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Chiral magnetohydrodynamics with zero total chirality
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École Polytechnique Fédérale de Lausanne (EPFL), 1290 Sauverny, Switzerland
(Dated: August 21, 2023)

We study the evolution of magnetic fields coupled with chiral fermion asymmetry in the framework
of chiral magnetohydrodynamics with zero initial total chirality. The initial magnetic field has a
turbulent spectrum peaking at a certain characteristic scale and is fully helical with positive helicity.
The initial chiral chemical potential is spatially uniform and negative. We consider two opposite
cases where the ratio of the length scale of the chiral plasma instability (CPI) to the characteristic
scale of the turbulence is smaller and larger than unity. These initial conditions might be realized
in cosmological models, including certain types of axion inflation. The magnetic field and chiral
chemical potential evolve with inverse cascading in such a way that the magnetic helicity and
chirality cancel each other at all times, provided there is no spin flipping. The CPI time scale is
found to determine mainly the time when the magnetic helicity spectrum attains negative values at
high wave numbers. The turnover time of the energy-carrying eddies, on the other hand, determines
the time when the peak of the spectrum starts to shift to smaller wave numbers via an inverse
cascade. The onset of helicity decay is determined by the time when the chiral magnetic effect
becomes efficient at the peak of the initial magnetic energy spectrum, provided the CPI does not
grow much. When spin flipping is important, the chiral chemical potential vanishes at late times
and the magnetic helicity becomes constant, which leads to a faster increase of the correlation
length. This is in agreement with what is expected from magnetic helicity conservation and also
happens when the initial total chirality is imbalanced. Our findings have important implications for
baryogenesis after axion inflation.

I. INTRODUCTION

Relativistic plasmas are described by the evolution
equations of chiral magnetohydrodynamics (MHD) [1–
9]. Chirality enters in two distinct ways: first, through a
nonvanishing chiral chemical potential, µ̃5, and second,
through nonvanishing magnetic helicity density, A · B,
where B = ∇ × A is the magnetic field expressed in
terms of the vector potential A.

It has been known for some time that fermion chi-
rality can be transferred into magnetic helicity and vice
versa through the chiral anomaly [10, 11]. The transfer
of fermion chirality to magnetic helicity occurs through
an instability [12] known as the chiral plasma instability
(CPI) [13]. This instability is the fastest at a specific
wave number, whose value depends on the chiral chem-
ical potential. The transfer from magnetic helicity to
chiral chemical potential does not involve any instability,
but occurs just through a nonvanishing nonlinear source
term in the evolution equation for the chiral chemical po-

tential [3, 14, 15]. These differences in the evolutions of
the chiral chemical potential and magnetic field can lead
to nontrivial dynamics, which has triggered a lot of re-
search [16–18]. Since fermion chirality is tightly related
to the baryon and lepton asymmetries at high tempera-
ture in the early Universe, their co-evolution with mag-
netic helicity in the context of cosmology has also been
extensively studied [19–27].

Previous investigations mostly assumed an initial im-
balance between fermion chirality and magnetic helic-
ity. In many investigations, the initial fermion chirality
is nonvanishing while initial magnetic helicity is zero or
vice versa. This can lead to a conversion of fermion chi-
rality to a maximally helical magnetic field [3]. Also just
spatial fluctuations can lead to magnetic field produc-
tion [28, 29]. Such chiral asymmetry, which can trigger
the CPI, could be generated [30–32] in GUT baryogene-
sis in the early Universe [33–37] or weak interactions in
compact stars [38–42] (see also Ref. [43] and references
therein). However, numerical studies on other interest-
ing initial conditions are still lacking, where fermion chi-
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rality is exactly opposite to magnetic helicity. Such an
initial condition is expected if the chiral symmetry in
the fermion sector is only broken through the topologi-
cal density, ∂µJ

µ
5 = −e2Fµν F̃

µν/(8π2
~
2c), or the chiral

anomaly [10, 11], with Jµ
5 being the chiral current and

e2Fµν F̃
µν/(8π2

~
2c) being the topological density. Since

the topological density can be written as a total deriva-
tive of the magnetic helicity density, the sum of chiral
asymmetry and magnetic helicity vanishes when they are
generated [44].

Configurations with vanishing total chirality are inter-
esting not only in the context of chiral MHD, but also in
particle physics and cosmology. At high enough tempera-
tures, realized in the early Universe, the electron Yukawa
interaction becomes inefficient for T & 105 GeV [45, 46].
There we find the conservation of total chirality because
of ∂µJ

µ
eR = −g2Y Yµν Ỹ

µν/(16π2
~
2c) with Jµ

eR being the
right-handed electron current and Y µν being the field
strength of the hypercharge gauge field with gauge cou-
pling gY . For instance, in a certain class of axion infla-
tion, configurations with zero net chirality are generated
during inflation [44], which can be the origin of the ob-
served baryon asymmetry of the Universe [47–49] and it
could explain the proposed intergalactic magnetic field;
see, however, Ref. [26] for the baryon overproduction
problem and Ref. [50] for the too large baryon isocur-
vature problem. The main purpose of this paper is to
perform a full numerical chiral MHD simulation under
the initial condition of vanishing total chirality and pro-
vide a better understanding of the nonlinear dynamics in
this case.

Before we begin our investigations, it is useful to re-
call the main findings of earlier work where the total
chirality was mostly different from zero. Following the
work of Ref. [14], who studied a system consisting of the
gauge field and the chiral chemical potential, but with-
out fluid velocity fields, and with the initial condition
〈A · B〉 6= 0, µ̃5 = 0, three stages can be identified: (i)
exponential decline of the magnetic helicity together with
an increase of µ̃5, followed by (ii) a continued decrease
of the typical peak wave number kp, while µ̃5 stays at
its maximum value with 〈A · B〉 being essentially zero,
and (iii) a phase when all the fermion chirality µ̃5 gets
transferred back to magnetic helicity. As expected, owing
to magnetic helicity conservation, and because the mag-
netic field from the CPI is maximally helical, the mag-
netic energy density 〈B2〉/2 decays at late times such
that 〈B2〉ξM ≈ const, where ξM ≡ k−1

p is the magnetic

correlation length. In other words, both 〈B2〉 and kp de-

cay in the same fashion, but, unlike the expected t−2/3

scaling found previously for helical turbulence [51–54],
the authors of Ref. [14] find a t−1/2 scaling both for 〈B2〉
and kp. For sufficiently strong initial magnetic fields,
the magnetic Reynolds number can be much larger than
unity and the eddy turnover scale much longer than the
estimated inverse peak momentum scale, if equipartition
between the magnetic field and fluid velocity is estab-
lished. This suggests that the effect of the fluid velocity

cannot be negligible in general.

The earlier analytic study of Ref. [14] was revisited
using direct numerical simulations of chiral MHD [15].
At large magnetic Reynolds numbers, the authors found
clear evidence for a t−2/3 scaling of both 〈B2〉 and kp
at late times. They also found that the initial evolution
is not exponential, as suggested in Ref. [14], but linear
in time. However, they only considered the case where
the initial fermion chirality was zero. When it is finite
and balancing exactly the magnetic helicity, the mag-
netic field decays in a way similar to the case of a strong,
nonhelical field [55], where the decay is governed by the
conservation of the Hosking integral [56–58]. This inte-
gral describes the strength of magnetic helicity fluctua-
tions on different length scales and has the dimensions
of cm9 s−4, which implies the scalings ξM ∝ t4/9 and
〈B2〉 ∝ t−10/9 [56, 58, 59]. The general validity of the
Hosking integral was further demonstrated by applying a
corresponding analysis to the decay of a nonhelical mag-
netic field in neutron star crusts [60], where the magnetic
field evolution is covered by the Hall effect [61].

Our goal here is to bridge the gap between the two
extremes, where the initial chirality is either only in the
fermions or only in the magnetic field, and to consider
the intermediate case where fermion chirality and mag-
netic helicity balance to zero, extending the study of the
present authors [55]. This is another case where the de-
cay of 〈B2〉 and kp are described by a correspondingly
adapted Hosking integral of the total chirality. In the
following, we therefore refer to the Hosking integral with
the chiral chemical potential included as the “adapted”
Hosking integral; see Ref. [55] for detail.

As mentioned above, our findings on the evolution of
the system with vanishing total chirality has significant
impact on the present baryon asymmetry of the Universe.
Another goal of the present paper is to clarify how the
non-trivial co-evolution of the magnetic field and fermion
chirality affect the model space of axion inflation con-
sistent with the present Universe, which has not been
explored before.

We begin, by presenting the basic equations and the
mathematical setup of our simulations in Sect. II. We
then discuss the parameter dependence of characteristic
time scales, consider the effect of spin flipping, and finally
cases where the perfectly vanishing chirality balance is
relaxed in Sect. III. Applications to the early Universe
are discussed in Sect. IV. Conclusions are presented in
Sect. V.

II. CHIRAL MAGNETOHYDRODYNAMICS

A. Chiral magnetic effect

Using Lorentz-Heaviside units, the Ampère-Maxwell
equation for the QED-like model in the MHD limit (omit-
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ting the displacement current) reads

∇×B =
1

c
J . (1)

The electric current J is the sum of the Ohmic current
and the chiral magnetic effect (CME) [62–64],

J =
σ

c
(cE + u×B) +

e2

2π2~2c
µ̃5B, (2)

where σ is the electric conductivity (or inverse mag-
netic diffusivity) and we consider the case with µ̃5 ≪
(e2/~c)kBT . By rewriting cE = −∂A/∂t in the Weyl
gauge, e2/4π~c ≡ α, Eq. (2) is rewritten as

∂A

∂t
=

c2

σ
(µ5B −∇×B) + u×B, (3)

where we defined [6]

µ5 ≡ 2α

π~c
µ̃5. (4)

This expression agrees with Eq. (32) of Ref. [6], except for
a factor of 2 resulting from a corresponding 1/2 factor in
our adopted definition µ̃5 = (µ̃R − µ̃L)/2 in terms of the
chemical potentials for right- and left-handed fermions
[43]. The additional 4π factor in the numerator of the
expression in Ref. [6] is a consequence of their use of cgs
units.

B. Model description and basic equations

We perform simulations in a cubic domain of size L3

with side lengths L and triply-periodic boundary condi-
tions. The mass in the domain is therefore constant, so
the mean density ρ is always equal to its initial value ρ0
and put to unity in all cases. The lowest wave number
in the domain is k1 = 2π/L. Using N3 mesh points, the
largest wave number in the simulations is the Nyquist
wave number kNy = k1N/2.

