2

3

5

6

8

9

10

22

Helicity effect on turbulent passive and active scalar diffusivities

AXEL BRANDENBURG,^{1,2,3,4} PETRI J. KÄPYLÄ,⁵ IGOR ROGACHEVSKII,^{6,1} AND NOBUMITSU YOKOI⁷

¹Nordita, KTH Royal Institute of Technology and Stockholm University, Hannes Alfvéns väg 12, SE-10691 Stockholm, Sweden

² The Oskar Klein Centre, Department of Astronomy, Stockholm University, AlbaNova, SE-10691 Stockholm, Sweden

³McWilliams Center for Cosmology & Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, USA

⁴School of Natural Sciences and Medicine, Ilia State University, 3-5 Cholokashvili Avenue, 0194 Tbilisi, Georgia

 5 Institut für Sonnenphysik (KIS), Georges-Köhler-Allee 401a, 79110 Freiburg im Breisgau, Germany

⁶Department of Mechanical Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel

⁷Institute of Industrial Science, University of Tokyo, Komaba, Meguro, Tokyo 153-8505, Japan

ABSTRACT

Turbulent flows are known to produce enhanced effective magnetic and passive scalar diffusivities, 11 which can fairly accurately be determined with numerical methods. It is now known that, if the flow 12 is also helical, the effective magnetic diffusivity is reduced relative to the nonhelical value. Neither the 13 usual second-order correlation approximation nor the various τ approaches have been able to capture 14 this. Here we show that the helicity effect on the turbulent passive scalar diffusivity works in the 15 opposite sense and leads to an enhancement. We have also demonstrated that the correlation time 16 of the turbulent velocity field increases by the kinetic helicity. This is a key point in the theoretical 17 interpretation of the obtained numerical results. Simulations in which helicity is being produced self-18 consistently by stratified rotating turbulence resulted in a turbulent passive scalar diffusivity that was 19 found to be decreasing with increasing rotation rate. 20

²¹ Keywords: Astrophysical magnetism (102) — Magnetic fields (994)

1. INTRODUCTION

In many astrophysical plasmas such as stellar convection zones, the interstellar medium, and accretion discs, the Reynolds numbers are extremely large. Therefore, to describe the large-scale behavior of such flows, one oftren replaces the small viscosity or diffusion coefficients by effective ones. Turbulent diffusivities in the evolution equations for passive scalars act similarly as ordinary (molecular or atomic) ones, except that they characterize the diffusion of larger scale structures, as described by the corresponding averaged or coarse-grained evolution equations. Denoting the mean passive scalar concentration C by an overbar, the equation for \overline{C} is given by

$${}_{36} \qquad \qquad \frac{\partial \overline{C}}{\partial t} = -\boldsymbol{\nabla} \cdot \left(\overline{\boldsymbol{U}} \, \overline{C} \right) + (\kappa + \kappa_{\rm t}) \nabla^2 \overline{C}, \qquad (1)$$

³⁷ where we have allowed for the possibility of a mean flow ³⁸ \overline{U} , while κ and $\kappa_{\rm t}$ are the microphysical and turbulent ³⁹ diffusion coefficients, respectively. The diffusion coeffi-

brandenb@nordita.org

⁴⁰ cients are proportional to the product of the mean free ⁴¹ path and the typical velocity of particles or, in the tur-⁴² bulent case, the product of the integral turbulent scale ⁴³ and the rms velocity. Equation (1) is written for turbu-⁴⁴ lence without stratification of the mean density or tem-⁴⁵ perature, so that effective pumping velocity caused by ⁴⁶ the turbulent thermal diffusion vanishes (Elperin et al. ⁴⁷ 1997; Rogachevskii 2021).

The derivation of the turbulent diffusion coefficients is usually done by some approximations. Meanwhile, significant progress has been made by numerically computing these turbulent coefficients. A particularly useful approach is the test-field method (Schrinner et al. 2005, 2007), which was originally applied to magnetic fields in spherical geometry and then to Cartesian domains (Brandenburg 2005; Brandenburg et al. 2008). This method is sufficiently accurate to identify subtle effects caused by kinetic helicity in the flow (Brandenburg et al. 2017).

⁵⁹ In the presence of magnetic fields, the kinetic heli-⁶⁰ city causes completely new qualities of its own. Unlike ⁶¹ the case of turbulent or microphysical diffusion, helicity 62 also produces non-diffusive effects that lead to a desta-⁶³ bilization of the non-magnetic state. This is because ⁶⁴ helicity is a pseudo-scalar, which can couple the axial ⁶⁵ magnetic field vector with the polar electric field vector ⁶⁶ to give an extra contribution to the turbulent electro-⁶⁷ motive force in the mean-field induction equation. By 68 contrast, the turbulent magnetic diffusivity is an ordi-⁶⁹ nary scalar. It was therefore surprising when kinetic 70 helicity was found to affect even the magnetic diffusiv-71 ity (Brandenburg et al. 2017). This effect was such that ⁷² helicity suppresses the magnetic diffusivity by a certain 73 amount. The possibility of a helicity effect on the turbu-⁷⁴ lent magnetic diffusivity was already noticed in the early 75 work of Nicklaus & Stix (1988), but they found an en-76 hancement of the turbulent magnetic diffusivity by the 77 kinetic helicity.

Applying the Feynman diagram technique, 78 ⁷⁹ Dolginov & Silant'ev (1987) show that kinetic helicity ⁸⁰ can increase the turbulent diffusion of a passive scalar ⁸¹ field. On the other hand, subsequent work by Zhou ⁸² (1990) using renormalization-group theory found no ef-⁸³ fect of helicity on the renormalized eddy viscosity. The 84 effect of kinetic helicity on passive scalar diffusion was ⁸⁵ also investigated by Chkhetiani et al. (2006) using the ⁸⁶ renormalization group approach. They found that the ⁸⁷ effective diffusivity can be 50% larger in the helical case. ⁸⁸ They also noted that there is no helicity effect on the ⁸⁹ anomalous scaling of the structure functions.

