve the background equations for the axion and
SU(2) VEV, including the homogeneous (averaged) backreaction from tensor fluctuations.
This is in spirit similar to the analysis performed in ref. [3] for the Abelian case. We must
note that ref. [6] largely validated these calculations, while more recent simulations [7] point
out the importance of inhomogeneous effects during the strong backreaction regime. Our
analysis can therefore be considered an important and necessary first step into the uncharted
mild backreaction regime of axion-SU(2) dynamics during inflation.

Our manuscript is organized as follows. In section 2 we review spectator chromo-natural
inflation and provide the necessary equations and analytical solutions. The numerical pro-
cedure is described in section 3, followed by the results and semi-analytical analysis of the
solution. We conclude in Section 4.

2 Review of spectator axion-SU(2) inflation

In this section, we review the spectator axion-SU(2) inflation or the spectator chromo-natural
inflation model, outlining the background and perturbation analysis based on previous works
[9, 11, 14].
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2.1 Model and background evolution

The action for spectator axion-SU(2) inflation is given by [14]

S =

∫
d4x
√
−det(gµν)

[
M2

Pl

2
R− 1

2
(∂φ)2 − V (φ)− 1

2
(∂χ)2 − U(χ)− 1

4
F aµνF

aµν +
λχ

4f
F aµνF̃

aµν

]
,

(2.1)
where R is the space-time Ricci scalar, φ(t) and V (φ) are the inflaton field and its potential,
respectively, χ(t) and U(χ) are the axion field and its potential, F aµν = ∂µA

a
ν − ∂νA

a
µ −

gεabcAbµA
c
ν is the field strength of the SU(2) gauge field Aaµ, F̃ aµν = εµνρσF aρσ/

(
2
√
−detgµν

)
is its dual (εµναβ is the antisymmetric tensor and ε0123 = 1), g is the gauge field coupling,
λ is the coupling constant between the gauge and axion sectors, and f is the axion decay
constant.

In this work we use the axion potential of the form

U(χ) = µ4

(
1 + cos

χ

f

)
, (2.2)

where µ is a constant that sets the energy scale of the axion field. In this convention, the axion
field takes values χ ∈ [0, πf ]. The potential for the inflation field, V (φ), is left unspecified.

We work with the FLRW metric

ds2 = −dt2 + a(t)2δijdx
idxj , (2.3)

where i, j indicate the spatial directions. An isotropic solution for the background is given
by the gauge field configuration

Aa0 = 0, Aai = δai a(t)Q(t), (2.4)

which is also an attractor [16]. For this ansatz, the closed system of equations for the vacuum
expectation value (VEV) of the gauge field Q(t) and the Hubble parameter H(t) is given by

M2
PlḢ = −1

2
φ̇2 − 1

2
χ̇2 −

[
(Q̇+HQ)2 + g2Q4

]
, (2.5)

3M2
PlH

2 =
φ̇2

2
+ V (φ) +

χ̇2

2
+ U(χ) +

3

2

(
Q̇+HQ

)2
+

3

2
g2Q4, (2.6)

Q̈+ 3HQ̇+
(
Ḣ + 2H2

)
Q+ 2g2Q3 =

gλ

f
χ̇Q2, (2.7)

χ̈+ 3Hχ̇+ Uχ(χ) = −3gλ

f
Q2
(
Q̇+HQ

)
, (2.8)

φ̈+ 3Hφ̇+ Vφ(φ) = 0, (2.9)

where Vφ(φ) = ∂V (φ)/∂φ, Vχ(χ) = ∂U(χ)/∂χ, and an overdot denotes a derivative with
respect to cosmic time t. The Hubble slow-roll parameters are defined as

εH = − Ḣ

H2
, ηH = − Ḧ

2HḢ
, (2.10)

which are much smaller than unity during inflation. The first slow-roll parameter εH contains
contributions from the inflaton field φ and the spectator sector that consists of the axion and
gauge fields

εH = εφ + εQE
+ εQB

+ εχ. (2.11)
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The various contributions are defined as

εφ =
φ̇2

2M2
PlH

2
, εQE

=
(Q̇+HQ)2

M2
PlH

2
, εQB

=
g2Q4

M2
PlH

2
, εχ =

χ̇2

2M2
PlH

2
. (2.12)

For the axion-gauge sector to remain a spectator, their energy densities must be subdominant
to that of the inflaton, i.e.,

ρφ � ρχ, ρQE
, ρQB

, (2.13)

where the energy densities are given by

ρφ =
1

2
φ̇2 + V (φ), ρχ =

1

2
χ̇2 + U(χ), ρQE

=
3

2
(Q̇+HQ)2, ρQB

=
3

2
g2Q4. (2.14)

The original chromo-natural inflation model in the slow-roll approximation has an at-
tractor solution [9, 11]

λ

f
χ̇ = 2gQ+

2H2

gQ
,

Q̇ = −HQ+
f

3gλ

Uχ
Q2

.