In the following, we set c = 1, so J = ∇ ×B. To in-
clude the effects of the cosmic expansion with scale fac-
tor a(t) ∝ t1/2 in the radiation-dominated era, which
we assume to be a spatially flat Friedmann Universe,
we use correspondingly scaled quantities and conformal
time, η(t) =

∫

dt/a(t), in which the evolution equations
of MHD are the same as in the absence of expansion
[65]. In order to obtain the physical quantities, we can
simply normalize the corresponding comoving quantities
with the appropriate powers of the scale factor a. Fur-
thermore, using λ = 3~(2α/πkBT )

2 and including spin
flipping and spatial diffusion, our chiral anomaly equa-
tion is

∂µ5

∂η
+∇·(µ5u) =

λ

σ
(J − µ5B)·B+D5∇2µ5−Γµ5, (5)

where D5 is an empirical diffusion coefficients for the chi-
ral chemical potential. Here we used the relationship

between the chiral chemical potential and the number
density,

n5 ≡ nR − nL = 2× µ̃5

6~3
(kBT )

2 =
πµ5

6α~2
(kBT )

2, (6)

and used Jµ
5 = (n5, n5u − D5∇n5) for the chiral 4-

current.
Owing to the chiral anomaly [10, 11], the total chirality

is conserved in the absence of spin flipping interaction [3,
6]. It is then convenient to introduce the mean magnetic
chirality equivalent as

〈µM〉 ≡ 1
2λ〈A ·B〉, (7)

so that the conservation law derived from Eqs. (3) and (5)
can be stated in the form

µtot = 〈µ5〉+ 〈µM〉 = const. (8)

We complement Eqs. (3) and (5) by the momentum
and continuity equations [6, 7, 66]

Du

Dη
=

2

ρ
∇ · (ρνS)− 1

4
∇ ln ρ+

u

3
(∇ · u+ u ·∇ ln ρ)

− u

ρ

[

u · (J ×B) + ηJ2
]

+
3

4ρ
J ×B, (9)

∂ ln ρ

∂η
= −4

3
[∇+ (∇ ln ρ)] · u+

1

ρ

[

u · (J ×B) + ηJ2
]

,

where D/Dη ≡ ∂/∂η + u ·∇ is the advective derivative,
Sij = (∂iuj + ∂jui)/2 − δij∇ · u/3 are the components
of the rate-of-strain tensor, ν is the viscosity, and p is
the pressure, which is assumed to be proportional to the
density, i.e., p = ρc2s , with cs = 1/

√
3 being the sound

speed for the ultrarelativistic fluid. The ratio of viscosity
to magnetic diffusivity, νσ, is the magnetic Prandtl num-
ber, which we choose to be unity in all cases. Likewise,
we choose the ratio ν/D5 to be unity in all cases.

For all our simulations, we use the Pencil Code [67],
where the relevant equations are readily implemented.
We use N3 = 10243 mesh points for most of the runs,
and N3 = 20483 mesh points for one particular run. In a
small number of cases, we have included the slope-limited
diffusion (SLD) scheme of Ref. [68, 69]. In those cases,
SLD acts in addition to the ordinary viscous and diffusive
processes stated in the equations above, but prevents the
code from crashing during an early more violent phase
when the mesh resolution is insufficient to dissipate the
energy at high wave numbers. At later times, however,
this additional numerical device has little effect. Below,
we demonstrate in one case that the solutions with and
without SLD yield the same result.

C. Diagnostic quantities

We introduce two characteristic times in our simula-
tions, which are the time scale of the CPI and the mag-
netic diffusion time,

ηCPI = σµ−2
50 and ηdiff = σk−2

0 , (10)
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respectively. Here, k0 is the initial value of the peak wave
number kp. The ratio (ηdiff/ηCPI)

1/2 = |µ50|/k0 charac-
terizes the degree of scale separation between the scales of
magnetic helicity and fermion chirality. We also define
the turnover time of the energy-carrying eddies, which
would determine the onset of turbulent inverse cascad-
ing,

ηturb = (umax
rms k0)

−1
, (11)

where umax
rms is the maximum value (in time) of the rms

velocity.
Next, we introduce several parameters with a dimen-

sion of velocity. The nature of the CPI is characterized
by the following parameters [7]

vλ = |µ50|/(ρλ)1/2 and vµ = |µ50|/σ. (12)

The former represents the ratio of the length scale of the
magnetic field at saturation of the CPI to the CPI time
scale, while the latter represents the ratio of the length
scale of the initial instability to the CPI time scale. The
ratio vλ/vµ = σ/(ρλ)1/2 characterizes the length of the
k−2 spectrum that develops if the CPI operates without a
strong pre-existing field [7]. In the unbalanced case, umax

rms

is approximated by vλ. In the present case, however, it
does not seem to play any role. Instead, to compute umax

rms ,
we approximate the velocity field by the initial magnetic
field such that B2

rms ≃ ρ̄u2
rms. Using Eqs. (7) and (8), we

estimate

B(0)
rms ≈ (k0|〈A ·B〉|)1/2 ≈

(

2k0|µ50|
λ

)1/2

, (13)

which thus defines a new quantity ṽλ as

ṽλ ≡
(

2k0|µ50|
ρ̄λ

)1/2
(

≈ B
(0)
rms

ρ̄1/2

)

. (14)

A predictive estimate for the turnover time of the energy-
carrying eddies is thus

ηλ = (ṽλk0)
−1 =

(

ρ̄λ

2k30|µ50|

)1/2

, (15)

which is later used to predict the time when the inverse
cascade sets in.
In this work, an important diagnostics is the magnetic

energy spectrum, EM(k). It is normalized such that
∫

EM(k) dk = 〈B2〉/2 ≡ EM where EM is the magnetic
energy density1. The kinetic energy spectrum EK(k)
is defined similarly, i.e.,

∫

EK(k) dk = 〈ρu2〉/2 ≡ EK.

1 In terms of the mode function in the polarization basis,
A(x, t) ≡

∫
d3k/(2π)3/2

∑
λ=±

Aλ(k, t)e
λ(k)eikx, EM is given

as EM(k) =
∑

s=±
(k4/4π2)|As(k)|2. We also have Hs

M(k) =

(k3/2π2)|As(k)|2 and HM(k) = (k3/2π2)
∑

s=±
s|As(k)|2.

We also define the magnetic helicity spectrum HM(k),
which is normalized such that

∫

HM(k) dk = 〈A ·B〉. In
our simulations, k|HM(k)|/2 approaches EM(k) near the
maximum. In fact, the spectra HM(k) and EM(k) satisfy
the realizability condition [70],

k|HM(k)|/2 ≤ EM(k). (16)

When this inequality is saturated for specific wave num-
bers, we say that the magnetic field is locally fully helical.
After some time, the magnetic helicity spectrum is

characterized by two subranges, one with positive and
one with negative values of HM(k), which are separated
by the wave number k±(η), where the sign changes. In
addition to the evolution of k±(η), we characterize the
spectrum and its evolution by the numbers kI(η) and
kII(η), which are the wave numbers of the first positive
and second negative peak of HM(k).2 The intermedi-
ate wave number k±(η) is numerically often better de-
termined than kII(η), especially at early times.
The wave number of the first peak of the spectrum is

close to the initial inverse correlation length,

ξM = E−1
M

∫

k−1EM(k) dk. (17)

In fully helical turbulence, the value of ξM(η) tends to in-
crease with time in a power law fashion, ξM ∝ ηq, where
q = 4/9 in our cases of balanced chirality [55]; see also
Sect. II E. Note that in our setup the positive helicity
modes always dominate the energy density of the mag-
netic field, and hence approximately we have ξM ≃ k−1

I .
It is convenient to introduce the mean magnetic chi-

rality for the positive helicity modes for k < k± and the
negative ones for k > k± as

〈µ+
M〉 = λ

2

∫ k±

0

HM(k) dk, (18)

〈µ−

M〉 = −λ

2

∫ ∞

k±

HM(k) dk. (19)

The conservation law takes then the form

〈µ5〉+ 〈µ+
M〉 − 〈µ−

M〉 = µtot, (20)

where µtot = µ50 + µM0 = µ50 + µ+
M0 − µ−

M0 is given by
the initial values.
When we study the effect of spin flipping, we invoke a

nonvanishing flipping rate with

Γ =

{

Γf0 for ηflip ≤ η ≤ ηoff

0 otherwise,
(21)

where ηflip denotes the time when spin flipping is turned
on, and in a few cases we allow for a finite value of ηoff ,

2 In the present work, kI ≈ kp ≡ ξ−1
M , but the latter is based on

the magnetic energy spectrum while the former is based on the
magnetic helicity spectrum.
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which denotes the time when spin flipping is later turned
off again. In the context of early Universe cosmology,
we have indeed a constant flipping rate for the thermal
Yukawa interaction [12]. A sudden turnoff is introduced
for illustration, but such a transition can be realized by
introducing new physics. Going into technical detail is
beyond the scope of this paper.

D. Initial conditions

In our numerical experiments, the initial magnetic field
is fully helical with positive magnetic helicity and random
phases. The initial magnetic energy spectrum is a broken
power law

EM(k, η0) ∝
{

k4 for k < k0,

k−5/3 for k > k0,
(22)

where the initial peak is identified as k0 = kI(η0) and η0 is
the initial time. The IR spectrum is motivated by causal-
ity constraints [71], while the UV spectrum is taken as
a Kolmogorov-type spectrum. The strength of the mag-
netic field is adjusted such that the initial magnetic chi-
rality obeys µM0 = −µ50 such that µtot = 0. The chiral
chemical potential is initially assumed to be uniformly
distributed in space. Its initial value is always negative,
i.e., µ50 < 0. However, even for an initially uniform chiral
chemical potential, there is a specific length scale asso-
ciated with the value of µ5 through the wave number of
the most unstable mode of the CPI, k = |µ50|/2. The
initial velocity is assumed vanishing in all cases.

E. Theoretical predictions

As was recently shown in Ref. [55], the present case of
zero total chirality, where the magnetic helicity is can-
celed by fermion chirality, is remarkably similar to the
case of ordinary MHD without chemical potential and
zero magnetic helicity. In both cases, as already alluded
to in the introduction, one can define a correlation in-
tegral of the total chirality, which is a quantity with di-
mensions cm9 s−4 and is dubbed the adapted Hosking
integral. The evolution of the system can be explained
by the conservation of this quantity. With a self-similar
evolution of the magnetic spectrum being assumed, this
yields the scalings ξM ∝ η4/9 and 〈B2〉 ∝ η−10/9 for the
typical length scale and the magnetic energy density, re-
spectively [56]. Note that the conservation of the adapted
Hosking integral suggests

ξ5M 〈B2〉2 = const, or k−3
I EM (kI)

2 = const, (23)

if the magnetic energy density is dominated by the pos-
itive helicity mode, which is peaked at k = kI. For the
magnetic field with an IR spectrum ∝ k4, as motivated
from the causality constraints, the evolution of the mag-
netic field exhibits inverse cascading.

