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ABSTRACT10

We address the question, whether the magneto-rotational instability (MRI) can operate in the near-11

surface shear layer (NSSL) of the Sun and how it affects the interaction with the dynamo process.12

Using hydromagnetic mean-field simulations of αΩ-type dynamos in rotating shearing-periodic boxes,13

we show that for negative shear, the MRI can operate above a certain critical shear parameter. This14

parameter scales inversely with the equipartition magnetic field strength above which α quenching set15

in. The MRI augments the usual Ω effect, but in our Cartesian cases, it is found to reduce the resulting16

magnetic field strength and thus suppresses the dynamo process. In view of the application to the17

solar NSSL, we conclude that the turbulent magnetic diffusivity may be too large for the MRI to be18

excited and that therefore only the standard Ω effect is expected to operate.19

Keywords: Astrophysical magnetism (102) — Magnetic fields (994)20

1. INTRODUCTION21

The magneto-rotational instability (MRI) provides a22

source of turbulence in accretion discs, where it feeds23

upon Keplerian shear to turn potential energy into24

kinetic and magnetic energies; see Balbus & Hawley25

(1998) for a review. For the MRI to be excited, the an-26

gular velocity Ω must decrease with increasing distance27

̟ from the rotation axis, i.e., ∂Ω/∂̟ < 0. There must28

also be a moderately strong magnetic field. This condi-29

tion is obeyed not only in accretion discs. Also in the30

Sun, both requirements may be satisfied in the near sur-31

face shear layer (NSSL), the outer 4% of the solar radius.32

This motivates the question whether the MRI might33

also be excited in stars like the Sun (Balbus & Hawley34

1994; Urpin 1996; Masada 2011; Kagan & Wheeler 2014;35

Wheeler et al. 2015; Vasil et al. 2024). In addition to36

the Sun, the application to proto-neutron stars is a par-37

ticularly prominent one (Reboul-Salze et al. 2022).38

In the Sun’s outer 30% by radius, there is convection39

converting part of the Sun’s thermal energy into kinetic40

energy. Owing to the Sun’s rotation and the fact that41

the convection is anisotropic, the Sun’s internal angular42

velocity is nonuniform (Lebedinskii 1941; Wasiutynski43

1946; Kippenhahn 1963; Köhler 1970; Rüdiger 1980;44

Brandenburg et al. 1990), causing also the emergence45

of the aforementioned NSSL (Rüdiger et al. 2014;46

Kitchatinov 2016, 2023). In addition, there are47

small-scale and large-scale magnetic fields as a re-48

sult of the convective turbulence (Meneguzzi & Pouquet49

1989; Nordlund et al. 1992; Brandenburg et al. 1996;50

Cattaneo 1999). The presence of radial stratification51

in density and/or turbulent intensity, together with52

global rotation, causes the occurrence of large-scale mag-53

netic fields (Moffatt 1978; Parker 1979; Krause & Rädler54

1980; Zeldovich et al. 1983). Thus, in the Sun, the two55

ingredients of the MRI—differential rotation and mean56

magnetic fields—are ultimately caused by the underly-57

ing convection.58

To address the question of whether or not the MRI is59

excited and whether it contributes to shaping the Sun’s60

magnetic field to display equatorward migration of a61

global large-scale magnetic field, we need to separate the62

MRI-driven flows from the convection. One approach63

is to ignore convection, but to retain some of its sec-64

ondary effects, i.e., the NSSL with ∂Ω/∂̟ < 0 and mag-65

netic fields produced by convection; see the discussion by66
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Vasil et al. (2024) and an appraisal by Zweibel (2024).67