(2.15)

The VEV of the gauge field that minimizes the axion effective potential is

Q '
(
−fUχ(χ)

3gλH

)1/3

, (2.16)

which is a solution of Eq. (2.15) when Q is small. It is convenient to introduce the parameters

mQ =
gQ

H
, ξ =

λ

2fH
χ̇, (2.17)

where the dimensionless mass parameter mQ characterizes the mass of the gauge field fluctu-
ations and controls their amplification. On the chromo-natural inflation attractor, mQ and
ξ are related via ξ ' mQ + 1/mQ.

2.2 Perturbations

Let us now review the perturbations in the spectator axion-SU(2) model. We adopt the
gauge choice and decomposition for field fluctuations following ref. [17] of the form

φ = φ+ δφ,

χ = χ+ δχ,

A1
µ = a (Y1, Q+ δQ+ t+, t×, ∂zM1),

A2
µ = a (Y2, t×, Q+ δQ− t+, ∂zM2),

A3
µ = a (Yz, 0, 0, Q+ δQ+ ∂z∂zM),

(2.18)

together with

gµν = a2


−1 + 2ϕ B1 B2 ∂zB

1 + h+ h× 0
1− h+ 0

1

 . (2.19)
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The perturbations consist of seven scalar modes (δφ, δχ, Y, δQ, M, ϕ, B), six vector modes
(Y1,2, M1,2, B1,2) and four tensor modes (t+, t×, h+, h×). At the linear level, all perturba-
tions are decoupled from each other. Vector perturbations decay on super-horizon scales and
at the linear level metric fluctuations can be neglected [17].

The scalar perturbations have been studied in detail at the linear (add more citations)
and nonlinear levels [18]. It was shown that for mQ <

√
2, the scalar perturbations are

tachyonically unstable [17]. The combination from linear and nonlinear analyses leads to the
constraint [18]

√
2 < mQ ≤

(
g2

32π2 Pζ,CMB

)1/4

' 35
√
g, (2.20)

on the parameter mQ, where Pζ,CMB = 2.1 · 10−9.
Let us now turn to the discussion of tensor perturbations. It is convenient to express

the plus and cross polarizations of tensor perturbations via the left-handed and right-handed
polarizations as

h+ =
hL + hR√

2
, h× =

hL − hR
i
√

2
, t+ =

tL + tR√
2

, t× =
tL − tR
i
√

2
. (2.21)

We canonically normalize them by introducing

hL,R =

√
2

Mpa
ψL,R, tL,R =

1√
2a
TL,R. (2.22)

We will work with conformal time defined as

η =

∫ t

0

dt

a(t)
, (2.23)

which, with the near de Sitter expansion, leads to

a = − 1

Hη
(2.24)

for the scale factor. In the following, derivatives with respect to η are denoted by primes.
In conformal time and to leading order in slow-roll, the equations of motion for the tensor
perturbations are

ψ′′R,L +

(
k2 − 2

η2

)
ψR,L =

2
√
εQE

η
T ′R,L +

2
√
εQB

η2
(mQ ± kη)TR,L,

(2.25)

T ′′R,L +

{
k2 +

2

η2
[mQξ ± kη(mQ + ξ)]

}
TR,L = −

2
√
εQE

η
ψ′R,L

+
2

η2

[√
εQB

(mQ ± kη) +
√
εQE

]
ψR,L. (2.26)

Here k is the wave number. The spectator axion-SU(2) model is known to have a transient
growth of one of the polarizations of the gauge field tensor modes that leads to the production
of chiral gravitational waves (GW). The produced GW background is enhanced with respect
to the standard single-field slow-roll models of inflation with predicted amplitudes potentially
observable by near-future B-mode experiments.
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The total GW power spectrum is defined as∑
i,j

〈hij(~k)hij(~k′)〉 = (2π)3δ3(~k + ~k′)Ptot
h (k), (2.27)

where Ptot
h (k) can be expressed in terms of left and right polarization modes as