The big difference between ordinary MHD without he-
licity on the one hand and chiral MHD with helicity bal-
anced by fermion chirality on the other hand is that in
the latter, both the magnetic helicity and the fermion
chirality are decaying, which we shall call anomalous chi-

rality cancellation (ACC). In the former, by contrast, the
Hosking integral based just on the ordinary magnetic he-
licity density is conserved. In the latter, contrary to the
naively expected exponential decay of fermion chirality
due to the CPI in chiral MHD, we actually have a much
slower power-law decay proportional to η−2/3, since the
magnetic helicity is roughly estimated by ξM 〈B2〉, and
likewise for |〈µ5〉| [55]. Here we have considered the case
where the real space realizability condition of magnetic
helicity [53], |HM| ≤ 2EMξM, is nearly saturated at ACC
onset. Once this power law decay of the chirality starts,
the CPI rate, 〈µ5〉2/σ, decays faster than η−1, which sug-
gests that the CPI does not grow anymore. Hence, the
magnetic energy is always dominated by helicity modes
of the same sign as the initial ones, which, in our case,
are positive helicity modes.
The adapted Hosking integral makes sense only when

the communication between the helicity and chirality
through the CME becomes effective at the characteris-
tic scale. Therefore we expect that the scaling evolution
discussed above starts at the time scale of the CME at
the peak scale. With the evolution equation for the mag-
netic field, equivalent to Eq. (3),

∂B

∂η
=

1

σ

[

∇2
B +∇× (µ5B)

]

+∇× (u×B) (24)

(where the second term in the right-hand side represents
the CME), we estimate ηACC as the time when the fol-
lowing condition is satisfied:

ηACC ≃ σ

µ5(ηACC)kI(ηACC)
. (25)

Note that from Eq. (24) we can also confirm that the
magnetic field has an instability (the CPI) for one of the
two circular polarization modes with k = |µ50|/2 being
the most unstable mode. The instability rate is roughly
given by µ2

50/σ, which determines ηCPI.
The evolution of the system is classified into two cases,

determined by the comparison between ηλ and ηACC esti-
mated by the initial conditions of kI and µ5. For relativis-
tic plasmas with ρ̄ ≃ (π2g∗/30)T

4, where g∗ is number of
the relativistic degrees of freedom and σ ≃ T/(α logα−1)
[72, 73], we have ηACC < ηλ for k0 ≪ |µ50| [more pre-
cisely, k0 ≪ (ρ̄λ/4σ2)|µ50|, which is independent of tem-
perature], and vice versa. For k0 ≪ |µ50|, we have the
following estimates for the evolution of the system:

1. The system is frozen when η < ηCPI.

2. The CPI starts to grow at η ≃ ηCPI.

3. If the CPI does not sufficiently amplify the negative
helicity modes such that kI is unchanged, the chiral
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TABLE I. Relevant time scales defined in this paper.

Time scale Expression Equation Explanation

ηCPI σµ−2
50 Eq. (10) time scale of the CPI

ηdiff σk−2
0 Eq. (10) magnetic diffusion time

ηturb (umax
rms k0)

−1 Eq. (11) turnover time of the energy-carrying eddies

ηλ (ṽλk0)
−1 = [ρ̄λ/(2k3

0 |µ50|)]
1/2 Eq. (15) predicted turnover time of the energy-carrying eddies

ηACC σ/[µ5(ηACC)kI(ηACC)] Eq. (25) onset time of the ACC

chemical potential starts to decay at η = ηACC(>
ηCPI) with

ηACC ≃ σ

|µ50|k0
(26)

in a mild way.

4. When η ≃ ηλ(> ηACC), the system starts to evolve
according to the scaling law found in Ref. [55],

kI ∝ η−4/9, EM ∝ η−10/9, and (27)

〈µ5〉 = −〈µ+
M〉+ 〈µ−

M〉 ∝ η−2/3. (28)

In the case of mild hierarchy3, |µ50| & k0, the case we
mainly study in the next section, the assumption of inef-
ficient CPI is guaranteed.
For k0 ≫ |µ50|, on the other hand, we expect the fol-

lowing evolution of the system.

1. The system is frozen at η < ηλ.

2. The magnetic field evolves according to the inverse
cascade at η ≃ ηλ in a similar way as the usual in-
verse cascade for a nonchiral helical magnetic field,

kI ∝ η−2/3, EM ∝ η−2/3, and (29)

〈µ5〉 = −〈µ+
M〉+ 〈µ−

M〉 = const, (30)

since the CME is not effective at k ≃ kI so that
the magnetic helicity and chirality are individually
conserved. Since kI decays, eventually it becomes
smaller than |µ5|, and the system enters the regime
similar to the previous case.

3. If the CPI does not sufficiently amplify the negative
helicity modes, the CME becomes effective at η ≃
ηACC (> ηλ), which is now evaluated as

ηACC ≡ σ3

|µ50|3k30
η−2
λ ≃ 2σ3

ρ̄λµ2
50

. (31)

Here, we have used Eq. (25) and kI(η) =
k0(η/ηλ)

−2/3, as well as Eq. (14). When η > ηACC

3 With “mild hierarchy”, we have in mind a modest scale separa-
tion |µ50|/k0 = O(10).

we have the inverse cascade with the conservation
of the adapted Hosking integral,

kI ∝ η−4/9, EM ∝ η−10/9, and (32)

〈µ5〉 = −〈µ+
M〉+ 〈µ−

M〉 ∝ η−2/3. (33)

Note that in this case, the CPI would not grow
much due to the earlier onset of the chirality decay.

The assumption of inefficient CPI is guaranteed if the
mild hierarchy |µ5| & kI at ηCPI or ηACC still holds. How-
ever, we have |µ5|/kI|ηCPI

= (2σ2/ρ̄λ)1/3, which isO(102)
for the plasma of the Standard Model (SM) of particle
physics with α ≃ 10−2 and g∗ ≃ 102. In this case, there
is a relatively large hierarchy between the chiral chemical
potential and the peak scale of the magnetic field. We
then might expect an earlier onset of the chirality decay
triggered by the CPI. Namely, we have another possibil-
ity of the scaling law, which is a modification of step 3
discussed above, so we refer to it as step 3′, i.e.,

3.′ After some epoch of the onset of CPI,

η ≃ η5dec = cA ηCPI, with cA = O(10), (34)

the system enters the regime of the ACC. If the
conservation of the adapted Hosking integral, with
the rapid communication between the chirality and
helicity through the CME, governs the evolution
of the system, we would still have the scaling laws
Eqs. (32) and (33), but the evolution nevertheless
would have relatively large uncertainty, because of
the exponential instability from the CPI. For later
purposes, we keep the ambiguity in the scaling evo-
lution and introduce a scaling index q5 such that

〈µ5〉 = −〈µ+
M〉+ 〈µ−

M〉 ∝ η−q5 , (35)

which will be used in Sec. IV.

In Table I, we summarize the characteristic time scales
relevant for the evolution of the system; see Appendix A
for a summary of additional time scales and wave num-
bers defined in this paper.
Some of the features described above will be confirmed

by direct numerical simulations in Sect. III. They can
have important consequences for baryon production, as
will be discussed at the end of the paper.
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FIG. 1. Visualizations of A ·B λ/2 (upper row) and µ5 (lower row) on the periphery of the computational domain for Run O
at η ≈ 4600 (left) 15,000 (middle), and 46,000 (right).

III. RESULTS

In this section, we show the results of the direct numer-
ical simulation. We first study the case with k0 ≪ |µ50|
until Sec. IIIG. In Sec. IIIH we study the case with
k0 ≫ |µ50|. Some of our observations will turn out to
be consistent with the theoretical prediction discussed in
Sec. II E. We will also see some other features that have
not been addressed there.

A. Visualization of magnetic and fermion chiralities

We begin by discussing the simulation of Ref. [55] with
k0 ≪ |µ50|, which we refer to as Run O. In Fig. 1, we
present visual impressions of magnetic and fermion chi-
ralities in Run O at different times. We see that the
turbulent structures gradually grow in size and the ex-
treme values away from zero decrease as time goes on.
Furthermore, µ5 and A ·B λ/2 have predominantly op-
posite signs, as expected. Locally, however, there is no
correspondence between the two fields. This is because
the vanishing total chirality is only a statistical property.

B. Evolution of characteristic scales

As discussed in Ref. [55], it is important to allow for
sufficient scale separation between the smallest available
wave number k1 ≡ 2π/L and the initial wave number of
the peak, k0. It is also important that there is enough
separation between k0 and the initial wave number of
the CPI, |µ50|/2, to confirm distinct features of the evo-
lution of the system. Both, k0 and |µ50|/2, in turn, must
be much smaller than the largest available wave num-
ber kNy = k1N/2. Sufficient scale separation between k1
and k0 is particularly important for obtaining the theo-
retically expected increase of ξM ∝ η4/9 along with the
decay of EM ∝ η−10/9, based on the conservation of the
Hosking integral adapted to the total chirality. Indeed,
in Run O, an optimized balance between the two scale
separation requirements has been achieved.

With the start of the simulation, the helical random
magnetic field, which is present initially, drives turbulent
motions through the Lorentz force. This causes EK(k)
to grow quickly at all wave numbers, but it is always less
than EM(k); see Fig. 2, where we compare kinetic and
magnetic energy spectra at different times. After some
time, EK(k) approaches EM(k) at large values of k, i.e.,
the motions are in approximate equipartition with the
magnetic field at high wave numbers. This observation
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FIG. 2. Magnetic energy (red lines) and kinetic energy (blue
lines) spectra for Run O at times η = 460, 4600, and 46,000.
The dotted lines denote the earliest outputted time η = 0.3.
The straight black line indicates the initial k−5/3 spectrum for
the magnetic field. In the upper part, the two-sided arrows
indicate the requirements for scale separation at small and
large k to obtain the kp ∝ η−4/9 decay and to resolve |µ50|,
respectively.

supports the estimate of umax
rms for ṽλ; see Eq. (14). At the

same time, the initial k−5/3 spectrum for EM(k) develops
into a slightly steeper one due to finite magnetic diffusion.
In Fig. 2, we also mark the two scale separation ratios.

As already discussed in Ref. [55], even though there
is vanishing net chirality, 〈µM〉 + 〈µ5〉 = 0, there is still
some degree of inverse cascading, just like in nonheli-
cal magnetically dominated turbulence [54, 74]. We see
this clearly in Fig. 3, where the position of the magnetic
peak, kI(η), gradually moves to smaller values. At the
same time, the height of the peak decreases, following an
approximate power law ∝ kβ , with β = 3/2; see Fig. 3.
This can be explained by the conservation of the Hosking
integral [56, 58]; see also Eq. (23). The exponent β = 3/2
is characteristic of the fact that the net chirality vanishes,
even though near the peak itself the field is locally fully
helical, as we see from the proximity of k|HM(k)|/2 and
EM(k); see Eq. (16).
The newly injected magnetic helicity from the CPI

leads to a growth of the magnetic field at large wave
numbers. It manifests itself mostly through the build-up
of negative magnetic helicity at high wave numbers. At
some point, we also see a gradual propagation of the sec-
ondary peak kII toward smaller k, which has not been ad-
dressed in Sec. II E. It lies underneath an envelope with
an approximate k8/3 slope; see Fig. 3. At present, the
exponent 8/3 is just empirical and there is no theory
for it. It should be noted, however, that in other cases
with a shorter inertial range, we have found larger expo-
nents. Thus, the exponent could also be smaller when
the inertial range is larger, i.e., when there is more scale
separation and 〈µ5〉ξM is larger.

FIG. 3. Magnetic energy (solid lines) and normalized helicity
spectra kHM(k)/2 (dotted lines with red and blue symbols for
positive and negative helicity spectra, respectively) for Run O
at times η = 150, 460, 1500, 4600, 15,000, and 46,000. The
peaks kI (peaks of the red curves) and kII (peaks of the blue

curves) evolve underneath the envelopes ∝ k3/2 and ∝ k8/3,
respectively.

FIG. 4. Comparison of kI (red), k± (orange), and kII (blue)
for Run O. The green dashed line shows 〈µ5〉 and the green
dotted line shows the rms value µrms

5 . The sloping red (green)

dashed-dotted line indicates η−4/9 (η−2/3) scaling.