The results of Brandenburg et al. (2017) were recently 90 ⁹¹ verified by Mizerski (2023) using the renormalization ⁹² group approach. In particular, he found that for small ⁹³ magnetic Reynolds numbers, the helical correction to 94 turbulent diffusion of the mean magnetic field is propor-⁹⁵ tional to $\operatorname{Re}^2_{\mathrm{M}}(H_{\mathrm{K}}\tau_{\mathrm{c}})^2/\langle \boldsymbol{u}^2 \rangle$, where $\operatorname{Re}_{\mathrm{M}} = \tau_{\mathrm{c}} \langle \boldsymbol{u}^2 \rangle/\eta$ is $_{96}$ the magnetic Reynolds number, $\tau_{\rm c}$ is the turbulent cor-⁹⁷ relation time, η is the magnetic diffusion caused by an 98 electrical conductivity of plasma, and $H_{
m K}=\langle m{u}\cdotm{\omega}
angle$ is the ⁹⁹ kinetic helicity. This scaling ($\propto \text{Re}_{\text{M}}^2$) is shown in Fig-¹⁰⁰ ure 4 of Brandenburg et al. (2017). This confirms that ¹⁰¹ the helical correction cannot emerge from the secondorder correlation approximation, where the transport 102 ¹⁰³ coefficients are only linear in the magnetic Reynolds 104 number.

What has not yet been specifically addressed is the field effect of helicity on the passive scalar diffusivity, or even the thermal diffusivity of an active scalar such as the temperature or the specific entropy in the mean-field energy equation. Doing this is the purpose of the present work.

Helicity affects the value of the turbulent passive and active scalar diffusivity in a clear and consistent way. This is similar to the helicity effect on the turbulent ¹¹⁴ magnetic diffusivity, but this new effect is the other way ¹¹⁵ around, i.e., the turbulent passive and active scalar dif-¹¹⁶ fusion is enhanced by helicity, while the turbulent mag-¹¹⁷ netic diffusivity is decreased. In the accompanying the-¹¹⁸ oretical paper by Rogachevskii et al. (2025), remaining ¹¹⁹ puzzles are addressed and possible explanations are be-¹²⁰ ing proposed.

Of some interest in this context is the earlier work real of Brandenburg et al. (2012), who computed turbulent magnetic field and passive scalar transport for rotating real stratified turbulence. The combined presence of rotation and stratification also leads to helicity and therereal fore to an α effect. They found a slight decrease of the magnetic diffusivity as the angular velocity is increased. At the time, this was not thought surprising because that only arise because of rotation and stratification. Furthermore, already rotation alone (without helicity) is known to decrease the turbulent magnetic diffusivity (Rädler et al. 2003).

For most astrophysical purposes, only order of magnitude estimates of turbulent transport coefficients are usually considered. This may change in future, when more accurate methods and measurements become more commonly available both in simulations and in observations. For example, the discrepancy in the estimate for the turbulent magnetic diffusivity was noticed in thenetical work in high-energy astrophysics on the chiral magnetic diffusivity did not match previous estimates magnetic diffusivity did not match previous estimates late (Schober et al. 2018). This discrepancy was then explained by the presence of helicity in one of the cases.

2. OUR MODEL

We consider both isothermal and non-isothermal tur-¹⁴⁷ bulence and begin with the former.

¹⁴⁹ 2.1. Basic equations for isothermal turbulence

146

Our basic equations are the induction and passive scalar equations for the magnetic field \boldsymbol{B} and the passive scalar concentration C (e.g., number density of particles). The magnetic field is also divergence-free. The system of particle particle

¹⁵⁵
$$\frac{\partial \boldsymbol{B}}{\partial t} = \boldsymbol{\nabla} \times (\boldsymbol{U} \times \boldsymbol{B} - \boldsymbol{E}_{\text{diff}}), \quad \boldsymbol{E}_{\text{diff}} = -\eta \boldsymbol{\nabla} \times \boldsymbol{B}, \quad (2)$$
¹⁵⁶ $\frac{\partial C}{\partial t} = \boldsymbol{\nabla} \cdot (-\boldsymbol{U}C - \boldsymbol{F}_{\text{diff}}), \quad \boldsymbol{F}_{\text{diff}} = -\kappa \boldsymbol{\nabla}C. \quad (3)$

The velocity U is obtained as a solution of the NavierStokes equations. In the kinematic test-field method, we
ignore the feedback of the magnetic field on the flow, i.e.,
we solve

¹⁶²
$$\frac{\mathrm{D}\boldsymbol{U}}{\mathrm{D}t} = -c_{\mathrm{s}}^{2}\boldsymbol{\nabla}\ln\rho + \boldsymbol{f} + \frac{1}{\rho}\boldsymbol{\nabla}\cdot(2\rho\nu\boldsymbol{\mathsf{S}}), \qquad (4)$$

$$\frac{\mathrm{D}\ln\rho}{\mathrm{D}t} = -\boldsymbol{\nabla}\cdot\boldsymbol{U}.\tag{5}$$

¹⁶⁴ where ρ is the density, $c_{\rm s}$ is the isothermal sound speed, ¹⁶⁵ ν is the kinematic viscosity, **S** is the rate of strain tensor ¹⁶⁶ with the components $\mathbf{S}_{ij} = (\partial_i u_j + \partial_j u_i)/2 - \delta_{ij} \nabla \cdot \boldsymbol{u}/3$, ¹⁶⁷ and \boldsymbol{f} represents a forcing function that is δ -correlated ¹⁶⁸ in time and consists of plane waves with a mean forcing ¹⁶⁹ wavenumber $k_{\rm f}$. It is given by $f_i = R_{ij}f_j^{(\rm nohel)}$, where ¹⁷⁰ $R(\hat{\boldsymbol{k}}) = (\delta_{ij} - \sigma \epsilon_{ijk} \hat{k}_k)/\sqrt{1 + \sigma^2}$ depends on $\hat{\boldsymbol{k}} = \boldsymbol{k}/k$ ¹⁷¹ with $k = |\boldsymbol{k}|$ and the fractional helicity σ , and $\boldsymbol{f}^{(\rm nohel)} =$ ¹⁷² $f_0 \boldsymbol{e} \times \boldsymbol{k}/|\boldsymbol{e} \times \boldsymbol{k}|$ is a nonhelical forcing function with f_0 ¹⁷³ being a scaling factor and \boldsymbol{e} a random vector that is not ¹⁷⁴ aligned with \boldsymbol{k} .