Ptot
h (k) = 2PLh (k) + 2PRh (k), (2.28)

where P(s)
h is the late-time sourced GW power spectrum, defined as

P(s)
h (k) =

H2

π2M2
Pl

∣∣∣√2k

(
− k

aH

)
lim
η→0

ψ
(s)
R (k, η)

∣∣∣2. (2.29)

It is convenient to introduce a parameter that characterizes the enhancement of the GW
background with respect to the vacuum prediction,

RGW =
P(s)
h

P(v)
h

, (2.30)

where the vacuum prediction for the power spectrum is given by

P(v)
h (k) =

2H2

π2M2
Pl

. (2.31)

In order to have sizable GW production, the parameter range of the model has to be chosen
such that RGW & 1. This requirement leads to the constraint [18]

g . 1.8 · 10−5m2
Q e

1.8mQ . (2.32)

The growth of tensor modes results in the backreaction [14, 18, 19] on the background
equations of motion (2.5)–(2.9). Taking into account the contribution from backreaction, the
background equations of motion in conformal time take the form

Q′′ + 2HQ′ +
(
H′ +H2

)
Q+ 2g2a2Q3 − gλ

f
aχ′Q2 + a2T QBR = 0, (2.33)

χ′′ + 2Hχ′ + a2Uχ(χ) +
3gλ

f
aQ2

(
Q′ +HQ

)
+ a2T χBR = 0, (2.34)

with H = a′/a and

T QBR =
g

3a2

∫
d3k

(2π)3

(
ξH − k

a

)
|TR|2, (2.35)

T χBR = − λ

2a4f

d

dη

∫
d3k

(2π)3
(amQH − k) |TR|2. (2.36)

It is worth noting that in this work we consider homogeneous backreaction, where the spatial
gradients of inflation and axion fields are neglected, keeping these fields homogeneous during
inflation.
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Overproduction of scalar perturbations
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Figure 1. Constraints on the spectator axion-SU(2) model similar as in ref. [18] with indication of
parameters used in the current work. The stars correspond to the parameters (from left to right)
mQ = 2.44, 3.58, 4.19 with g = 0.011 (runs µ1, µ4, µ5 from Table 1.)

In the small-backreaction regime with an approximately constant mQ parameter, the
spectator axion-SU(2) model can be solved analytically [10]. The regime of small backreaction
is achieved with the constraint [18]

g �

(
24π2

2.3 · e3.9mQ

1

1 +m−2
Q

)1/2

. (2.37)

In figure 1, we plot the three constraints (2.20), (2.32), and (2.37) on the parameter range of
the theory, indicating the fiducial parameters used in the current work.

3 Numerical treatment of the backreaction

To study the backreaction in axion-SU(2) inflation, we now solve the perturbation equations
along with those for the background numerically. We begin by describing the numerical
method and then discuss the results.

3.1 Numerical implementation

We solve Equations (2.25) and (2.26) for both the left- and right-handed components of TR,L
and ψR,L. For each perturbation variable, we solve the equations for the real and imaginary
parts and represent them on a k mesh to compute the integrals in (2.35) and (2.36). For
most of our studies, we use the logarithmic wave number along with conformal time as the
independent coordinates. In that case, we use nk points in ln k that are separated by uniform
intervals in ln k in the range

nmin ≤ ln(k/a0H) ≤ nmax. (3.1)

To solve the background (2.33) and (2.34), we compute the integrals (2.35) and (2.36)
up to second-order accuracy. We advance the solution in conformal time using a third-order
time-stepping scheme. The initial conformal time is ηi and the final one is ηf . In practice,
we choose ηi = −H−1

i with Hi = aiH and ai = 1 along with ηf = −10−5, which corresponds
to a total duration of N ≈ 25 e-folds. The length of the conformal time step is then usually
chosen to be ∆η = 10−6/H.
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Figure 2. Evolution of Q and χ with N is shown for different initial parameters. The red, black,
and blue curves correspond to runs µ1, µ4, and µ5 respectively from table 1 with g = 0.011 and
mQ = 2.44, 3.58, 4.19 (from left to right). For the blue curve, the backreaction is negligible therefore
the value of Q remains constant. However, for a larger value of mQ (black and red curve), the
backreaction effects are important. [OI: can we do solid, dotted and dashed plot styles for curves as
in fig.3?]

It is convenient to use the compute and data management infrastructure provided by
the Pencil Code [20], which allows for efficient parallelization using the Message Passing
Interface library. In some exploratory cases, we also solved the equations on a mesh where
nmin and nmax grow in time such that the main contributions to the integral are captured
during the entire evolution.