Another characteristic wave number is k±, where the
sign of the spectral magnetic helicity changes. It is used
in the definitions of 〈µ+

M〉 and 〈µ−

M〉 in Eqs. (18) and (19).
In Fig. 4, we plot the evolution of the characteristic

wave numbers kI, k±, and kII. We clearly see the kI ∝
η−4/9 decay predicted by the conservation of the Hosking
integral adapted to the total chirality [55]. It emerges
after a time ηI, which is expected to be close to ηλ (and
also ηturb); see Eq. (15). In Run O we find ηI ≈ 100.
The evolution of k± and kII can be seen more clearly

when the Nyquist wave number is larger. We therefore
discuss in Fig. 5 another run, also with N = 10243 mesh
points, but now with k1 = 0.05 (instead of 0.02), so kNy =
25.6, which is a little over five times larger than |µ50|/2 =
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TABLE II. Summary of the runs discussed in this paper. Except for Run P, where λ = 500, we have in all other cases
λ = 2× 104. Runs A and B below the last horizontal line have nonvanishing net chirality and are discussed at the end of the
paper. The asterisk on the value of k1 = 0.01 Run J” indicates that the resolution is N3 = 20483, so the Nyquist wave number
is here the same as for Run J’ with k1 = 0.02.

Run k0 −µ50 σ−1 SLD ηCPI ηdiff η
µ+
M

qI ηflip η
(i)
± ηI η

(ii)
± η

µ−

M

|〈µ−

M〉|max k±/kI kII/kI vλ umax
rms k1

VI 1 160 5× 10−4 no 0.08 2× 103 3 1/3 — 0.3 45 14 7 43 1.4 2.0 1.13 0.095 0.2

V 1 80 5× 10−4 no 0.3 2× 103 4 1/3 — 0.5 55 40 4 13 1.5 1.8 0.57 0.050 0.2

IV 1 50 5× 10−4 no 0.8 2× 103 6 1/3 — 1.6 50 55 50 5.1 1.5 2.0 0.35 0.050 0.1

III 1 30 5× 10−4 no 2.2 2× 103 14 1/3 — 1.7 80 108 150 1.5 1.8 2.3 0.21 0.018 0.2

II+ 1 20 5× 10−4 no 5 2× 103 18 1/3 — 6 75 160 200 0.46 1.8 3.1 0.141 0.031 0.1

II 1 20 2× 10−4 no 12.5 5× 103 60 1/3 — 9 75 120 200 0.009 4.4 6.7 0.141 0.032 0.1

II− 1 20 1× 10−4 no 25 1× 104 160 1/3 — 14 75 140 200 0.003 6.7 10 0.141 0.031 0.1

I 1 10 2× 10−4 no 50 5× 103 125 1/3 — 30 80 160 250 0.009 6.7 9.6 0.071 0.030 0.05

O 1 10 2× 10−4 no 50 5× 103 125 4/9 — 20 70 120 300 0.008 8.1 9.6 0.071 0.0123 0.02

O’ 1 10 2× 10−4 yes 50 5× 103 125 4/9 — 20 110 120 400 0.015 6.4 8.4 0.071 0.0103 0.02

L 1 10 2× 10−4 yes 50 5× 103 125 4/9 — 180 400 500 1000 0.027 6.7 8.7 0.071 0.0079 0.01

M 1 7 2× 10−4 yes 102 5× 103 165 1/3 — 260 220 800 800 0.006 5.8 7.2 0.049 0.0065 0.01

N 1 5 2× 10−4 yes 200 5× 103 235 1/3 — 350 200 800 1000 0.0015 6.3 7.8 0.035 0.0055 0.01

N’ 1 5 2× 10−4 yes 200 5× 103 200 4/9 — — 800 3000 15000 0.00004 5.5 2.4 0.035 0.0035 0.005

F 1 5 2× 10−4 yes 200 5× 103 — 4/9 100 — 250 9000 — — 30 30 0.035 0.0055 0.01

J 1 5 5× 10−4 no 80 2× 103 71 4/9 — 230 300 500 700 0.0003 6.1 7.6 0.035 0.0068 0.01

J” 1 5 5× 10−4 no 80 2× 103 71 4/9 — 90 300 500 460 0.0006 6.1 7.6 0.035 0.0071 0.01*

J’ 1 5 5× 10−4 no 80 2× 103 76 1/3 — 95 120 500 460 0.0005 5.8 7.7 0.035 0.0070 0.02

P 1 0.1 2× 10−4 no 5× 105 5× 103 104 3/5 — – 160 — — 3× 10−9 — — 0.001 0.0070 0.02

G 0.5 10 2× 10−4 no 50 2× 104 200 1/3 — 30 360 360 300 0.044 4.6 6.6 0.071 0.0188 0.05

H 0.2 10 2× 10−4 no 50 1.2× 105 375 1/3 — 75 2000 2000 3000 0.42 2.0 2.7 0.071 0.0074 0.02

A 1 10 2× 10−4 no 50 5× 103 — 4/9 — 8 110 210 — — 7.3 9.5 0.071 0.0109 0.02

B 1 10 2× 10−4 no 50 5× 103 — 4/9 — 20 90 120 250 — 7.8 8.9 0.071 0.0137 0.02

FIG. 5. Similarly to Fig. 4, but for Run I. The red dashed-
dotted line indicates here the η−1/3 scaling, which describes
the kI scaling better than the η−4/9 scaling indicated by the
red dotted line. The orange and red dots indicate the cross-

ings of the extrapolated tangents on which the times η
(i)
± , ηI,

and η
(ii)
± are based.

5. In Table II, this run is referred to as Run I, which
differs from the previously discussed Run O mainly in
the value of k1. It also has a shallower scaling of the
correlation length, ξM ∝ k−1

I ∝ η1/3, which seems to be
an artifact caused by insufficient scale separation, i.e.,
the value of k1 is not sufficiently small. Empirically, we
find that, if k0/k1 ≫ 20, there is an inverse cascade with

ξM ∝ k−1
I ∝ η4/9. The parameters ηI, η

(i)
± , and η

(ii)
± ,

listed in Table II, are discussed below. We also give here
the values of vµ and vλ/vµ. Run O’ is similar to Run O,
except that here, SLD has been added. The two runs are
virtually indistinguishable.

The evolution of the peaks of the spectrum can be sum-
marized as follows. (i) After the start of the run, the CPI
induces a growth of the negative helicity modes at the

secondary peak kII, which stays constant until η = η
(i)
± ,

and then starts to decrease with time in a power law fash-
ion, kII ∝ η−qIIa , with qIIa ≈ 1 in all cases. (ii) The orig-
inal large-scale spectrum is unchanged until some time
η = ηI and then starts to decrease via an inverse cas-
cade with kI(η) ∝ η−qI , where qI is expected to be equal
to the exponent q = 4/9 found in Ref. [55]. (iii) At time
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FIG. 6. Dependence of η
(i)
± , ηI, and η

(ii)
± on ηCPI. η

(i)
± shows

an approximate η
2/3
CPI dependence along two branches that are

separated by a factor of about 6. ηI and η
(ii)
± are essentially

independent of ηCPI. The inset shows that η
(i)
± scales inverse

quadratically with |µ50|.

η = η
(ii)
± , the decay of the secondary peak becomes slower

with a smaller index, kII ∝ η−qIIb , with qIIb < qIIa ≈ 1.
Those parameters are summarized in Table II.
The plot of characteristic wave numbers kI, k±, and

kII in Fig. 5 shows three distinct times, η
(i)
±

<∼ ηI <∼ η
(ii)
± ,

where k± begins to decrease first rapidly, at η = η
(i)
± , and

later, at η = η
(ii)
± , more slowly, approximately like η−4/9,

i.e., qIIb ≈ q = 4/9. The decay of kII closely follows that
of k±. The decay of kI, on the other hand, does not show
the rapid decay phase that we see in k± and kII, but turns

directly into the approximate η−4/9 decay at η = η
(i)
± .

C. Onset of inverse cascading

It is of interest to vary the separation between |µ50|/2
and k0 to see the dependence of the relevant character-
istic times on these wave numbers. We have performed
simulations for different values and consider runs where
we change kI and keep µ50 fixed, and others where we
change µ50 and keep k0 fixed. It both cases, of course,
since we want to satisfy 〈µ5〉+ 〈µM〉 = const, we need to
adjust the amplitude of the initial magnetic field corre-
spondingly. The results are summarized in Table II and
plotted in Figs. 6 and 7.

One may presume that η
(i)
± is roughly estimated by

ηCPI since the grow of negative helicity modes becomes

effective at that time. We see, however, that, while η
(i)
±

decreases quadratically with increasing |µ50|, the depen-
dence on ηCPI = σµ−2

50 is shallower than linear and fol-

lows approximately an η
2/3
CPI scaling; see Fig. 6. Thus,

kII starts to decline more rapidly when |µ50| is large, al-
though it is unclear why this exponent is here ≈ 2/3.

FIG. 7. Dependence of ηI ≈ η
(ii)
± and η

(i)
± on (a) ηturb and

(b) ηλ, as well as (c) the dependence of ηturb on ηλ.

On the other hand, we see that the five data points with
k1 = 0.01 (Runs L, M, N, J, and J” with smaller |µ50|)
lie on another η

2/3
CPI line that is shifted upward by a fac-

tor of about 6 relative to the runs with larger k1. The
reason for this is that for large values of ηCPI, it became
necessary to decrease the value of k1. This decreased
the Nyquist wave number since N remained unchanged,
which can cause artifacts in the values of k±. Small val-
ues of k1 also facilitates the η4/9 scaling of ξM and related
length scales; see the comparison between Runs N and N’

in Table II. This shows that η
(i)
± is currently very sensi-

tive to these restrictions which will be alleviated in future
with larger computational power. Nevertheless, there is

clearly a trend for an uprise in the dependence of η
(i)
± on

ηCPI for large values.

Next, we examine the dependence of ηI and η
(ii)
± on k0

and µ50. Figure 6 shows that the time ηI of the onset of
the decline of kI does not strongly depend on the value of

µ50. Likewise, the time η
(ii)
± when the decay of kII slows

down, does not strongly depend on µ50. Again, however,
there is an upward shift of data points for the four runs,
for which k1 = 0.01. As discussed in Sec. II E, we expect
that ηI is close to ηturb and ηλ. The upper two panels of

Fig. 7 show the dependence of η
(i)
± , ηI, and η

(ii)
± on ηturb
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FIG. 8. Comparison of 〈µ±

M〉 for Run II (red lines), Run J
(blue lines), and Run G (orange lines). The times ηACC are
marked by the correspondingly colored filled symbol at the
crossing points of the extrapolated η−2/3 decay law with the
initially constant values, indicated by dotted line. The η−4/3

decay law 〈µ−

M〉 is shown as the dashed-dotted line.

and ηλ, respectively. From these plots, we estimate that

ηI ≈ 1.4 ηturb ≈ 2.2 ηλ. (36)

In the lowest panel of Fig. 7, we also show the relation
between ηturb and ηλ, i.e.,

ηturb ≈ 1.6 ηλ, (37)

which shows the validity of the estimate of umax
rms in terms

of ṽλ. Equation (36) is useful for estimating the prop-
erties of magnetic field strength and coherence length at
later times. Therefore, we conclude that the numerical
results support, at least for a moderate scale separation,
1 < |µ50|/k0 . O(10), the theoretical estimate for the
evolution of the characteristic scales given in Sec. II E
with a more accurate determination of the time of the
onset of the scaling evolution, Eq. (36).

D. Evolution of 〈µ5〉 and 〈µ±

M〉

We now discuss how the chirality of the system evolves.
Using Eqs. (18) and (19), we divide the magnetic helicity
into 〈µ+

M〉 and 〈µ−

M〉. The typical evolution of 〈µ5〉 and

〈µ±

M〉 is as follows. (i) 〈µ5〉 and 〈µ+
M〉 stay constant until

the time η = ηµ+

M

, when the ACC commences exhibiting

a power law decay. (ii) 〈µ−

M〉 grows until the time η = ηµ−

M

and then decays. Thus, ηµ−

M

is determined as the time

when 〈µ−

M〉 is maximum.