Another approach, the one taken here, is to average over68

the convection. By employing azimuthal averages, one69

is left with a stationary, nonturbulent background. Fur-70

thermore, correlations among different components of71

the fluctuating parts of the turbulent velocity and mag-72

netic fields emerge that are parameterized in terms of73

(i) diffusive contributions, such as turbulent viscosity74

and turbulent magnetic diffusion, and (ii) non-diffuse75

contributions such as Λ and α effects, which are chiefly76

responsible for producing differential rotation and large-77

scale magnetic fields in the Sun (Rüdiger & Hollerbach78

2004). These effects explain in a self-consistent way the79

NSSL and the large-scale magnetic field by solving the80

averaged equations (Pipin 2017); see Brandenburg et al.81

(2023) for a review.82

Using direct numerical simulations with forced tur-83

bulence, Väisälä et al. (2014) did already demonstrate84

that the onset of the MRI is delayed to larger mag-85

netic Reynolds numbers by the action of turbulent dif-86

fusion, just as expected from their mean-field estimates.87

Averaging over the convective motions of the Sun has88

been done previously in the context of mean-field hy-89

drodynamics with the Λ effect. When including com-90

pressibility and thermodynamics, it was noticed that91

the equations display an instability (Gierasch 1974;92

Schmidt 1982; Chan et al. 1987; Rüdiger & Tuominen93

1991; Rüdiger & Spahn 1992), whose nature was not un-94

derstood initially. However, this later turned out to be95

an example where averaging over the convection leads96

to mean-field equations that themselves are susceptible97

to an instability, namely the onset of convection. This98

depends on how close to adiabatic the mean-field state is99

and what the values of the turbulent viscosity and tur-100

bulent thermal diffusivities are (Tuominen et al. 1994).101

When magnetic fields are present and sustained102

by a dynamo, the full system of magnetohydrody-103

namic (MHD) equations may be unstable to the104

MRI. We must emphasize that we are here not105

talking about the previously studied case where the106

MRI provides the source of turbulence, which then107

reinforces an initial magnetic field by dynamo ac-108

tion through a self-sustained doubly-positive feedback109

cycle (Brandenburg et al. 1995; Hawley et al. 1996;110

Stone et al. 1996). Even in that case, a mean-field111

description may be appropriate to quantify the na-112

ture of a large-scale dynamo governed by rotation and113

stratification (Brandenburg & Sokoloff 2002). However,114

such a description can only be an effective one, be-115

cause the level of turbulence is unknown and emerges116

only when solving the underlying, essentially nonlinear117

dynamo problem (Rincon et al. 2007; Lesur & Ogilvie118

2008; Herault et al. 2011).119

In the present paper, we focus on the simpler case120

where a mean-field dynamo is assumed given, but po-121

tentially modified by the MRI. Ideally, in view of122

solar applications, it would be appropriate to con-123

sider an axisymmetric hydromagnetic mean-field dy-124

namo with differential rotation being sustained by125

the Λ effect. Such systems have been studied for126

a long time (Brandenburg et al. 1990, 1991, 1992;127

Kitchatinov & Rüdiger 1995; Rempel 2006; Pipin 2017;128

Pipin & Kosovichev 2019), but no MRI was ever re-129

ported in such studies. One reason for this might be130

that it is hard to identify the operation of the MRI in a131

system that is already governed by a strong instability132

which is responsible for producing the magnetic field.133

We therefore take a step back and consider here a sys-134

tem in Cartesian geometry. In Section 2, we motivate135

the details of our model and present the results in Sec-136

tion 3. We conclude in Section 4.137

2. OUR MODEL138

2.1. Shearing box setup139

Following the early work of Balbus & Hawley (1991,140

1992) and Hawley & Balbus (1991, 1992), we study the141

MRI in a shearing–periodic box, where x is the cross-142

stream direction, y is the streamwise or azimuthal direc-143

tion, and z is the spanwise or vertical direction. As in144

Väisälä et al. (2014), we consider the mean-field equa-145

tions for azimuthally averaged velocities U(x, z, t), the146

magnetic field B(x, z, t), and the mean density ρ(x, z, t).147

The system is rotating with the angular velocity Ω, and148

there is a uniform shear flow V (x) = (0, Sx, 0), so the149

full velocity is therefore given by V +U . We consider the150

system to be isothermal with constant sound speed cs,151

so the mean pressure p(x, z, t) is given by p = ρc2s . The152

mean magnetic field is expressed in terms of the mean153

magnetic vector potential A(x, z, t) with B = ∇×A to154

satisfy ∇ · B = 0. The full system of equations for ρ,155

U , and A is given by (Brandenburg et al. 1995, 2008)156

D ln ρ

Dt
= −∇ ·U (1)157

158

DU

Dt
=−SUxŷ − 2Ω×U − c2s∇ ln ρ (2)159

+
[

J ×B +∇ · (2νTρS)
]

/ρ, (3)160

161

∂A

∂t
= −SAyx̂+U ×B + αB − ηTµ0J , (4)162

where D/Dt = ∂/∂t+U ·∇ is the advective derivative,163

S is the rate-of-strain tensor of the mean flow with the164
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components Sij = (∂iU j+∂jU i)/2−δij∇·U/3, Ω is the165