We initialize the perturbation variables with the Bunch-Davies initial condition. Specif-
ically, we set the initial conditions for the real and imaginary parts of the perturbation
variables as follows:

TR,L =
e−ikη√

2k
, T ′R,L = −ik TR,L. (3.2)

The same initial conditions are used for ψR,L. To discard the contributions from quantum
vacuum fluctuations of TR,L in the calculation of the integrals in (2.35) and (2.36), we use
the criterion that for wave numbers where |TR,L|2 < 1/2k, the value of |TR,L|2 is replaced by
zero.

3.2 New late-time attractor solution

We have performed a range of simulations with different values of µ, g, and λ; see Appendix A
for a summary. When µ and therefore also mQ are large enough, the system undergoes a
transition to a new late-time attractor with negative values of Q after about N = 2–10
e-folds; see figure 2. [OI: mention χ evolution]

For the test of our numerical implementation, we choose the initial value of µ and g for
one of the runs such that the backreaction of the perturbations on the background evolution
is negligible. Run µ1 is an example of such a case. It is evident from figure 2 that Q remains
constant in time for run µ1, as expected from the analytical results. Furthermore, we have
compared our numerical results for the

√
2k(x|TR,L|) and

√
2k(x|ψR,L|) with the analytically

expected results and show the comparison in the upper panel of figure 3 for k = 10−4. In
this figure, the red and blue curves show the numerical result for the right and left-handed
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polarization respectively and the green curve shows the analytic solution obtained using the
homogeneous solution of the TR Equation (2.25). This solution is given by [14],

TR =
1√
2k
iβWβ,α(2ikη). (3.3)

Here, Wβ,α(2ikη) is the Whittaker function with β = −i(mQ+ξ), and α = −i
√

2mQξ − 1/4.
The Whittaker solution provides a good analytical solution for TR for a particular wave
number approximately until the Hubble horizon crossing. However, the solution starts to
differ in the deep super Hubble horizon regime due to the contribution from the metric
tensor perturbations. It is evident from the upper panel of figure 3 that our numerical
solution matches well with the analytically expected one in the regime where the analytical
solution is valid.

In figure 2, we show the time evolution of Q and χ for simulations µ1, µ4, and µ5
having different values of µ that corresponds to mQ0 = 2.44, 3.0, and 3.58. For the run where
mQ0 = 3.58, the backreaction of the perturbations becomes important, and because of this,
Q starts to change with time. However, it stabilizes to another constant value at a later time.
We show the evolution of the

√
2k(x|TR,L|) and

√
2k(x|ψR,L|) for this run in the middle panel

of figure 3 and the evolution of the integrand of the backreaction integrals T QBR and T χBR in
figure 4. Here x = −kη is the dimensionless time variable.

From figure 4, we conclude that most of the contribution to the backreaction comes from
a fixed narrow range of wave numbers. This range is different for different values of mQ. For
the run µ3, the range is around ln k/(a0H) ≈ 10 and for the run µ5, it is ln k/(a0H) ≈ 3. We
also consider variable k range for these runs. However, these runs lead to some unphysical
oscillatory features in the background evolution as shown in Appendix B. [OI: Comment on
superhozion mode]

3.3 Semi-analytical modelling

In this section, we provide a semi-analytical analysis to approach the new attractor solution
at late times. In order to provide some intuition on dynamics in the backreaction regime, it
is instructive to investigate the evolution of each contribution to equations of motion (2.33)–
(2.34). The time dependence of contributions is shown in figure 5. Following the evolution
of the backreaction terms T QBR, T χBR, three distinct phases of dynamics can be distinguished.
From the top left and bottom left panels of figure 5 one can see that the backreaction
contributions (solid black curves) grow exponentially in absolute value up to around 8 e-
folds. We will refer to the stage of exponential growth of backreaction as Stage I. When
the backreaction contributions become comparable to one of the terms in the equations of
motion, Stage II begins. At this stage, the backreaction terms change their behavior, start
to decrease, and eventually cross zero. Following this stage, the system converges to the final
solution (the top right and bottom right panels of figure 5) which we refer to as Stage III.
The dynamics during different stages is described in more detail in Appendix C.