As discussed in Sec. II E, the decay of 〈µ5〉 and 〈µ+
M〉

due to the ACC is expected to be like η−2/3. In Fig. 8,
we have overplotted the asymptotic η−2/3 decay laws of
magnetic helicity with results of some of the representa-
tive numerical runs (Runs II, J, and G), which clearly

shows that the numerical results support the theoretical
prediction.
The decay of 〈µ−

M〉 is faster than that of 〈µ5〉 and 〈µ+
M〉

and follows an approximate η−4/3 law, resulting in a de-
cay of the ratio 〈µ−

M〉/〈µ+
M〉 ∝ η−2/3. Therefore, unless

〈µ−

M〉 becomes comparable to 〈µ+
M〉 when the grow stops,

a complete cancellation between 〈µ−

M〉 and 〈µ+
M〉 never

occurs.
The production of 〈µ−

M〉 is expected to be a result of

the CPI. We now address the question of how much 〈µ−

M〉
is being produced and what its maximum value depends
on. Figure 8 shows that 〈µ−

M〉 is generally rather small,
and at least for µ50/k0 . 20 there is always a strong
imbalance between |〈µ+

M〉| and |〈µ−

M〉|, which never enters
a phase with a near-complete cancellation.
To see whether this is related to the value of the con-

ductivity, we compare simulations with different values
of σ. It turns out that runs with smaller magnetic diffu-
sivity (σ−1 = 10−4) result in an even larger imbalance,
while those with a larger diffusivity (σ−1 = 5×10−4) have
a smaller imbalance; compare Runs II+, II, and II− in
Table II.
Before closing this section, let us comment on another

trend in the numerical runs we conducted regarding the
absence of a near-complete cancellation between 〈µ−

M〉
and 〈µ+

M〉. For Runs III–VI, the ratio |〈µ−

M〉|max/|µ50| be-
comes rather large. This could be due to the very large
scale separation of k0 and |µ50|. This suggests a possibil-
ity that the CPI completes the cancellation between the
magnetic helicity and chirality immediately. However,
the positive and negative helicity modes are distributed
at separate length scales with the negative ones sitting
at higher length scales and the latter receives a stronger
magnetic diffusion. Therefore we expect the cancellation
not to be complete and that the two helicity modes decay
with a power-law decay, not an exponential one, though
the scaling index can be different from −2/3. In order to
investigate the evolution of the system in such extreme
cases, |µ50|/k0 ≫ O(10), we need to have a sufficiently
large box size to realize the corresponding scale separa-
tion. The detailed study is left for future study.

E. Onset of ACC

In Fig. 9, we show the dependence of ηµ+

M

and ηµ−

M

on

ηACC = σ/|µ50k0| (for the case k0 ≪ |µ50|; see Eq. (26)).
It turns out that ηµ+

M

increases with ηACC = σ/|µ50k0|
such that

ηµ+

M

≈ 0.2 ηACC = 0.2σ/|µ50k0| (38)

provides a good description to the data, which supports
the discussion in Sec. II E, at least for a mild hierarchy
|µ50| & k0. Furthermore, ηµ−

M

shows an approximately

linear dependence on ηACC. This is reasonable because
the CPI becomes ineffective when the ACC onsets such
that 〈µ−

M〉 is no longer amplified by the CPI after that.
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FIG. 9. Dependence of η
µ+
M

and η
µ−

M

on (a) σ/|µ50k0| as well

as the geometric means of ηCPI and (b) either ηturb or (c) ηλ.

F. The scale ratios k±/kI and kII/kI

We also mention another observation in the case with
k0 ≪ |µ50|. At late times, the scale ratios k±/kI and
kII/kI reach values that are approximately constant in
time. It is about 10 in the case of Run O, i.e., equal to
the initial scale separation, |µ50|/k0 = 10. One might
have expected the scale ratios to increase with |µ50|/k0.
However, in all other cases, this ratio is smaller. Some of
this might also be caused by one of the two scale separa-
tion constraints not being well enough obeyed, although
the counter-intuitive trend remains surprising.

In Fig. 10, we show the ratios k±/kI and kII/kI versus
|µ50|/k0 = (ηdiff/ηCPI)

1/2. The two insets give separately
the dependencies on 1/ηCPI, showing an η−0.4

CPI behavior,

and on ηdiff , with a ∝ η
1/2
diff behavior. We see that k±/kI

and kII/kI decrease both with 1/ηCPI and with ηdiff , giv-
ing a combined dependence on just the ratio |µ50|/k0.
Thus, we see that, somewhat unexpectedly, large |µ50|
and small k0 tend to be detrimental to producing large
scale ratios.

FIG. 10. Dependence of k±/kI and kII/kI on ηCPI, showing

an η−0.4
CPI behavior. on ηdiff , showing a ∝ η

1/2
diff behavior.

FIG. 11. Evolution of 〈µM〉 (red), 〈µ5〉 (blue), and their sum
(black) for Run F with ηflip = 100 and Γf0 = 10−2 either for
the rest of the run or only until ηoff = 103. The dotted lines
correspond to Run N without spin flipping.

G. Effect of chirality-flipping

The simulations discussed so far had Γ = 0 and they
resulted in a final state where 〈µ5〉 and 〈µM〉 vanish at
late times. As discussed in the introduction, spin flipping
could prematurely lead to a vanishing 〈µ5〉, which would
imply that the decay of 〈µM〉 would slow down and level
off at a value away from zero. To study this quantita-
tively, we show in Fig. 11 the evolution of 〈µ5〉, 〈µM〉, and
〈µ5〉+〈µM〉 for Run F with ηflip = 100 and Γf0 = 10−2 ei-
ther for the rest of the run or only until ηoff = 103 (Run F
in Table II). We expect that if chirality flipping becomes
effective much later than the ACC, we do not see the ef-
fect of chirality flipping, while if it becomes effective much
earlier, we do not see the ACC. This is demonstrated
in Appendix B, where we show spin-flipping versions of
Runs VI and P, where ηACC ≪ ηflip and ηACC ≫ ηflip,
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respectively. Thus we choose the parameter such that
the chirality flipping becomes effective around (or some-
what before) the time of onset of the ACC to capture the
behavior of the system at an intermediate stage.

First, we study a case where spin flipping acts per-
manently (after η = ηflip), which is shown in Fig. 11 as
solid lines. We see that |〈µ5〉| begins to decrease rapidly
to zero after ηflip = 100. This slows down the decay of
〈µM〉, which then declines at a much smaller rate; com-
pare with the evolution for Run N, which is similar to
Run F, but without spin flipping. Qualitatively similar
behaviors are also seen for smaller values of Γf0. In all
cases, we see that 〈µ5〉 + 〈µM〉 evolves away from zero.
This is because the total chirality is then no longer con-
served. The decay of 〈µM〉 is understood by magnetic
diffusion. Thus we expect the decrease to slow down for
a larger scale separation between the magnetic diffusion
scale and kI.

Next, it is also of interest to study a case where spin
flipping acts only for a certain time interval and is then
turned off again at η = ηoff . This case is shown in
Fig. 11 as dashed lines. We see that, when Γ = 0 af-
ter ηoff = 103, the sum 〈µ5〉 + 〈µM〉 is strictly constant
and away from zero. This is in contrast to the case with
permanently nonvanishing Γf0, where the sum continues
to decrease slowly. The constancy of the total chirality
leads to the behavior that 〈µM〉 stops to decline rapidly
at a larger value. Furthermore, during that time, some of
the magnetic helicity decays due to the magnetic diffusion
and is temporarily converted back into fermion chirality
through the total chirality conservation; see the small
increase of 〈µ5〉 with a positive maximum at η ≈ 4000
in Fig. 11. Later, however, this excess fermion chirality
gets converted back into magnetic fields, which explains
the slight uprise of 〈µM〉 near the end of the simula-
tion. Indeed, this process is similar to the one seen in
Refs. [14, 15]. This is natural because after the decay of
〈µ5〉 the setup becomes very similar to the ones in these
studies.

In Fig. 12, we show η
(i)
± and ηI in the presence of

spin flipping. The results suggests that the η−4/9 decay
changes into the faster η−2/3 decay. Spin flipping brings
〈µ5〉 close to zero. This process stops or slows down the
decline of magnetic helicity, which therefore remains pos-
itive. At late times, 〈µ5〉, which was originally negative,
now becomes positive and settles at a value of around
〈µ5〉 ≈ k1. This is because at later times the positive
chirality induced due to the helicity decay by the mag-
netic diffusion through the chiral anomaly is balanced by
the erasure of the chirality through the CME [14, 15],
similar to the baryon asymmetry through the magnetic
helicity decay much before the electroweak phase transi-
tion [19, 20, 24].

The sign of the final value of 〈µ5〉 is determined by
the magnetic helicity after the decay of 〈µ5〉 due to the
onset of spin flipping. In the cases presented above, the
sign of the magnetic helicity at the time of the onset of
spin flipping was positive and thus the chiral chemical

FIG. 12. k
(i)
± and kI for Run F with spin flipping, ηflip = 100

and Γf0 = 10−2 for the rest of the run. As in Fig. 4, the green
dashed line shows 〈µ5〉 and the green dotted line shows µrms

5 .

potential at later times was also positive. If the initial
magnetic field is weaker and the total chirality being neg-
ative (see App. C), the sign of the final value of 〈µ5〉 can
stay negative.
Our runs show that spin flipping can lead to a signifi-

cant increase of the fraction of the magnetic helicity that
can be preserved in spite of the fact that the system has
vanishing total chirality. This also reduces the total en-
ergy density dissipation of the system. In the absence
of spin flipping, both magnetic helicity and chiral chem-
ical potential would approach zero, so there would be no
magnetic helicity available for successful baryogenesis. In
the real Universe, however, spin flipping due to the elec-
tron Yukawa interaction, which really violates the (total)
chirality conservation, inevitably acts at T . 102 TeV
[45, 46], and hence magnetic helicity survives more or
less at the electroweak phase transition.
In Fig. 12, we see an interval between the onset of

spin flipping, η = ηflip = 102, and the onset of the η−2/3

scaling evolution of kI, η ∼ 6 × 103, which marks the
real onset of the evolution with (pure) magnetic helic-
ity conservation. For a rough estimate of the magnetic
field evolution, however, we shall practically use ηflip as
the switching time between the adapted Hosking integral
conservation and the (pure) magnetic helicity conserva-
tion.

H. Cases with initially small |µ50|/k0

In all the cases considered so far, we assumed
|µ50|/k0 > 1. We now consider the opposite case and
discuss runs with µ50 = −0.1, keeping still k0 = 1, so
|µ50|/k0 = 0.1 (Runs P, Q, and R), and also a run with
µ50 = −0.5 and k0 = 1 (Run S). To prevent the magnetic
field from being too weak, while still preserving vanish-
ing total chirality, we decrease the value of λ and choose
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TABLE III. Empirical values of β for cases with |µ50| < k0.
For a given value of λ, the values of vA0 followed from the
requirement that the total chirality vanishes. The resulting
maximum rms velocity umax

rms is listed for completeness.