angular velocity, S = −qΩ is the shear parameter of the166

underlying flow V (x) = (0, Sx, 0), and J = ∇ ×B/µ0167

is the mean current density with µ0 being the vacuum168

permeability. There are three mean-field parameters:169

the turbulent viscosity νT, the turbulent magnetic dif-170

fusivity ηT, and the α effect. Note that in our two-171

dimensional case, V ·∇ = Sx∂y = 0. In some cases, we172

allow for α quenching and write173

α = α0/(1 +B
2
/B2

eq), (5)174

where Beq is the equipartition field strength above175

which α begins to be affected by the feedback from176

the Lorentz force of the small-scale magnetic field177

(Ivanova & Ruzmaikin 1977). We sometimes refer to178

this as microphysical feedback to distinguish it from the179

macrophysical feedback from the Lorentz force of the180

large-scale magnetic field, J ×B. This type of satura-181

tion is sometimes also called the Malkus–Proctor mecha-182

nism, after the early paper by Malkus & Proctor (1975),183

who employed spherical geometry.184

In the absence of α quenching (Beq → ∞), the185

only possibility for the dynamo to saturate is via the186

Lorentz force from the mean magnetic field, J ×B, i.e.,187

the Malkus–Proctor mechanism. Also relevant to our188

present work is that of Schuessler (1979), who consid-189

ered Cartesian geometry. Our solutions, however, are190

simpler still in that we employ periodic boundary con-191

ditions in most cases.192

A simple way to identify the operation of the MRI193

in a dynamo is by comparing models with positive and194

negative values of q, because the MRI only works in the195

range 0 < q < 2. Note also that for q > 2, the hy-196

drodynamic state is Rayleigh-unstable and results in an197

exponentially growing shear flow, Uy(z), without ever198

saturating in a periodic system. In all our cases, we199

consider q = ±3/2.200

Some of our models with CΩ > 0, where the MRI201

is not operating, do not saturate in the absence of α202

quenching. To check whether this is a peculiarity of the203

use of periodic boundary conditions, we also consider204

models with what is called a vertical field condition, i.e.,205

Bx = By = ∂zBz = 0, (6)206

which corresponds to ∂zAx = ∂zAy = Az = 0. Note207

that with this boundary condition, the normal compo-208

nent of the Poynting vector E × B/µ0, where E =209

ηTµ0J−U×B is the mean electric field, vanishes. Thus,210

energy conservation is still preserved.211

2.2. Input and output parameters212

Figure 1. Flow of energy in a hydromagnetic mean-field
dynamo.

We consider a two-dimensional domain Lx × Lz and213

define k1 = 2π/Lz as our reference wavenumber, which214

is the lowest wavenumber in the z direction. The lowest215

wavenumber in the x direction is k1x = 2π/Lx. Our216

main input parameters are217

Cα = α0/ηTk1, CΩ = S/ηTk
2
1, (7)218

as well as q = −S/Ω and Beq, which can be expressed219

via the corresponding Alfvén speed, veqA ≡ Beq/
√
µ0ρ0,220

in nondimensional form as221

Beq ≡ veqA k1/Ω. (8)222

In all our cases, we assume PrM ≡ νT/ηT = 1 for the223

turbulent magnetic Prandtl number.224

Diagnostic output parameters are the energies of the225

mean fields that are derived either under yz or xy av-226

eraging, EX
M and EZ

M, respectively. Those are sometimes227

normalized by Eeq
M ≡ B2

eq/2µ0. We also monitor various228

parameters governing the flow of energy in our system.229

These include the mean kinetic and magnetic energy230

densities, EK = 〈ρU2
/2〉 and EM = 〈B2

/2µ0〉, their time231

derivatives, ĖK and ĖM, the kinetic and magnetic energy232

dissipations, ǫK = 〈2ρνTS2〉 and ǫM = 〈ηTµ0J
2〉, the233

fluxes of kinetic and magnetic energy tapped from the234

shear flow, WK = 〈ρUxUyS〉 and WM = −〈BxByS/µ0〉,235

the work done by the pressure force, WP = −〈U ·∇p〉 as236

well as the work done by the α effect,Wα = 〈αJ ·B〉, and237

the work done by the Lorentz force, WL = 〈U ·(J×B)〉.238

Figure 1 gives a graphical illustration showing the flow239

of energy in a hydromagnetic mean-field dynamo with240

shear.241

For a uniform vertical magnetic field, B0 = (0, 0, B0),242

the MRI is excited when vA0k1 <
√
2ΩS, where vA0 =243
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Figure 2. Sketch illustrating the generation of By from
Bx through the Ω effect and from Bz through the MRI, and
the generation of both Bx and Bz from By through the α
effect.