175 2.2. Equations for non-isothermal turbulence

In our simulations of non-isothermal turbulence, we measure the response of the system to imposing largetresscale gradient of specific entropy s with a relaxation time tresscale gradient of spe

¹⁸⁰
$$\frac{\mathrm{D}\boldsymbol{U}}{\mathrm{D}t} = -c_{\mathrm{s}}^{2}\boldsymbol{\nabla}(\ln\rho + s/c_{\mathrm{p}}) + \boldsymbol{f} + \frac{1}{\rho}\boldsymbol{\nabla}\cdot(2\rho\nu\boldsymbol{\mathsf{S}}), \quad (6)$$

198

163

$$T\frac{\mathrm{D}s}{\mathrm{D}t} = 2\nu \mathbf{S}^2 + \frac{1}{\rho} \left(\boldsymbol{\nabla} \cdot \boldsymbol{F}_{\mathrm{rad}} - \mathcal{C} \right) - \frac{s - \tilde{s}_0}{\tau}, \quad (7)$$

¹⁸³ where *T* is the temperature, $c_{\rm p}$ is the specific heat at con-¹⁸⁴ stant pressure, $\mathbf{F}_{\rm rad} = -c_{\rm p}\rho\chi\nabla T$ is the radiative flux, ¹⁸⁵ and *C* is a volumetric cooling function to compensate for ¹⁸⁶ viscous heating. Since the system is no longer isother-¹⁸⁷ mal, the sound speed is now given by $c_{\rm s}^2 = (\gamma - 1)c_{\rm p}T$, ¹⁸⁸ where $\gamma = c_{\rm p}/c_{\rm v}$ is the ratio of specific heats, and $c_{\rm v}$ ¹⁸⁹ is the specific heat at constant volume. For the target ¹⁹⁰ profile of specific entropy, we choose $\tilde{s}_0 = s_0 \sin k_T z$. ¹⁹¹ Here, we take $k_T = k_1$ for what will later be called ¹⁹² the test-field wavenumber, where $k_1 = 2\pi/L$ is the ¹⁹³ smallest wavenumber in the domain. Different val-¹⁹⁴ ues of k_T would be of interest for studying the scale ¹⁹⁵ dependence of turbulent transport, as has been done ¹⁹⁶ on various occasions (Brandenburg & Sokoloff 2002; ¹⁹⁷ Brandenburg et al. 2008, 2009).

2.3. Parameters

For the scale separation ratio, i.e., the ratio of the forcing wavenumber $k_{\rm f}$ and the box wavenumber k_1 , we take $k_{\rm f}/k_1 = 5.1$ in most of our cases. Although not stated explicitly there, this was also the value adopted in Brandenburg et al. (2017). Larger (smaller) values of $k_{\rm f}$ allow us to access larger (smaller) scale separation ratios. At the end of this paper, we present a small survey of different choices; see also Brandenburg et al. (2008, 207 2009) for such studies in other contexts. Our main governing control parameters are the Reynolds number Re = $u_{\rm rms}/\nu k_{\rm f}$ and the Mach number Ma = $u_{\rm rms}/c_{\rm s}$. ²¹⁰ The Schmidt number, $\text{Sc} = \nu/\kappa$, the magnetic Prandtl ²¹¹ number, $\text{Pr}_{\text{M}} = \nu/\eta$, and the thermal Prandtl number ²¹² $\text{Pr} = \nu/\chi$ are unity in all cases. Therefore, the magnetic ²¹³ Reynolds number $\text{Re}_{\text{M}} = u_{\text{rms}}/\eta k_{\text{f}}$ and the Péclet num-²¹⁴ ber $\text{Pe} = u_{\text{rms}}/\chi k_{\text{f}}$ equal the fluid Reynolds number in ²¹⁵ all cases.

2.4. Test-field methods

The test-field method implies the simultaneous solu-²¹⁷ The test-field method implies the simultaneous solu-²¹⁸ tion of additional equations for the fluctuating magnetic ²¹⁹ field or the fluctuating passive scalar concentration. The ²²⁰ variables are indicated by the letter T. The equations ²²¹ are obtained by subtracting the corresponding averaged ²²² equations from the original ones and yield

$$^{23} \quad \frac{\partial \boldsymbol{b}^{T}}{\partial t} = \boldsymbol{\nabla} \times \left(\boldsymbol{u} \times \overline{\boldsymbol{B}}^{T} + \overline{\boldsymbol{U}} \times \boldsymbol{b}^{T} + \boldsymbol{\mathcal{E}}_{T}^{\prime} \right) + \eta \nabla^{2} \boldsymbol{b}^{T}, \quad (8)$$

$$\frac{\partial c^{T}}{\partial t} = \boldsymbol{\nabla} \cdot \left(-\boldsymbol{u} \overline{C}^{T} - \overline{\boldsymbol{U}} c^{T} + \boldsymbol{\mathcal{F}}_{T}' \right) + \kappa \nabla^{2} c^{T}, \quad (9)$$

²²⁶ where $\mathcal{E}'_T = \mathbf{u} \times \mathbf{b} - \mathbf{u} \times \mathbf{b}$ and $\mathcal{F}'_T = -(\mathbf{u}c - \overline{\mathbf{u}c})$ are non-²²⁷ linear terms that are neglected in the second-order cor-²²⁸ relation approximation. Including those terms yields the ²²⁹ new subtle effects that we found in Brandenburg et al. ²³⁰ (2017) for η_t and in the present work for κ_t .