Run −µ50 λ vµ ṽλ vA0 umax
rms SLD β ηI

P 0.1 500 2× 10−5 0.014 0.026 0.008 no 0.33 160

Q 0.1 50 2× 10−5 0.045 0.081 0.028 no 0.15 50

R 0.1 5 2× 10−5 0.141 0.257 0.076 yes 0.05 27

S 0.5 500 10−4 0.032 0.057 0.019 no 0.33 70

TABLE IV. Possible combinations of q = 2/(β + 3), p =
2(1− q), and r = p− q in the range 0 ≤ β ≤ 1/3.

β q p r

3/2 = 1.50 4/9 ≈ 0.44 10/9 ≈ 1.11 2/3 ≈ 0.67

1/3 ≈ 0.33 3/5 = 0.60 4/5 = 0.80 1/5 = 0.20

0.15 0.63 0.73 0.10

0.05 0.66 0.69 0.03

0 2/3 = 0.67 2/3 = 0.67 0

λ = 500, 50, and 5 for Runs P (and S), Q, and R, re-
spectively. All the runs end at η ∼ 104. The parameters
of these runs are summarized in Table III. The magnetic
diffusivity is taken as σ−1 = 2 × 10−4. In all our cases,
the system does not even reach ηCPI. This is because
of the small value of |µ50|, which enters the CPI time
inverse quadratically; see Eq. (10).

Smaller values of λ correspond to larger magnetic
fields. We see that this also leads to a gradual decrease
of the scaling index of the envelope of the magnetic en-
ergy spectrum, β; see Fig. 3. For a given value of β,
we expect that the scaling indices q, p, and r, for the
evolution of the magnetic coherence length (ξM ∝ ηq),
energy density (EM ∝ η−p), and helicity (HM ∝ η−r),
respectively, are given as q = 2/(β + 3), p = 2(1 − q),
and r = p − q. In Fig. 13(a), we see that for Run P the
exponents in agree reasonably well with those expected
for β = 1/3. In Fig. 13(b), we also show the results for
Run R, where λ is a hundred times smaller and the mag-
netic field ten times stronger. Now the value of β is very
small (about 0.05), corresponding to q = 0.66, p = 0.69,
and r = 0.03. Finally, Fig. 13(c) gives the results for
Run S, where λ = 500 is the same as for Fig. 13(a), but
now µ50 = −0.5 instead of −0.1. In this case, similarly
to Run P, β ≈ 1/3, p ≈ 4/5, q ≈ 3/5, and r ≈ 1/5.

In Table IV, we list several combinations of the ex-
pected scaling indices q, p, and r for 0 ≤ β ≤ 3/2. Inter-
estingly, in the range 0 ≤ β ≤ 1/3, the values of q and p
do not vary much in this range, especially compared to
the case for the evolution with the (adapted) Hosking in-
tegral conservation, β = 3/2, so if they do not agree with

FIG. 13. Time dependence of EM (black), ξ−1
M (orange), HM

(red), and −2〈µ5〉/λ (blue), for Runs P (a), R (b), and S (c).

those from the simulations, the discrepancy cannot easily
be resolved by changing the value of β within reasonable
limits. Note that β = 0 is expected if the evolution is
governed by (pure) magnetic helicity conservation.

In the corresponding pq diagram Fig. 14, we see that all
the runs approach the scale-invariance line p = 2(1− q).
For Run P, it evolves along the line r = 1/5. At the
intersection, we have q = 3/5 and p = 4/5. How-
ever, for Runs Q and R with stronger magnetic field
strengths, expressed in terms of the initial Alfvén speed
vA0 = B0/

√
ρ0 (which is well approximated by ṽλ), the

solution approaches the β = 0 line, which suggests better
conservation of magnetic helicity. Note that near the end
of those runs, the data points may not be reliable because
of the finite size of the domain. In addition, because of
the stronger magnetic field, the Alfvén time is shorter
and therefore kI reaches k1 more quickly. In any case, it
is likely that for small |µ50|/k0, we see an new stage of
the evolution of the system where the magnetic helicity
and chirality are temporarily conserved individually, as
discussed in Sec. II E. This is supported by the fact that
the theoretically predicted time of the onset of ACC (or
even CPI) should come much later, well after the end of
the run; see Eqs. (10) and (31). In other words, from the
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FIG. 14. pq diagram for Runs P (red symbols), S (orange
symbols), Q (green symbols), and R (blue symbols) at times
t = 700, 1000, 1500, 2200, 3200, 4600, 6800, 104, 1.5 × 104,
1.5× 104, 2.2× 104, and 3.2× 104, corresponding to symbols
of increasing size. The solid line denotes the scale-invariance
line p = 2(1 − q), the dashed line the empirical β = 1/3
line, and the dashed-dotted line is the resulting r = 1/5 line
for the magnetic helicity decay. For stronger magnetic field
strength (Runs Q and R), the solutions evolve along β ≈ 0.15
and β ≈ 0.05, respectively. Toward the end of the runs, the
finite size effects of the domain begin to affect the solution.
The dotted line denotes the β = 0 line for magnetic helicity
conservation and is shown for comparison.

present simulation results, we cannot distinguish between
the two possible theoretical predictions for the later evo-
lution in the case k0 > |µ50|; see steps 3 or 3′ given in
Sec. II E.
For all the simulations where initially |µ50| < k0, we

find that µ5 decays more slowly than kI; see Fig. 15 for
Run S, as an example, where we see the crossing of µ5

and kI. The same is also seen for |µ50| = 0.1, but then
the crossing of |µ5| and kI occurs much later and is there-
fore not yet prominent. Again, these observations sug-
gest that the magnetic helicity-conserving phase is an
intermediate one before the solution resumes the decay
governed by the adapted Hosking integral, as discussed
in Sec. II E.
The time evolution of the magnetic energy and helic-

ity spectra for Run P are given in Fig. 16(a). We can
see that a negative magnetic helicity part of the spec-
trum still emerges, again only at large wave numbers,
although now much later. This means that |〈µ−

M〉| is in-
duced by the CPI, but it stays extremely small. How-
ever, the time is still less than ηCPI and hence it is likely
that we only see the early stages of the CPI before much
stronger amplification is possible. Furthermore, |〈µ+

M〉|
does not decay much during the time of the run; see also
Fig. 13(b). This can easily be understood by the fact
that ηCPI is very large in this run. Many other features

FIG. 15. Comparison of kI (red), k± (orange), and kII (blue)
for Run S with µ50 = −0.5. The dashed-dotted line indicates
η−4/9. The green dashed line shows 〈µ5〉 and the green dotted
line shows the rms value µrms

5 .

FIG. 16. (a) Magnetic energy and (b) total helicity variance
spectra at t = 70 (dashed), 200 (solid), 700 (dotted), 2× 103

(blue), 7×103 (green), 2×104 (orange), and 7×104 (red) for

Run S. In (a), note that the EM(k, t) evolve underneath a k1/3

envelope, and the upward arrow indicates the sense of time.
In (b), the slopes k2, k4, and k−4 have been indicated and
the inset compares Sp(2µ5/λ) (solid) with Sp(htot) (dotted)
at the last time.

of the magnetic field evolution remain superficially sim-
ilar to the limit of large |µ50|/k0. One still sees inverse
cascading of positive magnetic helicity.
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FIG. 17. IH(t), normalized by its initial value, for Run P. The
inset shows IH(R, t) versus R at different times: solid lines
correspond to η = 320, 1000, 3200, 10,000, and 32,000 are in
black, blue, green, orange, and red, respectively. The dotted
lines mark intermediate times. The colors of the symbols in
the graph of IH(t) correspond to those of the lines in the inset,
and also to those in Fig. 16. The adapted Hosking integral
is evaluated as IH(t) = IH(R∗, t). The vertical dashed-dotted
line marks the value k0R∗ = 100, which is where the curves
show a plateau at early times.

I. Non-conservation of IH(η) for small |µ50|/k0

In Fig. 16(b), we show the total helicity variance spec-
trum Sp(htot). We clearly see that for small k, the value
of Sp(htot) increases with time. This suggests that the
adapted Hosking integral, as defined in Ref. [55], is not
conserved at late times.

In Fig. 17, we show for Run S the Hosking integral,
IH, as a function of time. It is obtained from the func-
tion IH(R, η) = L−3

∫

w(k, R) Sp(htot) d
3k/(2π)3, which

is shown in the inset as a function of R at different
times. Here, w(k,R) = (4πR3/3)[6j1(kR)/kR]2 is a
weight function [58] with jn being spherical Bessel func-
tions. The relevant value of R is usually where R is just
a little less than half the system size [56, 58], which is
here for k0R = 50π ≈ 157. At that location, IH(R, η)
usually also shows an approximate plateau for different
times. This is not the case for this run. We have there-
fore chosen instead the value k0R = 30, which is where
IH(R, η) shows considerable spread in time. This po-
sition is marked in the inset by the vertical dashed line.
Focussing now on the resulting time dependence of IH(η),
we see a sharp rise at late times (η ≥ 104), which also
agrees with the time when we saw the values of Sp(htot)
for small k to change; see Fig. 16(b).

Regarding the conserved quantity for runs in the limit
of small |µ50|/k0, we can say that, in spite of vanishing
total chirality, the Hosking integral is here not conserved,
because the magnetic energy now peaks at scales where

the CME is not effective during the time of the run and
the magnetic helicity is conserved. As a result, the net
chirality is no longer random, but systematically of pos-
itive sign. The subinertial range of the magnetic helic-
ity variance begins to be dominated by a k4 spectrum,
which suggests that the Hosking integral in the expansion
Sp(htot) = IHk

2/2π2 +O(k4) is now subdominant.
To summarize, these runs are consistent with the the-

oretical prediction in Sec. II E, up to the intermediate
stage (step 2), although a moderate violation of helicity
conservation has been seen for Run P. Note that Run P
has a larger value of λ, which makes the theoretically
predicted ηACC smaller [see Eq. (31)], so that an earlier
transition to the evolution with adapted Hosking integral
conservation is expected. For an analytic estimate of the
evolution of the system in the next section, we shall use
the theoretical prediction discussed in Sec. II E. Namely,
the system is frozen until η = ηλ and then evolves with
the usual inverse cascade for the helical magnetic field as
an intermediate stage. We chose step 3′ for the onset of
the ACC, which is more realistic, though at present we
do not have any support from numerical results. That is,
at η = η5dec the system starts to evolve with a decay law
determined by the conservation of the adapted Hosking
integral.