B0/
√
µ0ρ0 is the Alfvén in speed of the uniform ver-244

tical magnetic field. The MRI can be modeled in one245

dimension with ∇ = (0, 0, ∂z). Such a one-dimensional246

setup could also lead to what is called an αΩ dynamo,247

which means that the mean radial or cross-stream field248

Bx is regenerated by the α effect and the mean toroidal249

or streamwise field By is regenerated by the Ω effect or,250

more precisely, the shear flow V (x). One sometimes also251

talks about an α2 dynamo if there is no shear, or about252

an α2Ω dynamo if both α effect and shear contribute to253

regenerating By.254

In the one-dimensional case with ∇ = (0, 0, ∂z) and255

periodic boundary conditions, the α2 dynamo is excited256

when Cα > 1, while the αΩ dynamo is excited for257

CαCΩ > 2 (Brandenburg & Subramanian 2005). Be-258

cause of ∇ ·B = 0, the resulting magnetic field is then259

always of the form B(z) = (Bx, By, 0), i.e., Bz = 0, so260

it is not possible to have the MRI being excited.261

This would change if the dynamo also had x extent.262

To see this, we consider for a moment a one-dimensional263

domain with ∇ = (∂x, 0, 0). In that case, an α2 dynamo264

with B(x) = (0, By, Bz) can be excited, allowing Bz 6=265

0. It would be excited when α0/ηTk1x ≡ Cαk1/k1x > 1,266

i.e., Cα > k1x/k1 = Lz/Lx. Figure 2 gives a graphical267

illustration of the generation of By from Bx through268

the Ω effect and from Bz through the MRI, and the269

generation of both Bx and Bz from By through the α270

effect.271

To allow for the possibility that in our two-272

dimensional domain such a dynamo is preferred over one273

with z extend, we choose our domain to be oblate, e.g.,274

Lx/Lz = 2. We solve the equations with the Pencil275

Code (Pencil Code Collaboration et al. 2021) using nu-276

merical resolutions between 64× 128 to 256× 512 mesh277

points, i.e., the mesh spacings in the x and z directions278

are always kept the same.279

2.3. Dynamo types in the Rädler diagram280

It is convenient to discuss solutions in the Cα–CΩ281

plane; see Figure 3. Such diagrams were extensively ex-282

Figure 3. Rädler diagram for the α2Ω dynamo in a domain
with Lz/Lx = 1/2. The onset location is shown as a solid
line, and the pure αΩ approximation (CαCΩ = 2) is shown
as dashed lines.

ploited by Rädler (1986), which is why we refer to such283

plots in the following as Rädler diagrams. Rädler con-284

sidered dynamos in spherical geometry where α changed285

sign about the equator, so the solutions were either sym-286

metric or antisymmetric about the equator. In addition,287

they could be axisymmetric or antisymmetric and they288

could also be oscillatory or stationary.289

For a one-dimensional α2Ω dynamo, the complex290

growth rate is (α2k2 − ikαS)1/2 − ηTk
2. For the291

marginally excited state, we require the real part of the292

complex growth rate to vanish. This yields293

CΩ = Cα

√

(2/C2
α − 1)2 − 1, (9)294

which is the solid line shown in Figure 3.295

The Rädler diagram gives a graphical overview of the296

differences between dynamos with positive and negative297

shear, i.e., positive and negative values of CΩ. The MRI298

is only possible for CΩ < 0 (negative shear), while for299

CΩ > 0, we just expect ordinary αΩ dynamo waves.300

This expectation, however, does not apply to dynamos301

in periodic domains with α0 = const, as was first found302

in the fully three-dimensional turbulence simulations of303

Hubbard et al. (2011). Their αΩ dynamo started off as304

expected, but at some point during the early, nonlinear305

saturation phase of EX
M , the dynamo wave stopped and a306

new solution emerged that had a cross-stream variation,307

i.e., EX
M became strong and suppressed EZ

M.308

A similar type of exchange of dynamo solutions in309

the nonlinear regime was first found by Fuchs et al.310

(1999) while investigating hydromagnetic dynamos with311

Malkus–Proctor feedback in a sphere. They found self-312

killing and self-creating dynamos due to the presence of313

different stable flow patterns where the magnetic field314

causes the solution to respond to a newly emerged flow315

pattern after the initial saturation. This was thus the316
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Figure 4. Time dependence of EM (dotted black line), EZ
M

(solid blue line) and EX
M (dashed red line), all normalized by

Eeq
M , and By versus t and z for a fratricidal dynamo (Run F)

with Cα = 1, CΩ = 150, q = −3/2 (positive shear) and
Beq → ∞ (no α quenching). Here, By has been normalized
by its instantaneous rms values so as to see the dynamo wave
also during the early exponential growth phase and during
the late decay phase.