Let us turn right away to the discussion of the new late-time dynamical attractor. At
Stage III, all the contributions to equations of motion become nearly constant. In addition,
the term −(gλ/f) aχ′Q2 becomes nearly equal to the contribution 2H2Q in the equation of
motion (2.33)1, that leads to

λ

af
χ′ ' −2H2

gQ
, Q ' const. (3.4)

1We used H′ = a2Ḣ +H2 and Ḣ = 0 in numerical simulations.
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Figure 3.
√

2kx|TR,L| and
√

2kx|ψR,L| vs N for k = 10−4 for Runs µ1 (top panel), µ (middle
panel). In the top and middle panels, the red and blue curves represent the numerical results for the
right and left-handed polarization respectively. In bottom panel we show a comparison between of√

2kx|TR| and
√

2kx|ψR| for the runs µ1 and µ4. [OI: “Whittaker”, not “WhittakAr” in the legend.
I think we can remove a lower panel and also k = 1.0e − 04 from legends since it is the same for all
plots.]

This solution resembles the original chromo-natural attractor solution given in Eq. (2.15)
with Q = const and just with the second term present that has an opposite sign. It follows
on the late-time attractor ξ ' −1/mQ. In figure 6, we show that Equation (3.4) does indeed
hold. With (3.4), the equations of motion on Stage III become

4H2Q+ 2g2Q3 + T QBR ' 0, (3.5)

Uχ +
3gλ

f
HQ3 + T χBR ' 0, (3.6)

where we have taken into account that terms with derivatives at the last stage are negligible.
Let us now take a closer look into the time dependence of each component of the

backreaction integrals (2.35) and (2.36). Backreaction terms may be written in conformal
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Figure 4. The integrands of T QBR and T χBR, denoted here by dT QBR/d ln k and dT χBR/d ln k, respectively,
for µ = 1.5 × 10−4 (Run µ3) and µ = 2.1 × 10−4 (Run µ5). The white line indicates the position of
the comoving horizon.

time as

T QBR =
g

3a2

(
ξH〈|T |2〉 − 1

a
〈k|T |2〉

)
≡ T Q1 + T Q2 , (3.7)

T χBR = − λ

2a3f

[
mQH〈|T |2〉′ −

1

a
〈k|T |2〉′ +

(
amQH

2 + gQ′
)
〈|T |2〉

]
= (3.8)

≡ T χ1 + T χ2 + T χ3 + T χ4 , (3.9)

where we have denoted the integrals over wave numbers by

〈|T |2〉 =

∫
d3k

(2π)3

(
|TR|2 + |TL|2

)
, 〈k|T |2〉 =

∫
d3k

(2π)3
k
(
|TR|2 − |TL|2

)
. (3.10)

It is worth noting that in all our cases, the contributions from |TL| are negligible. In figure 7,
we show the time evolution of the different contributions to the T QBR and T χBR integrals. There
is a clear correspondence between the background dynamics and backreaction integrals, and
vice versa. We refer the interested reader to the detailed discussion in Appendix C.

The backreaction integrals include crucial information that governs the evolution of the
whole system. It is therefore convenient to introduce a new parameter that quantifies the
ratio of two backreaction integrals

T QBR

T χBR

≡ α. (3.11)
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Figure 5. Top left : Contributions to the equation of motion for the VEV of the gauge field, Q, with
respect to the number of e-folds at the initial stage and when backreaction is turned on. The three
vertical gray grid lines correspond to the moments when Q′′ = 0 , Q′ = 0, and then again Q′′ = 0
(from left to right) respectively. Top right : Contributions to the equation of motion for Q during
the transition to the final attractor solution. Vertical gray grid lines correspond to the moments
when Q = 0, Q′′ = 0, Q′′ = 0 (from left to right) respectively. Bottom left : Contributions to the
equation of motion for the axion field, χ, with respect to the number of e-folds at the initial stage
and when backreaction is turned on. Grid lines are the same as in the top left panel. Bottom right :
Contributions to the equation of motion for χ during the transition to the final attractor solution.
Grid lines are the same as in the top right panel.

Figure 6. Verification of equation (3.4), showing (λχ′/af)fin versus −2H2/gQfin, where Qfin denotes
the value of Q at the final attractor for multiple series of runs from table 1.
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Figure 7. Left : Backreaction terms T QBR and their contributions with respect to the number of e-
folds. Right : Backreaction terms T χBR with contributions with respect to the number of e-folds. Grid
lines are the same as in figure 5.