In the following, we assume planar averages 232 and denote them by overbars, e.g., $\overline{B}(z,t)$ = 233 $\int \boldsymbol{B}(x,y,z,t) \, \mathrm{d}z/L_{\perp}^2$, where L_{\perp} is the extent of the com- $_{234}$ putational domain in the xy plane. In the spirit of the 235 test-field method, one decouples Equations (8) and (9) 236 from those for the actual fluctuations and solve them 237 for a set of mean fields (mean scalars) such that one can ²³⁸ compute α_{ij} , η_{ij} , and κ_{ij} uniquely for each time step and ²³⁹ at each value of z. Using as a shorthand $s = \sin k_T z$ and $_{240} c = \cos k_T z$, we choose sinusoidal and cosinusoidal test 241 fields $\overline{B}^1 = (s, 0, 0), \ \overline{B}^2 = (c, 0, 0), \ \overline{B}^3 = (0, s, 0), \ and$ $_{242} \overline{B}^4 = (0, c, 0)$, as well as $\overline{C}^1 = s$, $\overline{C}^2 = c$, i.e., four dif-²⁴³ ferent test fields for \overline{B}^T and two different ones for \overline{C}^T . ²⁴⁴ This allows us to compute the coefficient α_{ij} , η_{ij} , and ²⁴⁵ κ_{ij} in the parameterizations

246

247

248

216

2

2

22

$$\overline{\mathcal{E}}_i^T = \alpha_{ij} \overline{B}_j^T - \eta_{ij} (\boldsymbol{\nabla} \times \overline{\boldsymbol{B}}^T)_j, \qquad (10)$$

$$\overline{\mathcal{F}}_{i}^{T} = \gamma_{i} \overline{C}^{T} - \kappa_{ij} \nabla_{j} \overline{C}^{T}, \qquad (11)$$

where $\overline{\boldsymbol{\mathcal{E}}}^T = \overline{\boldsymbol{u} \times \boldsymbol{b}_T}$, $\overline{\boldsymbol{\mathcal{F}}}^T = -\overline{\boldsymbol{u}c_T}$, and i, j = 1, 2 denote ²⁵⁰ the x and y components. The aforementioned turbulent ²⁵¹ viscosity and passive scalar diffusivity are then given by ²⁵² $\eta_t = (\eta_{11} + \eta_{22})/2$ and $\kappa_t = (\kappa_{11} + \kappa_{22})/2$. The ef-²⁵³ fective pumping velocity $\boldsymbol{\gamma}$ of the mean magnetic field ²⁵⁴ vanishes for homogeneous turbulence, but the effective ²⁵⁵ pumping velocity $\boldsymbol{\gamma}$ of the mean passive scalar field due ²⁵⁶ to the density stratification of the fluid (Elperin et al.

286

290

²⁵⁷ 1997; Rogachevskii 2021) was found to lead to downward
²⁵⁸ transport of the mean passive scalar concentration (to
²⁵⁹ the maximum of the mean fluid density) in density strat²⁶⁰ ified turbulence (Brandenburg et al. 2012; Haugen et al.
²⁶¹ 2012).

It should be noted that in the original application 262 ²⁶³ of the test-field method, Schrinner et al. (2005, 2007) ²⁶⁴ used a combination of constant and linearly varying test ²⁶⁵ fields. This choice is appropriate for computing turbu-²⁶⁶ lent transport properties on the largest possible scales, but it is not well suited for the use in periodic domains. 267 This was the main reason why Brandenburg (2005) em-268 ployed sinusoidal and cosinusoidal test fields, but it 269 270 also provided a natural way of computing the depen-271 dence of the turbulent transport coefficients on differ-272 ent length scales or for different wavenumbers. The re-²⁷³ sulting formulation of the electromotive force in Fourier 274 space translates directly into one in terms of integral 275 kernels (Brandenburg et al. 2008). This allowed us to 276 avoid the restriction to large scale separation in space 277 and time by replacing the multiplications with turbu-278 lent transport coefficients by a convolution with the ap-²⁷⁹ propriate integral kernels; see Hubbard & Brandenburg (2009) and Rheinhardt & Brandenburg (2012) for cor-280 281 responding studies. The effect of different spatial 282 scales on turbulent mixing was also investigated by de Avillez & Mac Low (2002) using checkerboard pat-283 ²⁸⁴ terns, but this approach cannot so easily be utilized in ²⁸⁵ the framework of mean-field theory.

2.5. Active scalar diffusivity

To determine the turbulent radiative diffusion coefficent, we use the standard mean-field expression for the enthalpy flux (Rüdiger 1989),

$$\overline{\boldsymbol{\mathcal{F}}}_{\text{enth}} = -\chi_{\text{t}}\overline{\rho}\overline{T}\boldsymbol{\nabla}\overline{S},\tag{12}$$

where the actual enthalpy flux is computed as $\overline{\mathcal{F}}_{enth} =$ 291 $_{292} \overline{(\rho U)' c_{\rm p} T'}$, and correlate their z components against 293 each other to determine χ_t . Here, primes denote the 294 departures from the horizontal means. This method ²⁹⁵ follows that employed by Käpylä & Singh (2022), who ²⁹⁶ also computed the turbulent kinematic viscosity in an ²⁹⁷ analogous way be correlating the yz component of the ²⁹⁸ Reynolds stress against the corresponding component of ²⁹⁹ the mean-field strain tensor. The current setup differs ³⁰⁰ from that in Käpylä & Singh (2022) in that a large-scale ³⁰¹ velocity is not imposed and therefore no off-diagonal $_{\rm 302}$ Reynolds stress is present. The emergence of such ³⁰³ off-diagonal components in shear flows was studied by ³⁰⁴ Mitra et al. (2009), who found an increase of the turbu-305 lent magnetic diffusivity.

We use the PENCIL CODE for our simulations (Pencil Code Collaboration et al. 2021). It uses sixth order accurate spatial derivatives and a third order timestepping scheme. It also allows us to compute turbulent transport coefficients with the test-field method. For that purpose, we invoke the modules testfield_z and testscalar within the PENCIL CODE.

We present our results for α , $\eta_{\rm t}$, and $\kappa_{\rm t}$ in normalized form and divide α by $A_0 = u_{\rm rms}/3$ and $\eta_{\rm t}$ and $\kappa_{\rm t}$ by $D_0 = u_{\rm rms}/3k_{\rm f}$. This allows us to compare runs with different rms velocity amplitudes.