IV. APPLICATION TO THE EARLY UNIVERSE

A. From QED to the Standard Model

Now we investigate the impact of our findings in the
previous sections on the cosmology of the early Universe,
especially, baryogenesis. Up to here, we focused on a
QED-like theory. Thus, we first would like to clarify its
relation to the dynamics in the early Universe. The SM
involves the right-handed leptons eRf , the left-handed
lepton doublets ℓLf , the right-handed up- and down-type
quarks, uRf and dRf , and the left-handed quark doublets
qLf with the flavor index running through f = 1, 2, 3,
alongside the scalar Higgs doublet Φ, which are in total
16 species. On top of this, we have gauge interactions of
U(1)Y × SU(2)L × SU(3)C . It is not obvious why we can
reduce this complicated system to chiral MHD based on
a QED-like theory like the one introduced in Sec. II.
What we are interested in here is the slow dynamics at

long wave lengths compared to interactions among par-
ticles. The key idea for the reduction is to assume the
equilibration of fast interactions and to keep only the
slow variables. The hypermagnetic field of U(1)Y with a
correlation length much larger than the mean free path
of the particles stands out as a slow variable because the
magnetic flux cannot be cut thanks to the absence of
monopoles. This feature does not hold for non-Abelian
gauge fields because they are charged under their own
gauge group. We also need the chiral chemical potential,
since it is related to the magnetic field via the anomaly
equation. Apart from these two fundamental building
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blocks, we can coarse-grain the microscopic properties of
all particle in the form of transport coefficients such as
the diffusion constant and the electric conductivity, be-
sides macroscopic quantities such as the pressure, energy
density, and velocity field. In this way, one may see that
the system can be reduced to chiral MHD as far as the
slow and long-wave dynamics is concerned.
Still, one might wonder why we can just focus on one

particular chiral chemical potential, as in Eq. (3), since
we have 15 chiral fermion species in the SM. To illus-
trate this, let us focus on the temperature right above
105 GeV, where the electron Yukawa interaction is not
efficient compared to the cosmic expansion, but other in-
teractions are fast enough. In this case, the chiral chem-
ical potential for the right-handed electron, µ̃e, should
be counted as a slow variable, as it is directly related to
the hypermagnetic field via the anomaly equation. On
the other hand, other chiral chemical potentials are sub-
ject to fast SM interactions, which provides 11 nontriv-
ial constraints among them. Recalling that the SM has
four conserved charges, hypercharge Y and the flavored
baryon-minus-lepton numbers B/3−Lf with f = 1, 2, 3,
one may immediately see that the remaining 15 chemical
potentials can be expressed as a function of µ̃e by solv-
ing 11 + 4 constraints. The chiral chemical potential µ̃5

originates from the generalized Ohm’s law,

JY = σY EY +
2αY

π
µ̃5 BY , (39)

where αY is now the U(1)Y fine-structure constant and
σY the hyperelectric conductivity of the plasma. In the
following, we will work with the αY value around the
electroweak scale, αY ≃ 0.01, and neglect its renormal-
ization group running when considering the dynamics of
the hypermagnetic field at high energies. Also, note that,
in this section, we set ~ = c = kB = 1, and all quanti-
ties are physical rather than comoving, unless explicitly
stated otherwise. For the SM U(1)Y , at T ∼ 105···6GeV,
one may express this µ̃5 as a summation of chiral chem-
ical potentials for the SM fermions as [12, 49]

µ̃5 =
15
∑

i=1

ǫi gi y
2
i

µ̃i

2
=

711

481

µ̃e

2
, (40)

where i runs over all SM fermions, ǫi = ± for right- and
left-handed fermions, respectively, gi counts internal de-
grees of freedom, and yi is the hypercharge of fermion
species i. In the second equality, we inserted the solu-
tion of the 15 constraint equations mentioned above. We
now see that, up to the O(1) coefficient of 711/481, one
chiral chemical potential suffices to describe the system.
In higher temperature regimes, we will have additionally
more slow variables that enter the expression of µ̃5, but
it is still written as a linear combination of their chemical
potentials with O(1) coefficients. It still holds that the
evolution of the system is described by chiral MHD as
discussed in Sec. II with µ̃5 being evaluated accordingly.

B. Baryogenesis

After these general remarks, let us now turn to the
implications of our analysis for the generation of the
baryon asymmetry of the Universe. We are primarily
interested in the scenario of baryogenesis from decaying
hypermagnetic helicity [19, 20, 24–26], which assumes the
presence of a strongly helical hypermagnetic field dur-
ing the radiation-dominated era in the early Universe.
This scenario is based on the observation that the helic-
ity stored in the hypermagnetic field decays at the time
of the electroweak phase transition, not because of some
exotic helicity-violating interactions, but simply because
hypermagnetic helicity is converted to magnetic helic-
ity. This decay of hypermagnetic helicity then sources a
baryon asymmetry via the chiral anomaly of the baryon-
number current.
One possibility to generate the helical hypermagnetic

field required for baryogenesis consists of axion inflation
featuring a Chern–Simons coupling to U(1)Y . Such a
model leads to the nonperturbative production of hyper-
magnetic gauge fields in combination with charge asym-
metries for the 15 chiral SM fermion species [48, 49],

ni − n̄i =
1

6
gi µ̃i T

2 = −ǫi gi y
2
i

αY

2π
hY + · · · , (41)

where the ellipsis represents all other SM contributions,
which, however, can safely be neglected during inflation.4

Furthermore, hY in Eq. (41) is the physical helicity den-
sity, which we define in terms of the comoving vector
potential AY,com, comoving hypermagnetic field BY,com,
and scale factor a,

hY =
1

a3
〈AY,com ·BY,com〉 , (42)

where the angle brackets now stand for a double average
including the spatial average and the quantum mechani-
cal expectation value during inflation. From Eq. (41), we
can read off the fermion chemical potentials at the end
of inflation in terms of the helicity density at the end of
inflation. Inserting this result into Eq. (40), we obtain
the chiral chemical potential at the end of inflation,

µ̃5

T
= −c5

2
6χ , c5 =

95

18
, (43)

where the dimensionless yield parameter χ quantifies the
amount of CP violation during axion inflation [49],

χ =
αY

2π

hY

T 3
. (44)

Here, we assume instantaneous reheating. The same co-
efficient c5 was found in Ref. [49]; in total, the expression

4 The top-quark Yukawa interaction would be a possible exception;
see the discussion in footnote 5 of Ref. [49] for more details.
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for µ̃5 in Eq. (43) is, however, smaller than the one in
Ref. [49] by a factor of 1/2 because, in the present paper,
we include a factor of 1/2 in Eq. (40).
The fermion asymmetries generated during axion in-

flation are consistent with the chiral anomalies of the
respective fermion currents. In fact, it is straightforward
to generalize the conversion law in Eq. (8) to the early
Universe. To see this, let us rewrite Eq. (43) as follows,

µ5 +
3 c5
2

(

2αY

π

)2
1

2a3T 2
〈AY,com ·BY,com〉 = 0 , (45)

where we used µ5 = (2αY /π) µ̃5. Then, introducing

λY = 3

(

2αY

πaT

)2

, (46)

we obtain the relation

µ5 +
c5
2
µY
M = 0 , (47)

where

µY
M =

1

2a
λY 〈AY,com ·BY,com〉 . (48)

As the temperature in the early Universe decreases,
more and more SM interactions reach chemical equilib-
rium. This includes the SM Yukawa interactions, which
violate parity and hence render the coefficient c5 in
Eq. (43) a time-dependent quantity [49]. During axion in-
flation, c5 assumes its maximal value, c5 = 95/18 ≃ 5.3,
before it then decreases down to c5 = 711/481 ≃ 1.5 at
temperatures of a few 100 TeV [see Eq. (40)]. This change
in c5 is reflected in a changing value of the chiral chemi-
cal potential µ5, which is always given by µ5 = −c5/2µ

Y
M

according to Eq. (47), with µY
M remaining constant until

the onset of CPI, ACC, or electroweak phase transition.
At T . 105 GeV, c5 and hence µ5 vanish because all SM
interactions have reached chemical equilibrium.
The CP asymmetry parameter χ in Eq. (44) controls

the outcome of baryogenesis from helicity decay. That is,
if no CPI or ACC takes place before the onset of spin flip-
ping, the decay of hypermagnetic helicity around the elec-
troweak phase transition results in a present-day baryon
asymmetry (quantified in terms of the baryon-to-photon
ratio) that is fully controlled by χ [49],

η0B ≡ n0
B

n0
γ

≃ 0.15 cdecB χ , (49)

where nγ = 2 ζ(3)T 3/π2 and the superscript 0 indicates
that a quantity is evaluated at the present time. Here, the
coefficient cdecB has a theoretical uncertainty of possibly
two orders of magnitude [26]. In the following, we will
work with the representative value cdecB = 0.05 [49, 50],
which implies that χ values of the order of χ ∼ 10−7 are
necessary to reproduce the observed baryon asymmetry,
ηobsB ≃ 6.1 × 10−10 [75, 76]. Meanwhile, the parameter

χ also allows us to evaluate the ratio of k0 and µ5 at
the end of axion inflation. Specifically, if we estimate the
comoving peak wave number k0 in terms of the comoving
wave number that enters the Hubble horizon at the end
of reheating, krh = arhHrh [49], we find

|µ5|
krh/arh

=
6αY c5 χ

π

Trh

Hrh
=

6αY c5 χ

π

M∗

Trh

∼ 10−4

(

χ

10−7

)(

1014GeV

Trh

)

, (50)

where M∗ =
(

90/π2/g∗
)1/2

MPl ≃ 7.1 × 1017 GeV is the

reduced Planck mass, MPl ≃ 2.4× 1018 GeV, rescaled by
the effective number of relativistic degrees of freedom in
the Standard Model plasma, g∗ = 427/4. Axion inflation
typically results in small values of the χ parameter (e.g.,
χ ∼ 10−7; see above) and large values of the reheating
temperature (e.g., Trh ∼ 1014 GeV; see Ref. [49]), which
puts us in the parametric regime where |µ5| ≪ krh/arh
at the end of axion inflation. Moreover, smaller values of
Trh typically result in smaller values of χ, following the
scaling relation χ ∝ (Trh/M∗)

3 [49], which means that
the opposite hierarchy, |µ5| ≫ krh/arh, cannot simply be
obtained by considering a smaller reheating temperature.
For |µ5| ≪ krh/arh, the chiral chemical potential even-

tually becomes larger than the peak wave number of the
hypermagnetic energy spectrum. This is because the
peak momentum decreases via the inverse cascade, while
the chiral chemical potential is approximately conserved.
As mentioned above Eq. (34), we expect a large hierarchy
between µ5 and kI at ηCPI for the SM plasma,

|µ5|
kI/a

∣

∣

∣

∣

CPI

≃
(

2σ2
Y

ρ̄λY

)1/3

(51)

∼ 2× 102
(

106.75

g∗

)1/3(
0.01

αY

)2/3

, (52)

where we evaluate the hyperelectric conductivity σY as
σY = cσY

T , with cσY
∼ 102 [72, 73], the average radia-

tion energy density ρ̄ as ρ̄ = cρ̄ T
4, with cρ̄ = π2g∗/30,

and the parameter λY as λY = cλY
/(aT )2 with cλY

=
12α2

Y /π
2. The net chiral chemical potential may start

to decay after some duration of CPI as given in Eq. (34)

η5dec = cA ηCPI = cA

[

1

a

σY

µ2
5

]

rh

, (53)

where the factor of a−1 follows from the mass dimension
of the factor σY /µ

2
5.