From equations (3.5)–(3.6), one can find the relation between χ and Q on the final attractor

Uχ = −3gλ

f
HQ3 +

1

α

(
4H2Q+ 2g2Q3

)
. (3.12)

At the final stage it holds T QBR ' T
Q

1 and T χBR ' T
χ

1 + T χ3 , therefore, the parameter α can
be expressed as

α =
2

9

Hf

λg Q2
fin

, (3.13)

where we used 〈|T |2〉′ ' 2aH〈|T |2〉 and Qfin denotes the value of Q at the final attractor.
The dependence of α on the parameters λ, g, and µ is confirmed in figure 8 for runs of the
three families. To sum up, the late-time dynamical attractor is given by equations (3.4),
(3.12) and (3.13).

Figure 8. Dependence of the parameter α versus Qfin for three series of runs.
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Figure 9. 2kx2|T |2 vs k/kH and ΩGW vs f/fH is shown for the runs µ4, µ5 and µ9.

3.4 Observational signatures

The GW energy density power spectrum can be approximated as [21]

ΩGW(k) =
3

128
ΩradPtot

h (k)

[
1

2

(
keq

k

)2

+
16

9

]
, (3.14)

where Ωrad ' 2.47 × 10−5 is the present radiation density parameter and keq ' 1.3 ×
10−2 Mpc−1 is the wave number entering the horizon at matter-radiation equality. To express
ΩGW as a function of frequency, we use f ' 1.5× 10−15 (k/Mpc−1) Hz.

In figure 9, we show 2kx2|T |2 vs k/kH , and ΩGW vs f/fH for the runs µ1 and µ5,
respectively. The upper and lower panels correspond to the run µ1 and µ5, respectively.
In this figure, we have normalized the wave number and GW frequency using the values
corresponding to the Hubble horizon size (kH) at the end of inflation and the corresponding
frequency (fH). These quantities are given by

kH =
ae
a0
H = 2.3× 1022Mpc−1, fH =

kH
2π

= 3.5× 107Hz. (3.15)

Here, H = 1.04×10−6MPl and we assume the adiabatic evolution of the Universe to calculate
ae/a0, given by

ae
a0

=

(
g0s

grs

)1/3 T0

Tr
= 5.8× 10−29 g0s

3.94

106.75

grs

T0

2.73K

1.3× 1015

Tr
. (3.16)

In the above expression, g∗s and g0s denote the effective degrees of freedom in the entropy
at the end of inflation and the present epoch, respectively, and Tr denotes the reheat-
ing temperature assuming instantaneous reheating. We estimate Tr by using the relation
3H2M2

Pl = (π2/30)grT
4
r .

As is evident from figure 9, the modes that are amplified around horizon crossing give
the largest values of ΩGW.

4 Summary and discussion

In this work, we simulated an axion-SU(2) sector, which is a spectator during inflation,
meaning that its energy density is subdominant to the inflaton and that both the Hubble rate
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and the density perturbations are unaffected by its presence. The simulations are performed
in what can be called the mild backreaction regime. This is because the fluctuations are
computed using the linearized equations of motion, even though their effect on the axion and
gauge field VEV is computed self-consistently, but averaged over the simulation domain. This
method is similar in spirit to the one followed in ref. [3] in the case of axion-U(1) inflation,
where the gauge fields are computed using linear equations of motion and their collective effect
is considered a background quantity and added to the corresponding background equations.
In the case of the Abelian model, an oscillatory result was found that can be understood
in the following way: an increase in axion velocity leads to an increase in the gauge field
amplification. This results in an increased backreaction on the rolling axion through the
〈E ·B〉 term. This backreaction leads to a slow-down of the axion, which, in turn, reduces
the subsequent amplification of gauge fields. Since the gauge fields are already produced
red-shifted, their backreaction will also reduce, leading to a speed-up of the axion and the
whole process will start anew, thus leading to periodic bursts of gauge field production.

In the non-Abelian case, the initial stage is similar to the Abelian case: as the axion
picks up speed, the gauge fields (a tensor mode in this case) are exponentially amplified. This
leads to a backreaction on the equations of motion that define the VEV of both the axion
field as well as the SU(2) sector. This leads to both a slow-down of the axion, as well as a
completely new sign-flipped value for the gauge field VEV. Furthermore, in this new regime,
the super-horizon tensor modes of the gauge field do not redshift, as expected, but are instead
constant [ES:right?]. This leads to the absence of the periodic behavior found in the Abelian
case, because the backreaction of the gauge field fluctuations onto the background quantities
does not diminish with time (to the lowest order in slow-roll).