Our results for the turbulent transport coefficients are functions of z and t. Since the turbulence in our simulations is homogeneous, we average the resulting transport coefficients over z. The resulting time series is then averaged over statistically steady intervals and error bars have been estimated by taking the largest departure to the average from any one third of the full time series. For sufficiently long time series, the resulting errors are rather small, so we often exaggerate them by a factor of or 4, as is indicated in the plots below.

3. RESULTS

3.1. Passive scalar results and comparison

328

329

Although the results for $\eta_{\rm t}$ have already been com-³³⁰ puted in Brandenburg et al. (2017), we compute them ³³² here again by invoking similar test-field routines in ³³³ the PENCIL CODE at the same time. The test-field ³³⁴ method for passive scalars was already described in ³³⁵ Brandenburg et al. (2009). Rädler et al. (2011) applied ³³⁶ it to passive scalar diffusion in compressible flows. In the ³³⁷ following, we use $u_{\rm rms}$ and $k_{\rm f}$ to express our results in ³³⁸ nondimensional form by normalizing the diffusivities by ³³⁹ $u_{\rm rms}/3k_{\rm f}$. Using earlier test-field results, this was found ³⁴⁰ to be an accurate estimate (Sur et al. 2008).

Figure 1 shows a comparison of time series of $\kappa_{\rm t}$ and $\eta_{\rm t}$ for nonhelical and helical cases and Re = 2.4. While $\eta_{\rm t}$ for nonhelical and helical cases and Re = 2.4. While $\eta_{\rm t}$ is suppressed, as already found by Brandenburg et al. $\eta_{\rm t}$ is suppressed, as already found by Brandenburg et al. $\eta_{\rm t}$ is suppressed, as already found by Brandenburg et al. $\eta_{\rm t}$ (2017). For Re = 120, however, $\kappa_{\rm t}$ is found to be *en-* $\eta_{\rm t}$ have considered a number of additional simulations with $\eta_{\rm t}$ other values of Re. The dependence on Re is shown in $\eta_{\rm t}$ does not follow a smooth dependence, suggesting $\eta_{\rm t}$ that statistical noise or other unaccounted factors may $\eta_{\rm t}$ have influenced the results.

The forcing is kept constant between different runs, so the resulting rms velocity depends on how stiff the system is against this forcing. We see that the value of the Mach number increases slightly with increasing values of the Reynolds number. We also see that the Mach num-

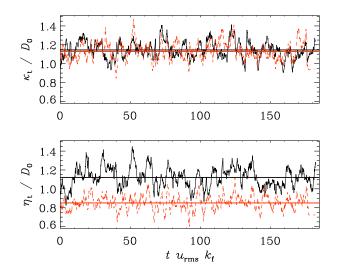


Figure 1. Time series of κ_t (upper panel) and η_t (lower panel) for Runs A without helicity (solid black line) and with helicity (dashed red line) with Re = 2.4. The thick black and red horizontal lines denote the time-averaged values.

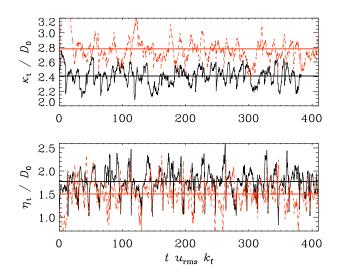


Figure 2. Similar to Figure 1, but for Runs F with Re = 120.

³⁵⁸ ber is slightly enhanced in the simulations with helical ³⁵⁹ forcing. This suggests that such flows are less effective ³⁶⁰ in dissipating energy. These slight changes in Ma do not ³⁶¹ significantly affect our results for η_t and κ_t , because we ³⁶² always present our results in normalized form and we ³⁶³ are here only interested in subsonic turbulence. Note ³⁶⁴ also that the compressibility of the turbulence affects ³⁶⁵ only non-helical contributions to the turbulent diffusion ³⁶⁶ (Rogachevskii et al. 2018).

³⁶⁷ In Appendix A, we compare our results with different ³⁶⁸ degrees of helicity with earlier simulations of rotating ³⁶⁹ stratified turbulence in which helicity is automatically

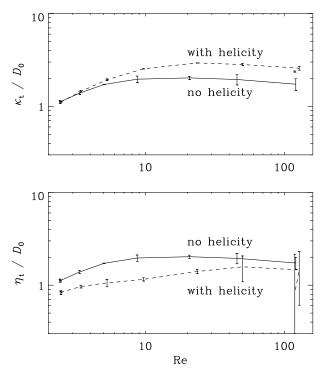


Figure 3. Reynolds number dependence of κ_t (upper panel) and η_t (lower panel) for nonhelical (solid lines) and helical (dashed lines). The error bars have been exaggerated by a factor of 3.

³⁷⁰ being produced in self-consistent way. It turns out, how-³⁷¹ ever, that the enhancement of turbulent diffusion by he-³⁷² licity is not being reproduced in such simulations. We ³⁷³ argue that this is caused by the more dominant effect of ³⁷⁴ rotation which strongly suppresses turbulent transport.

3.2. Active scalar results

375

The results of simulations similar to those of Käpylä & Singh (2022) are shown in Figure 4. Here we results we the turbulent heat diffusivity computed from an imposed entropy gradient (see Käpylä & Singh 2022, for details) for non-helical and helical cases. For Pe = Re > 10, there is a statistically significant increase of χ_t by about 10% for the helical cases relative to the nonhelical ones. These results were obtained by correlating the actual enthalpy flux with the mean-field expression given by Equation (12). In Käpylä & Singh (2022), an alternative independent method was used where the mean entropy profile is initially forced and then allowed to to the decay. This yielded very similar results.

The kinetic helicity effects on turbulent diffusion of the mean magnetic and scalar fields are partially related to the helicity effect on the effective correlation time. To examine this in more detail, we compute the correlation

Table 1. Values of κ_t^{nhel} and κ_t^{hel} as well as η_t^{nhel} and η_t^{hel} , normalized by $D_0 \equiv u_{\text{rms}}/3k_f$, for the nonhelical and helical cases, and α^{hel} normalized by $A_0 \equiv u_{\text{rms}}/3$, for the helical cases for different values of Re. The value of Ma is given for completeness.