The time η5dec marks the onset of the net chirality de-
cay via the CPI and needs to be compared to the time
ηsf = 1/ksf when spin flipping for left- and right-handed
electrons becomes efficient, where ksf = asfHsf is the co-
moving horizon scale at η = ηsf . Using Eq. (53), together
with Tsf = 105 GeV for the electron Yukawa interaction
in the SM [45, 46], we obtain

η5dec
ηsf

∼
(

g∗
106.75

)1/2(
0.01

α

)2(
cA
10

)(

10−4

χ

)2

. (54)
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If chirality decay occurs before the onset of spin flipping,
i.e., χ & 10−4, we expect the hypermagnetic helicity to
decay simultaneously. Therefore, the correct amount of
baryon asymmetry would be obtained for such a large
χ ≫ 10−7 that would overproduce baryon (49) at a first
glance, since the reduction of the hypermagnetic helicity
because of the CPI might counteract this overproduction
of baryon number. To see this explicitly, one may use
the ratio in Eq. (54) to introduce a dilution factor, ∆ =
(η5dec/ηsf)

q5 with q5 being the scaling index introduced
in Eq. (35), that multiplies the naive baryon asymmetry
in Eq. (49) whenever the CPI should occur before the
onset of spin flipping,

η0B ≃ min {1,∆} × 0.15 cdecB χ . (55)

By requiring η0B ≃ 6.1× 10−10, we can estimate the size
of the CP violation χ required to obtain the observed
baryon-to-photon ratio. For q5 = 2/3, we need χ ∼ 106.
Such large χ values are extremely difficult, if not impos-
sible, to realize in realistic models of axion inflation. For
q5 = 4/3, we need instead χ ∼ 10−2, which is still large
but not an unrealistic value for axion inflation. In this
way, the result for the final baryon asymmetry strongly
depends on the scaling index q5, whose precise value is,
however, beyond the scope of our current simulations.
To sum up, even if we initially start from |µ5| ≪

krh/arh, the system eventually ends up with the large hi-
erarchy of |µ5| ≫ kI/a. Moreover, if χ is extremely large,
we can have initially |µ5| ≫ kI/a. These cases might dis-
play similar dynamics as our Runs III–VI, which we com-
mented on at the end of Sec. IIID. The decay law for the
magnetic helicity may then be different from the η−2/3

behavior that we typically find for ACC, which strongly
affects the outcome of baryogenesis. As already stated
in Section IIID, we leave a more detailed study of this
more exceptional case for future work.

V. CONCLUSIONS

We have performed numerical simulations of chiral
MHD with zero initial total chirality for a range of pa-
rameters to determine the dependence of characteristic
time and scale ratios, which are well explained by the
analytical estimate in Sec. II E. Namely, they are consis-
tent with the scaling evolution, ξM ∝ η4/9, EM ∝ η−10/9,
and 〈µ5〉 ∝ η−2/3, derived from the conservation of the
adapted Hosking integral [55], and also the time scale of
the onset of this scaling evolution, ηACC; see Eqs. (26)
and (31). Our numerical simulations also assess the pos-
sibility of artifacts resulting from insufficient scale sep-
aration. A particularly important constraint is a suffi-
ciently large size of the computational domain (small k1),
which is needed to obtain the expected η4/9 scaling of the
correlation length. When this constraint is not obeyed,
the scaling is closer to η1/3. The second constraint of a
sufficiently large Nyquist wave number is important to
obtain the correct values of the scale ratio of the positive

and negative magnetic helicity peaks, i.e., kII/kI. Some-
what surprisingly, this ratio scales inversely with the ini-
tial scale separation between the scale of the magnetic
field and the CPI scale. Increased values of 〈µ−

M〉, which
characterize the strength of the CPI, are obtained when
σ is small or |µ50| is large and therefore the coupling to
the CPI is more efficient.

In the absence of spin flipping, even the slightest initial
imbalance will amplify as the magnetic energy decays; see
Appendix C. On long time scales, this eventually leads
to a fully helical state, although simulations of this are
at present unable to demonstrate this conclusively ow-
ing to the finite size of the computational domain. Spin
flipping is another mechanism that can produce an imbal-
ance between magnetic helicity and fermion chirality. In
any case, however, the finally available magnetic energy
and helicity densities are always limited by the finiteness
of the initial total chirality imbalance. For η < ηACC,
when the chiral magnetic effect is not effective at the
peak scale, magnetic helicity conservation governs the
decay of magnetic energy and the Hosking integral does
not play a role.

We also discussed the implications of our findings for
the generation of the baryon asymmetry of the Universe,
in particular, the scenario of baryogenesis from helic-
ity decay. The final baryon asymmetry in this scenario
is controlled by a dimensionless yield parameter χ that
quantifies the helicity density produced in the very early
Universe, for instance, during a stage of axion inflation.
In previous work, it was shown how the observed baryon
asymmetry can be generated from helicity decay at the
time of the electroweak phase transition for a specific χ
value, χ0 ∼ 10−7; see Eq. (49) and Ref. [49]. The situ-
ation at larger χ values, however, remained unclear. At
χ ≫ 1, one may have anticipated either (A) the overpro-
duction of baryon number or (B) catastrophic helicity
erasure by the chiral plasma instability and consequently
no baryon asymmetry at all.

Thanks to the analysis in this paper, we now extend
the previous analysis to the case where the decay of the
hypermagnetic helicity occurs before the spin flipping for
electrons becomes efficient, i.e., χ & 10−4. For typical
parameters for axion inflation, although we initially have
|µ5| ≪ krh/arh, the opposite large hierarchy is eventually
realized |µ5| ≫ kI/aI. Therefore the required value of
χ to reproduce the observed baryon asymmetry depends
on the value of the scaling index q5 in the large hierarchy
regime. Further studies for the large hierarchy are indis-
pensable for understanding the outcome of baryogenesis.

Data availability—The source code used for the sim-
ulations of this study, the Pencil Code, is freely avail-
able from Ref. [67]. The simulation setups and the cor-
responding data are freely available from Ref. [77].
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Appendix A: Additional time and length scales

In Sect. II E and also later in this paper, we defined a
number of time scales and wave numbers. In Table I, we
summarized the characteristic time scales relevant for the
evolution of the system. In Table V, we present a sum-
mary of additional time scales and in Table VI various
wave numbers defined in this paper.

Appendix B: Other cases with spin flipping

In Sect. IIIG, we presented Run F with spin flip-
ping, whose other parameters were similar to those of
Runs N and N’, where ηACC ≈ (ηCPIηdiff)

1/2 = 103. and
|µ50|/k0 = 5. We now discuss a spin flipping version of
Run VI (Run P), where ηACC = 13 (5×104) is much less
(much greater) than the spin-flipping time, and where
|µ50|/k0 = 160 (|µ50|/k0 = 0.1) is much larger (smaller)
than for Run F. The results are shown in Figs. 18(a) and
(b).
As expected, when chirality flipping becomes effective

much before the onset of ACC, we hardly see its effect;
see Fig. 18(a). Conversely, when mild ACC has already
started by the time the chirality flipping becomes effec-
tive, we do not see qualitative differences to the original
Run P; see Fig. 18(b). Hence, the overall understanding
of the effect of chirality flipping does not change, and the
basic features of chirality flipping are best captured in
Fig. 11.

Appendix C: Behavior in imbalanced chirality decay

In Sect. V, we emphasized that even the slightest ini-
tial imbalance between magnetic helicity and fermion chi-
rality will amplify as the magnetic energy decays. It is

FIG. 18. Similar to Fig. 11, but with parameters similar to
Run VI (a) and Run P (b), where ηACC ≈ 13 is much less
than ηflip and ηACC ≈ 5 × 104 is much greater than ηflip. As
for Run F in Fig. 11, we have ηflip = 100 also here for both
runs, but do not consider finite values of ηoff .

therefore important to remember that the dynamics dis-
cussed in this paper is specific to the case of balanced
chirality, which is arguably also the most generic case.
We know that the decay of magnetic energy and the in-
crease of the correlation length follow a different behavior
in the completely imbalanced case compared to the un-
balanced one. We now discuss the behavior for the mildly
imbalanced case. Here, we show that there is a tendency
for the system to approach the behavior of a completely
imbalanced one.
We discuss two runs, Run A where the initial 〈µM〉

is enhanced by 20% compared with |〈µ5〉|, and Run B
where it is decreased by 20%. Apart from that, the runs
are the same as Run O, i.e., the run discussed in Ref. [55].

In Run A, where the magnetic helicity is weaker than in
Run O, the CPI becomes dominant and overcompensates
the magnetic helicity. The net chirality is then negative.
Eventually, the sign of the magnetic helicity changes and
all the remaining fermion chirality is converted to mag-
netic fields with negative helicity; see Fig. 19, where we
show the magnetic energy EM(k, t) and the normalized
magnetic helicity spectra kHM(k)/2 for Run A at times
η = 32, 320, 1000, 3200, 10,000, and 32,000. We see
that k|HM(k)|/2 approaches EM(k) near the maximum.
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TABLE V. Summary of additional time scales used in this paper and not yet defined in Table I.

Time scale Definition Explanation

ηflip Sect. II C, Eq. (21) time when spin flipping is turned on

ηoff Sect. II C, Eq. (21) time when spin flipping is later turned off again

η0 Sect. IID initial time

η5dec Sect. II E, Eqs. (34) and (53) time when decay is determined by conservation of adapted Hosking integral

ηI Sect. III B time when large-scale spectrum starts to decrease via inverse cascade

η
(i)
± Sect. III B time when negative helicity modes at secondary peak starts to decrease

η
(ii)
± Sect. III B time when decay of the secondary peak becomes slower with a smaller index

η
µ+
M

Sect. IIID time when the ACC commences exhibiting a power law decay

η
µ−

M

Sect. IIID time when the ACC decays again

η0
B Sect. IVB, Eqs. (49) and (55) theoretical time when present-day baryon asymmetry is established

ηobs
B Sect. IVB observed time when present-day baryon asymmetry is established

ηsf Sect. IVB spin flipping time

TABLE VI. Summary of wave numbers defined in this paper.

Wave number Definition Explanation

kp Sect. I equivalent to ξ−1
M , i.e., the time-dependent peak wave number of EM(k)

k1 Sect. II B lowest wave number in the domain = 2π/L

kNy Sect. II B Nyquist wave number = Nπ/L

k0 Sect. II C, Eq. (22) wave number of the initial peak of EM(k)

kI Sect. II C peak wave number of the positive peak of HM(k)

kII Sect. II C peak wave number of the negative peak of HM(k)

k± Sect. II C wave number where HM(k) changes sign

µ50 Sect. II C initial value of µ5, critical CPI wave number

krh Sect. IVB wave number of the Hubble horizon at end of reheating

ksf Sect. IVB inverse spin flipping time, i.e., 1/ηsf

In view of the spectral realizability condition, Eq. (16),
this means that the magnetic field is fully helical. Away
from the maxima, the inequality is no longer saturated,
but this is a typical effect in all turbulent flows where the
current helicity spectrum shows a Kolmogorov-type spec-
trum, making the magnetic helicity spectrum therefore
steeper than what could still be allowed by the spectral
realizability condition [78].

On the other hand, when the fermion chirality is weak
(Run B), the usual inverse magnetic cascade quickly gets
established; see Fig. 20. In either case, the fermion chi-
rality gets ultimately converted into magnetic helicity. It
just takes a little longer than when the magnetic helicity
is initially weak. At the end, however, the usual inverse

cascade for a fully helical magnetic field commences. The
sign of magnetic helicity can be positive or negative, de-
pending on the sign of the initial total chirality.
To illustrate how the decay laws change when mag-

netic helicity and fermion chirality no longer balance, we
plot in Fig. 21 the time dependencies of EM, ξM, HM,
and −2〈µ5〉/λ, for (a) Run A with 20% smaller and (b)
Run B with 20% larger magnetic helicity than in the
balanced case. In both cases, we see a tendency of the
decays of EM and ξ−1

M to slow down while those of HM

and −2〈µ5〉/λ follow separate evolutions. Especially in
the case of Run B, where the magnetic helicity domi-
nates of the fermion chirality, we see a tendency toward
a EM ∝ ξ−1 ∝ t−2/3 as well as HM = const evolution, as
expected from magnetic helicity conservation.
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