Having revealed this new regime, several questions remain to be answered. An intriguing
relation was found between the backreaction terms in the axion and gauge VEVs, leading to
a universal relation between the parameters of the potential and the late-time value of the
gauge VEV. However, we are not able to predict the gauge VEV itself in this new attractor.
We believe that the initial value of the gauge VEV (in the original chromo-natural attractor)
plays a role in determining its late-time value.

Furthermore, our analysis neglects spatially dependent backreaction effects that can lead
to mode-mode coupling of the gauge field, as well as the excitation of scalar fluctuations in
the axion sector. It has been shown in ref. [7] that space-dependent backreaction effects can
be very important in the Abelian case. It is thus important to revisit our calculation, solving
the full system on a lattice, without making any linear or Hartree-type approximations.

Furthermore, our calculation was performed with a constant Hubble scale, in an exact
de-Sitter background. While this can be an excellent approximation for several inflationary
models, it does not allow us to probe the evolution of this new attractor close to the end of
inflation, where |Ḣ/H2| ∼ 1.

Finally, the flipped sign of the gauge field VEV provides the possibility of amplifying
the subdominant helicity of gauge tensor modes. Further analysis of this is left for future
work, as it can provide interesting scale-dependent observables.

... these retardation effects are not present. When the [ES: which are the dominant
terms in the gauge field eoms?] [OI: See Fig. 5]
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Run µ g λ mQ0 Q0 Qfin α

µ1 1.20× 10−4 1.11× 10−2 500 2.44 2.29× 10−4 2.26× 10−4 −1.67× 10−2

µ2 1.40× 10−4 1.11× 10−2 500 3.00 2.81× 10−4 2.77× 10−4 −1.59× 10−2

µ3 1.50× 10−4 1.11× 10−2 500 3.29 3.08× 10−4 −1.36× 10−4 6.71× 10−3

µ4 1.60× 10−4 1.11× 10−2 500 3.58 3.36× 10−4 −1.45× 10−4 5.91× 10−3

µ4’ 1.60× 10−3 1.11× 10−2 500 77.2 7.23× 10−3 −1.46× 10−3 5.90× 10−4

µ5 1.80× 10−4 1.11× 10−2 500 4.19 3.93× 10−4 −1.63× 10−4 4.72× 10−3

µ6 1.90× 10−4 1.11× 10−2 500 4.51 4.22× 10−4 −1.71× 10−4 4.27× 10−3

µ7 2.10× 10−4 1.11× 10−2 500 5.15 4.82× 10−4 −1.88× 10−4 3.55× 10−3

µ8 2.45× 10−4 1.11× 10−2 500 6.32 5.92× 10−4 −2.15× 10−4 2.70× 10−3

g1 1.50× 10−4 1.11× 10−2 500 3.29 3.08× 10−4 −1.36× 10−4 6.71× 10−3

g2 1.50× 10−4 1.50× 10−2 500 4.02 2.79× 10−4 −1.17× 10−4 6.77× 10−3

g3 1.50× 10−4 2.00× 10−2 500 4.87 2.53× 10−4 −1.00× 10−4 6.91× 10−3

g4 1.50× 10−4 2.50× 10−2 500 5.65 2.35× 10−4 −8.86× 10−5 7.06× 10−3

g5 1.50× 10−4 3.00× 10−2 500 6.38 2.21× 10−4 −8.01× 10−5 7.20× 10−3

λ1 1.50× 10−4 1.11× 10−2 600 3.09 2.90× 10−4 2.87× 10−4 −1.31× 10−2

λ2 1.50× 10−4 1.11× 10−2 500 3.29 3.08× 10−4 −1.36× 10−4 6.71× 10−3

λ3 1.50× 10−4 1.11× 10−2 400 3.54 3.32× 10−4 −1.44× 10−4 7.53× 10−3

λ4 1.50× 10−4 1.11× 10−2 300 3.90 3.65× 10−4 −1.54× 10−4 8.77× 10−3

λ5 1.50× 10−4 1.11× 10−2 200 4.46 4.18× 10−4 −1.69× 10−4 1.10× 10−2

λ6 1.50× 10−4 1.11× 10−2 100 5.62 5.27× 10−4 −1.96× 10−4 1.62× 10−2

Table 1. Summary of runs for the g, λ, and µ series. For each series, the first line refers to the
fiducial run with µ = 1.5 × 10−4, g = 1.11 × 10−2, and λ = 500. Run µ4’ is the same as Run µ4,
except that here H = 1.04× 10−5 is 10 times larger than usual.