409

Run	Re	$\kappa_{ m t}^{ m nhel}/D_0$	$\kappa_{ m t}^{ m hel}/D_0$	$\eta_{ m t}^{ m nhel}/D_0$	$\eta_{ m t}^{ m hel}/D_0$	$\alpha^{ m hel}/A_0$	${\rm Ma}^{\rm nhel}$	$\mathrm{Ma}^{\mathrm{hel}}$
А	2.4	1.14 ± 0.01	1.12 ± 0.01	1.12 ± 0.01	0.84 ± 0.015	-0.83 ± 0.01	0.062	0.063
В	3.4	1.47 ± 0.03	1.45 ± 0.03	1.39 ± 0.02	0.97 ± 0.011	-0.95 ± 0.02	0.068	0.070
\mathbf{C}	5.0	1.87 ± 0.04	1.93 ± 0.04	1.72 ± 0.00	1.06 ± 0.03	-1.02 ± 0.02	0.077	0.081
D	8.7	2.26 ± 0.03	2.54 ± 0.01	1.96 ± 0.05	1.15 ± 0.02	-0.96 ± 0.01	0.089	0.099
Ε	20.7	2.54 ± 0.02	2.94 ± 0.01	2.03 ± 0.03	1.40 ± 0.02	-0.83 ± 0.02	0.105	0.120
\mathbf{F}	45.5	2.50 ± 0.03	2.82 ± 0.07	1.95 ± 0.08	1.58 ± 0.16	-0.75 ± 0.03	0.116	0.128
G	120.6	2.27 ± 0.01	2.58 ± 0.12	1.73 ± 0.08	1.46 ± 0.28	-0.69 ± 0.07	0.123	0.130

Table 2. Values of χ_t^{nhel} and χ_t^{hel} normalized by $D_0 \equiv u_{\text{rms}}/3k_{\text{f}}$, for the nonhelical and helical cases. The value of Ma is given for completeness.

Run	Re	$\chi_{ m t}^{ m nhel}/D_0$	$\chi_{ m t}^{ m hel}/D_0$	Ma
А	1.2	0.63 ± 0.03	0.59 ± 0.02	0.031
В	4.7	1.86 ± 0.08	1.78 ± 0.09	0.048
\mathbf{C}	11.8	2.51 ± 0.05	2.72 ± 0.07	0.060
D	27.6	2.57 ± 0.01	2.95 ± 0.07	0.070
Е	75.1	2.40 ± 0.03	2.67 ± 0.04	0.077
\mathbf{F}	151.9	2.25 ± 0.02	2.52 ± 0.04	0.077
G	307.0	2.18 ± 0.04	2.42 ± 0.05	0.078

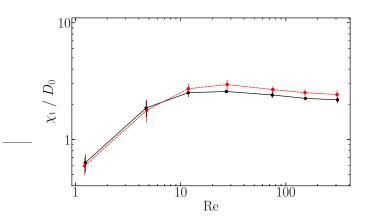


Figure 4. Dependence of χ_t for nonhelical (black symbols, solid line) and fully helical turbulence (red symbols, dashed line) as a function of Reynolds number Re = Pe/Pr with Pr = 1 in all cases. To make the error bars more visible, they have been exaggerated by a factor of 4.

³⁹³ times as the late-time limit of

³⁹⁴
$$\tau_{\rm c}(t) = \int_{t_0}^t \left\langle \boldsymbol{u}(t_0) \cdot \boldsymbol{u}(t') \right\rangle \, \mathrm{d}t' \Big/ \left\langle \boldsymbol{u}^2(t_0) \right\rangle. \tag{13}$$

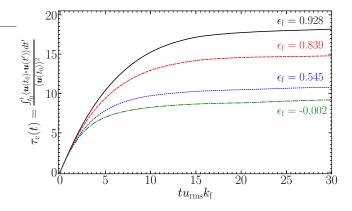


Figure 5. Correlation time of turbulence computed from time integrals of velocity autocorrelation from runs with Re = 13 and different relative helicity $\epsilon_{\rm f} = \langle \boldsymbol{u} \cdot \boldsymbol{\omega} \rangle / k_{\rm f} u_{\rm rms}^2$.

³⁹⁵ The result is shown in Figure 5 for simulations with ³⁹⁶ Re = 13 and different values of the relative helicity. We ³⁹⁷ see that, through the presence of kinetic helicity, the cor-³⁹⁸ relation time of the turbulent velocity field increases and ³⁹⁹ is more than doubled as the kinetic helicity is increased ⁴⁰⁰ from zero to one. We note that the Reynolds number ⁴⁰¹ of these simulations is very modest. Further studies at ⁴⁰² larger Reynolds numbers would be needed to establish ⁴⁰³ the dependence of the correlation time on the kinetic he-⁴⁰⁴ licity in more turbulent regimes; see Rogachevskii et al. ⁴⁰⁵ (2025).

⁴⁰⁶ Another way to estimate the correlation time is ob-⁴⁰⁷ tained from the ratio of kinetic energy and its dissipation ⁴⁰⁸ rate:

$$\tau_{\rm c} = \frac{E_{\rm K}}{\epsilon_{\rm K}},\tag{14}$$

⁴¹⁰ where $E_{\rm K} = \frac{1}{2} \langle \boldsymbol{u}^2 \rangle$ and $\epsilon_{\rm K} = 2\nu \langle \boldsymbol{S}^2 \rangle$. The results for ⁴¹¹ the correlation time are summarized in Figure 6. Both ⁴¹² measures of $\tau_{\rm c}$ show an increasing trend as a function of ⁴¹³ the fractional helicity, $\epsilon_{\rm f} = \overline{\boldsymbol{u} \cdot \boldsymbol{\omega}} / k_{\rm f} u_{\rm rms}^2$.