first example of what then became known as a suicidal317

dynamo.318

In analogy with the suicidal dynamos, the dynamos319

found by Hubbard et al. (2011) were called fratricidal320

dynamos. This property of dynamos in a periodic do-321

main emerged as a problem because αΩ dynamos in a322

periodic domain could only be studied for a limited time323

interval before they disappeared (Karak & Brandenburg324

2016).325

3. RESULTS326

We begin with the discussion of fratricidal and suici-327

dal dynamos, but emphasize that those have so far only328

been found in periodic systems for CΩ > 0, i.e., for pos-329

itive shear. Thus, to examine the effect of the MRI, we330

compare solutions with positive and negative values of331

CΩ using both periodic and non-periodic domains.332

3.1. Fratricidal and suicidal mean-field dynamos333

Here we show that fratricidal dynamos can also occur334

in a mean-field context. The α2 sibling is here possible335

because Cα > Lz/Lx = 0.5. This is shown in Figure 4,336

where we plot EZ
M and EX

M vs time, and By vs t and z.337

In the following, this case is referred to as Run F. We338

Figure 5. Similar to Figure 4, but for a suicidal dynamo
with Cα = 0.49 and CΩ = 7.5 (Run B).

see that EZ
M grows exponentially starting from a weak339

seed magnetic field. The zt diagram in Figure 4 shows340

the usual dynamo waves. When the dynamo approaches341

saturation, EX
M also begins to grow exponentially, but342

at a rate that it is much larger than the growth rate343

of EZ
M. When EX

M reaches about 10−3Eeq
M , EZ

M declines344

rapidly and is then overtaken by EX
M . At that moment,345

the dynamo waves cease and a new transient commences346

with a rapidly varying time dependence, but at a very347

low amplitude; see the zt diagram of Figure 4 for 2.5 <348

tηTk
2
1 < 4.5.349

For Cα < 0.5, the α2 sibling with EX
M 6= 0 is impos-350

sible. Surprisingly, it turned out that the αΩ dynamo351

can then still be killed by a secondary EX
M , but such as352

state with EX
M 6= 0 cannot be sustained and decays on an353

ohmic time scale; see Figure 5 for Run B. It is therefore354

an example of a suicidal dynamo. We see that EX
M de-355

cay towards zero, and that the dynamo wave then just356

disappears. By that time, EZ
M has already become very357

small and has disappeared within the noise.358

3.2. Comparison of positive and negative shear359

To identify the effect of the MRI, it is convenient to360

compare solutions for positive and negative shear. In361

Figure 6, we plot the time evolutions of EM, EX
M , and362

EZ
M for Runs C–G with different values of Cα and CΩ, as363

well as periodic and vertical field boundary conditions.364

We see that, regardless of the boundary conditions, the365

cases with negative shear, where the MRI is possible, all366
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Figure 6. Comparison of solutions for CΩ < 0 (Runs C, E, and G; left panels) and CΩ > 0 (Runs D, F, and H; right panels)
for periodic boundary conditions (top) and vertical field boundary conditions (bottom). As in the upper panels of Figures 4
and 5, EM (dotted black line), EZ

M (solid blue line), and EX
M (dashed red line), normalized by Eeq

M , are shown versus t.

have less magnetic energy than the cases with positive367

shear. Thus, the action of the MRI always diminishes368

dynamo action.369

Various parameters related to the flow of energy are370

summarized in Table 1. We see that WL is always posi-371

tive, i.e., magnetic energy goes into kinetic energy. But372

we also see that whenever CΩ is negative and the MRI373

is excited, WL and ǫM are always much larger than for374

positive values of CΩ, when the MRI does not operate.375

It is remarkable that in the latter case, when only the376

standard Ω effect operates, WK is often even negative.377

Note also that WP is not being given, because its value378

is very small. Likewise, ĖM and ĖK are small and not379

listed, but are still included in the calculation of the380

total381

gain = WM +WK +Wα +WP (10)382

and383

loss = ǫM + ǫK + ĖM + ĖK. (11)384

Both the total gain and the total loss balance each other385

nearly perfectly.386

Interestingly, the ratio ǫK/ǫM, which is known to387

scale with the microphysical magnetic Prandtl num-388

ber in direct numerical simulations of forced turbulence389

(Brandenburg 2014), varies widely in the present mean-390

field calculations. It is always less than unity, and391

often much less than unity. On the other hand, not392

much is known about the scaling of this dissipation ra-393
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Table 1. Summary of the runs. The column BC gives 0 (1) for periodic (vertical field) boundary conditions. For runs without
α quenching we have B−1

eq = 0. EM and EK are given in units of ρ0Ω
2/k2

1 . The energy fluxes WM, WK, Wα, WL, ǫM, ǫK, as well
as gain and losses are in units of ηTk

2
1EM.