A Full set of parameters

The full set of parameters used in the simulations is shown in Table 1. The fiducial parameters
are µ = 1.5 × 10−4, g = 1.11 × 10−2, and λ = 500. The runs are grouped separately for
runs µ1–µ8 with 1.2 ≤ µ/10−4 ≤ 2.45, runs g1–g5 with 1.11 ≤ g/10−2 ≤ 3, and runs λ1–λ6
with 100 ≤ λ ≤ 600. Only the runs with negative values of Qfin have undergone backreaction.

B Artifacts from not resolving the superhorizon modes

One might have expected that it is important to resolve the modes around the comoving
horizon. Looking at figure 4, this is not obvious, however. Once backreaction becomes
important, most of the contributions to the backreaction come from a fixed band of wave
numbers. It is instructive to examine the results where we allow for the possibility to move
the range of integration to a comoving strip with

nmin ≤ ln[k/a(η)H] ≤ nmax. (B.1)

The result of numerical simulation using a comoving strip of wave numbers is shown in
figure 10.

As we see from the insets of figure 10, the corresponding evolution of Q is different in
cases where the modes in the proximity of the comoving horizon are resolved at the expense of
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Figure 10. T QBR for (Q0, µ)/10−4 = (3.2, 1.5) without shift for 0 ≤ ln k ≤ 12 (first panel), and with
shift for −12 ≤ ln k/aH ≤ 4, −12 ≤ ln k/aH ≤ 4, −6 ≤ ln k/aH ≤ 4, and −2 ≤ ln k/aH ≤ 4 (the
other 3 panels). The insets show the corresponding evolution of Q.

not capturing any more the strongly super-horizon modes. We can conclude that this causes
numerical artifacts that look like periodic bursts of gauge field production during inflation.

C Detailed description of backreaction stages

At the initial stage, referred to here as Stage I, the solution follows the chromo-natural
attractor solution (2.15), where the three terms −(gλ/af)χ′Q2, 2g2Q3, and 2H2Q/a2 balance
each other in (2.33). Note that, in the present case of H = const, we have H′ +H2 = 2H2.
When the backreaction T QBR becomes important, the contribution −(gλ/af)χ′Q2 becomes
more dominant compared to the rest of the terms (see purple dashed curve in the top left and
bottom left of figure 5). To compensate for the increase of the sum T QBR and −(gλ/af)χ′Q2

terms, the Q′′ contribution becomes negative. It causes the change in the sign of Q′. This
changes the behavior and turns on the Q′ term, T χ4 , in the integral T χBR of Equation (3.9),
which produces a bump in ξ; see figure 11. This happens around N = 8 e-folds. The change
in ξ makes the two terms T Q1 and T Q2 in (3.7) almost cancel each other, see figure 7. As a

result, the T QBR term becomes first negative and is then close to zero. This causes a decrease
of Q. The steps at Stage I can be described by the following chain sequence:

T QBR → Q′′ → Q′ → T χBR → ξ(χ′)→ T QBR → Q.
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Stage I Stage II Stage III

T QBR ∝ exp (O(1)N) T QBR ≈ 0 4H2Q+ 2g2Q3 + T QBR ' 0
|T χBR| ∝ exp (O(1)N) Uχ + (3gλ/f)HQ3 + T χBR ' 0 Uχ + (3gλ/f)HQ3 + T χBR ' 0

Table 2. The three stages of dynamics in axion-SU(2) inflation with backreaction.

5 10 15 20
-0.0002

-0.0001

0.0000

0.0001

0.0002

0.0003

0.0004

5 10 15 20

0.1

0.5

1

5

10

Figure 11. Left : The VEV of the gauge field Q versus the number of e-folds. Grid lines are the
same as in figure 5. Right : The evolution of ξ parameter defined in equation (2.17) with respect to
the number of e-folds.

The next stage, Stage II, is characterized by a continuous decrease of Q. The backre-
action T QBR ≈ 0 remains small, and T χBR ≈ const.

The last stage, Stage III, begins when the gauge field VEV reaches zero, i.e., Q = 0.
This changes the sign of terms with mQ, i.e., T χ1 and T χ3 from (3.9). This governs the change

in ξ and causes the inflection of the T Q1 contribution. As a result, the solution arrives at the

final attractor (3.4) with T χ = T χ1 + T χ3 ≈ const and T Q = T Q1 ≈ const. At Stage III, we
observe the following chain sequence:

Q→ mQ → T χBR → ξ(χ′)→ T QBR → Q.

The three stages of evolution are summarized in Table 2.

D Example plots (only for the draft)
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