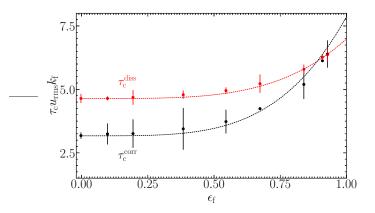


Figure 6. Correlation time τ_c as function of ϵ_f from the late-time limit of Equation (13) (black symbols) and from Equation (14) (red symbols) normalized by the turnover time $(u_{\rm rms}k_f)^{-1}$ for the same runs as in Figure 5. The dotted lines are proportional to ϵ_f^4 , and the error bars are boosted by a factor of ten for $\tau_c^{\rm diss}$ and by five for $\tau_c^{\rm corr}$.

Regarding the usage of the energy dissipation rate $\epsilon_{\rm K}$ 414 415 for the timescale arguments of turbulence, we should 416 note the following points. Although developed turbu-417 lence contains a very wide range of scales, it is still ⁴¹⁸ meaningful to use $\epsilon_{\rm K}$ for the arguments of turbulence ⁴¹⁹ timescale. In the inertial range of fully developed tur-⁴²⁰ bulence, we have a local equilibrium between the pro-⁴²¹ duction rate of turbulent energy and its dissipation rate. ⁴²² In this range, the dissipation rate is equivalent both to ⁴²³ the energy injection rate at the integral scale and to ⁴²⁴ the energy flux (the spectral energy transfer from larger ⁴²⁵ scale to smaller scale). In this sense, the energy dissipa-⁴²⁶ tion rate $\epsilon_{\rm K}$ is the most appropriate turbulence statisti-427 cal quantity that describes the timescale of turbulence. ⁴²⁸ This is the reason why we also adopt $\epsilon_{\rm K}$ in the timescale 429 argument of turbulence.

Turbulent transport coefficients depend on some sta-431 tistical quantities such as the turbulent energy $E_{\rm K}$, its 432 dissipation rate $\epsilon_{\rm K}$, kinetic helicity $H_{\rm K}$, etc, as well as 433 the time and/or length scales of turbulence, which are 434 determined by $E_{\rm K}$, $\epsilon_{\rm K}$ and $H_{\rm K}$, as well as the veloc-435 ity strain rate, vorticity, pressure, etc. Generally, the 436 kinetic helicity $H_{\rm K}$ depends on the vorticity/rotation 437 and density stratification or turbulence inhomogeneity 438 as well as the external forcing. Here, for simplicity of 439 the argument, we assume that deviations of the tur-440 bulence timescale from the usual eddy turnover time, 441 $\tau_{\rm c} = E_{\rm K}/\epsilon_{\rm K}$, can be expressed in terms of the kinetic 442 helicity as $\tau_{\rm c}(H_{\rm K})$, and examine the dependence of $\tau_{\rm c}$ 443 on $H_{\rm K}$. Let us compare the obtained numerical results with the theoretical predictions by Rogachevskii et al. (2025), where the path-integral approach for a random velocity field with a finite correlation time has been used. According to the theory, the turbulent magnetic diffusion to coefficient $\eta_t(H_K)$ is given by

$$\eta_{\rm t}(H_{\rm K}) = \eta_{\rm to} \, \frac{\tau_{\rm c}(H_{\rm K})}{\tau_0} \left(1 - \frac{\tau_{\rm c}^2(H_{\rm K})}{3} \, \frac{H_{\rm K}^2}{\langle \boldsymbol{u}^2 \rangle} \right), \quad (15)$$

451

4

462

 $_{\rm 452}$ while the turbulent diffusion coefficient $\kappa_{\rm t}(H_{\rm K})$ of the $_{\rm 453}$ scalar field is

$$\kappa_{\rm t}(H_{\rm K}) = \kappa_{\rm to} \, \frac{\tau_{\rm c}(H_{\rm K})}{\tau_0} \left(1 - \frac{\tau_{\rm c}^2(H_{\rm K})}{6} \, \frac{H_{\rm K}^2}{\langle \boldsymbol{u}^2 \rangle} \right), \quad (16)$$

⁴⁵⁵ where $H_{\rm K} = \langle \boldsymbol{u} \cdot \boldsymbol{\omega} \rangle$, $\eta_{\rm t0} = \eta_{\rm t} (H_{\rm K} = 0)$, $\kappa_{\rm t0} = \kappa_{\rm t} (H_{\rm K} =$ ⁴⁵⁶ 0) and $\tau_0 = \tau_{\rm c} (H_{\rm K} = 0) = (u_{\rm rms} k_{\rm f})^{-1}$. Applying two ⁴⁵⁷ independent methods (based on the non-instantaneous ⁴⁵⁸ correlation functions and the rate of energy dissipation) ⁴⁵⁹ for the calculation of the correlation time versus the ⁴⁶⁰ fraction of kinetic helicity, our numerical results suggest ⁴⁶¹ that

$$\tau_{\rm c}(H_{\rm K})/\tau_0 \approx 1 + 0.5\epsilon_{\rm f}^4.$$
 (17)

⁴⁶³ Using Equations (15)–(17), we plot in Figure 7 the de-⁴⁶⁴ pendences $\eta_{\rm t}(0) - \eta_{\rm t}$ and $\kappa_{\rm t}(0) - \kappa_{\rm t}$ on the fraction ⁴⁶⁵ $\epsilon_{\rm f}$ of the kinetic helicity for Re = 13. Here, $\eta_{\rm t}(0) =$ ⁴⁶⁶ $\eta_{\rm t}(\epsilon_{\rm f}=0)$ and $\kappa_{\rm t}(0) = \kappa_{\rm t}(\epsilon_{\rm f}=0)$, and α is normalized ⁴⁶⁷ by $A_0 = u_{\rm rms}/3$, while turbulent diffusion coefficients ⁴⁶⁸ are normalized by $D_0 = u_{\rm rms}/3k_{\rm f}$, where $k_{\rm f}$ is the forc-⁴⁶⁹ ing wavenumber. The theoretical dependencies given ⁴⁷⁰ by Equations (15)–(17) are shown as dashed and dot-⁴⁷¹ ted blue and black curves. The theoretical results for ⁴⁷² $\epsilon_{\rm f} \gtrsim 0.85$ are shown as dotted lines, because they may ⁴⁷³ not be reliable.