Run BC B−1
eq Cα CΩ EM EK WM WK Wα WL ǫM ǫK gain loss

A 0 0 0.49 −7.5 6.45 0.83 2.4 0.280 0.480 0.13 2.8 0.41 3.2 3.2

B 0 0 0.49 7.5 2.25 4.35 0.0 −0.000 0.490 0.00 0.5 0.00 0.5 0.5

C 0 0 0.20 −15 4.48 0.18 2.3 0.064 0.085 0.03 2.4 0.10 2.5 2.5

D 0 0 0.20 15 1.40 0.04 2.0 −0.001 0.080 0.04 2.0 0.04 2.0 2.1

E 0 0 1.00 −150 0.08 0.55 39.0 10.000 2.000 6.00 35.0 16.00 51.0 51.0

F 0 0 1.00 150 2.83 1.52 0.3 0.002 1.700 0.40 1.9 0.36 2.1 2.2

G 1 0 1.00 −150 0.40 0.64 20.0 5.600 1.300 2.00 20.0 6.60 27.0 27.0

H 1 0 1.00 150 0.55 0.49 8.8 −0.340 0.780 3.50 6.6 3.10 9.2 9.7

I 0 1 0.49 −7.5 0.34 0.00 1.8 0.000 0.170 0.00 2.0 0.00 2.0 2.0

J 0 1 0.49 −30 2.41 0.00 2.0 −0.000 0.028 0.00 2.0 0.00 2.0 2.0

K 0 1 0.49 −75 0.10 0.50 11.0 0.980 0.250 2.80 8.0 4.00 12.0 12.0

L 0 1 0.49 −150 0.09 0.38 17.0 1.400 0.280 2.90 14.0 4.30 19.0 19.0

M 0 1 0.49 −300 0.04 0.51 31.0 3.400 0.330 8.20 23.0 12.00 35.0 35.0

N 0 10 0.49 −30 0.02 0.00 2.0 −0.000 0.027 0.00 2.0 0.00 2.0 2.0

O 0 10 0.49 −75 0.07 0.00 2.0 −0.000 0.008 0.00 2.0 0.00 2.0 2.0

P 0 10 0.49 −300 0.28 0.00 2.1 −0.000 0.001 0.00 2.1 0.00 2.1 2.1

Q 0 10 0.49 −750 0.22 0.01 3.9 −0.000 0.010 0.04 3.9 0.04 4.0 3.9

R 0 10 0.49 −1500 0.19 0.02 6.6 0.008 0.003 0.10 7.6 0.12 6.6 6.6

S 0 10 0.49 −3000 0.08 0.01 16.0 0.900 0.021 -0.11 16.0 0.86 17.0 19.0

T 0 100 0.49 −300 0.00 0.00 2.1 −0.000 0.002 0.00 2.1 0.00 2.1 2.1

U 0 100 0.49 −750 0.01 0.00 2.1 −0.000 0.000 0.00 2.1 0.00 2.1 2.1

V 0 100 0.49 −1500 0.01 0.00 2.1 −0.000 0.000 0.00 2.1 0.00 2.1 2.1

W 0 100 0.49 −3000 0.02 0.00 2.5 −0.000 0.000 0.00 2.3 0.00 2.5 2.5

X 0 100 0.49 −7500 0.02 0.00 4.3 0.000 0.000 0.01 3.4 0.01 4.3 4.3

Y 0 100 0.49 −15000 0.01 0.00 13.0 0.000 0.000 0.01 9.8 0.00 13.0 13.0

tio for MRI-driven turbulence. In the old simulations394

of Brandenburg et al. (1995), this ratio was found to be395

even slightly larger than unity. Given that we present396

only a coarse coverage of a fairly large parameter space397

in the Rädler diagram, it is possible that there are some398

relationships that cannot presently be discerned.399

3.3. Magnetic field structures400

It is instructive to inspect the magnetic field struc-401

tures of individual snapshots. This is shown in Figure 7,402

where we present visualizations of field lines in the xz403

plane together with a color scale representation of By404

for Runs C–H. In our two dimensional case, field lines405

are shown as contour of Ay. Runs C and D have a406

predominantly vertical dependence, which was already407

indicated by the dominance of EZ
M over EX

M in Figure 6.408

As we have seen before, the MRI is operating in Run C,409

and this causes some residual x dependence in the field,410

as manifested by the wavy pattern.411

Run F is the complete opposite of Run D, because now412

there is only a pure x dependence. Again, this was also413

already indicated in Figure 6 through the dominance of414

EX
M over EZ

M. This dramatic difference is explained by415

the value of Cα = 1, which is now large enough for an416

α2 dynamo with x extend to be excited.417

Runs E and G show predominantly small-scale struc-418

tures. There is no strong difference between the periodic419

and nonperiodic runs, except that the field lines are now420

purely vertical on the boundaries. It is these small-scale421

structures that are responsible for the enhanced dissi-422

pation and ultimately for the decreased efficiency of the423

dynamo process in the presence of the MRI.424

Also Run H also has small-scale structures, but those425

are not related to the MRI, which is absent in this run426

with positive shear. Here, the existence of small-scale427

structures is probably related to presence of boundaries428

in the z direction. They lower the excitation conditions429

for dynamo action with magnetic field dependence in430
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Figure 7. Visualizations of field lines of (Bx, Bz) in the xz plane on top of a color scale representation of By for Runs C–H,
where blue (red) shades refer to negative (positive) values.

the z direction, but there could also be other reasons for431

the existence of small-scale structures in this case.432

3.4. Simulations with vertical boundary conditions433

Next, we study the mean magnetic field evolution for434

simulations with vertical field boundary conditions in435

the z direction. The resulting zt diagrams are shown in436

Figure 8 for CΩ = −150 and +150 using Cα = 1. Note437

that during the early kinematic phase, there is clear evi-438

dence for dynamo waves migrating in the negative (pos-439

itive) z direction for negative (positive) values of CΩ.440

Comparing Runs F and G in Table 1, they have the441

same parameters, but Run G has vertical field boundary442

conditions. We see that WK is much larger in Run G443

than in Run F. Also WL is significantly larger in Run G,444

but the difference is here not quite as large. This is445

presumably caused by the existence of small-scale struc-446

tures in Run G, while Run F has essentially only a one-447

dimensional field structure at late times.448

3.5. Transition from Ω effect to MRI449

When CΩ is small enough, the turbulent magnetic dif-450

fusivity may be too large for the MRI to be excited.451

This idea assumes that the magnetic field is held fixed,452

but this is not true when the magnetic field is still being453

amplified by dynamo action and saturation by the large-454

scale Lorentz force has not yet been achieved. Therefore,455

it is not surprising if the MRI can occur even for small456

values of CΩ.457
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Figure 8. Mean magnetic field evolution in a zt diagram
for simulations with vertical field boundary conditions in the
z direction for CΩ = −150 (upper panel) and CΩ = +150
(lower panel) using Cα = 0.2.

To facilitate dynamo saturation at a lower magnetic458

field strength, and therefore a regime with CΩ < 0 with-459

out MRI, we now invoke α quenching with finite values460

of Beq. (The case without α quenching corresponds to461

Beq → ∞.) We have performed numerical experiments462

for different values of Beq and CΩ. It turns out that for463

a fixed value of Beq, there is a critical value of CΩ above464

which the MRI commences. This is shown in Figure 9,465

where we plot the mean magnetic energy density ver-466

sus −CΩ (for CΩ < 0) and a fixed value of Cα = 0.49.467

We see that EM increases approximately linearly with468

|CΩ| and has the same value when normalized by the469

respective value of Eeq
M . Because the normalized values470

EM/Eeq
M are the same for different values of |CΩ| and471

different values of EM, this saturation dependence is a472

consequence of α quenching. Above a certain value of473

|CΩ|, however, the increasing trend stops and EM begins474

to decline with increasing values of |CΩ|. We associate475

this with the onset of the MRI.476

The MRI onset occurs for smaller values of |CΩ| when477

Beq is large. This is understandable, because for large478

values of Beq, α quenching commences only for stronger479

magnetic fields. Therefore, magnetic field saturation can480

be accomplished by the MRI before α quenching would481

be able to act. From the inset of Figure 9, we find482

quantitatively483

Ccrit
Ω ≈ 30B−1

eq . (12)484

Figure 9. Dependence of EM/Eeq
M on CΩ for Beq = 1 (black

dotted line), 0.1 (blue dashed line), and 0.01 (red solid line)
using Cα = 0.49 in all cases. The black solid line denotes
EM/Eeq

M = 0.18 |CΩ| and the filled circles on this line denote
the approximate values where EM departs from the linearly
increasing trend with |CΩ|. The inset shows the dependence
of Ccrit

Ω vs veqA k1/Ω.

Thus, although CΩ < 0, the standard Ω effect is ex-485

pected to operate in the range486

2/Cα <∼ |CΩ| <∼ Ccrit
Ω , (13)487

and the MRI is only possible for larger values of |CΩ|.488

3.6. Comparison with earlier work489

Let us now discuss whether the MRI might have490

been excited in previously published work. Hydro-491

magnetic models with α and Λ effects were considered492

by Brandenburg et al. (1992) using spherical geometry.493

The sign of CΩ was determined by the sign of the Λ494

effect. Their CΩ is defined based on the stellar radius495

R and can therefore not directly be compared with the496

CΩ used in the present work. Also, given that the dif-497

ferential rotation emerges as a result of the Λ effect and498

is already affected by the magnetic field, their CΩ is an499

output parameter.500

In their Run T5 of model A−, they found CΩ = −474,501

while for their Run T7 of model A+, they found CΩ =502

+939... + 1010. The magnetic field in this model was503

oscillatory, which explains the existence of a range of504

CΩ.505

To address the question whether the MRI operated506

in their model A−, we can look at the resulting mag-507

netic field strengths and compare them with model A+.508

They specified the decadic logarithms and found a mag-509

netic energy of EM = 104.03 for their model A− and510

EM = 103.77...3.90 for their model A+. If the MRI was op-511

erational, we might have expected that EM would be sup-512

pressed in their model A− relative to their model A+,513

but the opposite is the case. The fact that |CΩ| was514
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Figure 10. Depth dependence of the Alfvén frequency
for Brms = 300G (solid black line) using the mixing length
model of Spruit (1974). Also shown are the values for Brms =
1000G and Brms = 100G (upper and lower dashed lines), as
well as urmsk/3 (blue) and 3× 1012 cm s−1 k2 (red line).

smaller in their Run T5 compared to Run T7 makes515

the difference even larger, because a smaller |CΩ| should516

have resulted in an even weaker magnetic field.517

To decide about the excitation of the MRI, we can518

also estimate their effective value of vAk1/Ω. Using519

vA ≈
√

2EM/ρ0 ≈ 150, k1 = 2π/0.3R ≈ 20, Ω =520

Ta1/2ηT/2R
2 ≈ 2700, where Ta = 3× 107 is the turbu-521

lent Taylor number, and PrM = 1, we find vAk1/Ω ≈ 1,522

so the MRI might well have been excited.523

Similar conclusions about the lack of a suppression524

for CΩ < 0 can also be drawn from the models of525

Brandenburg et al. (1991) when Ta ≥ 106, but for526

Ta ≤ 104, they did find a suppression of EM for CΩ < 0.527

3.7. Estimates for the Sun528

For the MRI to be excited, the Alfvén frequency,529

ωA = vAk, must not exceed the rotational shear fre-530

quency,
√
2qΩ, where q = −∂ lnΩ/∂ ln̟ is the local531

nondimensional shear parameter. Here, we estimate532

k ≈ 1/ℓ, where ℓ is the local mixing length, which is533

also approximately equal to the depth, R − r, where R534

is the solar radius and r is the local radius. In Figure 10,535

we plot the depth dependence of ωA on R−r, where the536

radial dependence of ℓ and ρ has been obtained from537

the solar mixing length model of Spruit (1974). Here,538

we also present two estimates of the turbulent magnetic539

diffusion rate ηTk
2, where we assume either a constant540

ηT (3×1012 cm2 s−1) or ηT = urms/3k (Sur et al. 2008).541

Both show a similar dependence on depth.542

Using for the Sun Brms = 300G, we have vA =543

50m s−1 and ωA = 7 × 10−6 s−1 at a depth of 7Mm544

where ρ ≈ 3× 10−4 g cm−3, and vA = 8ms−1 and ωA =545

2×10−7 s−1 at a depth of 40Mm where ρ ≈ 10−2 g cm−3.546

These value bracket the value of Ω, so the MRI might be547

viable somewhere in this range. However, different esti-548

mates for the turbulent diffusion time, urmsk/3 (shown549

in blue) and 3×1012 cm2 s−1 k2 (shown in red) lie clearly550

above ωA at all depth, making the MRI impossible to551

excite.552

4. CONCLUSIONS553

The MRI can only work when CΩ < 0. Our work has554

shown that in that case, the magnetic energy is smaller555

than for CΩ > 0, although all other conditions are com-556

parable. This indicates that in those simulation the MRI557

does operate. Our conclusions regarding earlier findings558

in spherical domains remain inconclusive. The models559

of Brandenburg et al. (1991, 1992), where the MRI is560

potentially excited, show different results for a slow and561

rapid rotation. Therefore, it still needs to be examined562

whether the MRI was indeed operating in those early563

investigations. Alternatively, it is possible that mod-564

els with positive and negative values of CΩ are not so565

straightforwardly comparable as in our present Carte-566

sian geometry.567

Even in the absence of the MRI, the cases with posi-568

tive and negative values of CΩ may not be comparable.569

Looking at Rädler diagrams for dynamos in spheres (see570

also Brandenburg et al. 1989), we see significant differ-571

ences in the type of solutions that are being excited and572

in their critical values of Cα for positive and negative573

values of CΩ.574

Our work has also shown that the MRI can work even575

for small shear parameters. A possible way to prevent576

the MRI from occurring is by invoking α quenching.577

This would then limit the magnetic field strength, which578

could then drop below the critical value above which579

magnetically diffusive effects no longer limit the MRI.580
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