As follows from Figure 7, the turbulent magnetic diffusion coefficient is reduced by the kinetic helicity, while the turbulent diffusion coefficient for the scalar field tro is increased by the kinetic helicity. These arguments can explain the results of our direct numerical simulatro tions; see also Fig. 1 for Re = 120 in Rogachevskii et al. (2025).

Using an approach based on the Furutsu-Novikov the-482 orem (Furutsu 1963; Novikov 1965), Kishore & Singh 483 (2025) found that the turbulent diffusivities of both 484 the mean passive scalar and the mean magnetic field 485 are suppressed by the kinetic helicity. Note that 486 Kishore & Singh (2025) have not taken into account the 487 dependence of the correlation time on the kinetic he-488 licity. This may explain the discrepancy with our nu-489 merical results related to the helicity effect on turbulent 490 diffusion of the scalar fields.

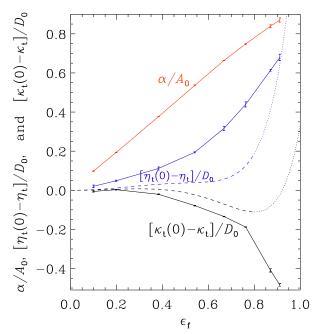


Figure 7. Dependencies of α (red solid line), $\eta_t(0) - \eta_t$ (blue solid line) and $\kappa_t(0) - \kappa_t$ (black solid line) on the fraction ϵ_f of the kinetic helicity for Re = 13. The theoretical dependencies given by Equations (15)–(17) are shown by dashed and dotted blue and black curves. The theoretical results for $\epsilon_f \gtrsim 0.85$ are shown as dotted lines, because they may not be reliable.

3.4. Scale dependence

To assess the scale dependence of the difference of tur-492 bulent transport for helical and nonhelical cases, we have 493 varied the ratio $k_{\rm f}/k_1$, keeping the viscosity constant. 494 This implies that Re decreases with increasing $k_{\rm f}$. In all 495 ases, we used 512^3 meshpoints. The results for helical 496 and nonhelical turbulence are compared in Figure 8 and 497 Table 3. We see that there is a slight increase in the 498 difference between helical and nonhelical cases. For $\kappa_{\rm t}$, 499 ⁵⁰⁰ however, the difference between helical and nonhelical $_{501}$ cases is rather weak. In all cases, we used 512^3 mesh-502 points.

503

491

4. CONCLUSIONS

Our simulations have revealed a surprising difference in the helicity effect for passive and active scalars on magnetic fields on the other. As for magnetic fields, the helicity effect does not exist for small Reynolds numbers. Above Reynolds numbers of about 20, it does not change much any more and there is no indication that it disappears at larger values.

The key numerical result of the present study is the enhancement of turbulent diffusion of the mean passive and active scalar fields by the kinetic helicity. This resit sult is opposite to the magnetic case where turbulent

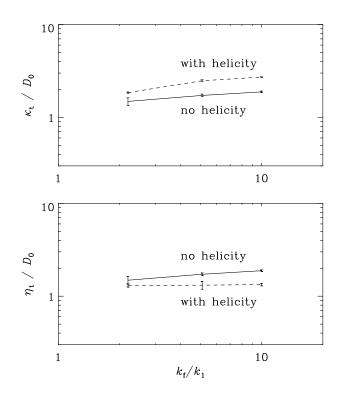


Figure 8. Scale separation dependence of κ_t (upper panel) and η_t (lower panel) for nonhelical (solid lines) and helical (dashed lines). To make the error bars more visible, they have been exaggerated by a factor of 4.

⁵¹⁵ magnetic diffusion is decreased by the kinetic helicity. ⁵¹⁶ We also found that the correlation time of the turbulent ⁵¹⁷ velocity field increases because of kinetic helicity. The ⁵¹⁸ latter is one of the main points relevant for understand-⁵¹⁹ ing the kinetic helicity effects on turbulent diffusion of ⁵²⁰ scalar and magnetic fields (see Section 3.3).

The enhancement of the passive scalar diffusion ex-521 522 amined here can be compared with the effect of ro-523 tation and stratification on the passive scalar diffusiv-524 ity. As discussed in the introduction, rotating stratified 525 flows also attain kinetic helicity and for such flows, it 526 was previously found that the passive scalar diffusiv-527 ity gets reduced as the rotation speed is increased, just ⁵²⁸ like the magnetic diffusivity, which also became smaller ⁵²⁹ (Brandenburg et al. 2012). This effect was not ascribed ⁵³⁰ to the presence of helicity, but it was simply regarded as ⁵³¹ a rotational suppression of the magnetic diffusivity. This ⁵³² difference can probably be explained by the anisotropy ⁵³³ of the flow that is being produced in rotating stratified 534 turbulence, which is a more complicated situation than ⁵³⁵ just a helically forced flow.

Qualitatively, one could understand the helicity effect on the magnetic field as a tendency to support dymano action, or, alternatively, as a tendency for rotational suppression of the magnetic diffusivity. For pas-

Table 3. Values of κ_t^{nhel} and κ_t^{hel} as well as η_t^{nhel} and η_t^{hel} , normalized by $D_0 \equiv u_{\text{rms}}/3k_f$, for the nonhelical and helical cases, and α^{hel} normalized by $A_0 \equiv u_{\text{rms}}/3$, for the helical cases for different values of k_f . The value of Ma is given for completeness.

Run	$k_{ m f}/k_1$	Re	$\kappa_{ m t}^{ m nhel}/D_0$	$\kappa_{ m t}^{ m hel}/D_0$	$\eta_{ m t}^{ m nhel}/D_0$	$\eta_{ m t}^{ m hel}/D_0$	$lpha^{ m hel}/A_0$	${\rm Ma}^{\rm nhel}$	$\mathrm{Ma}^{\mathrm{hel}}$
a	2.2	281.1	1.66 ± 0.03	1.85 ± 0.03	1.49 ± 0.14	1.31 ± 0.05	-0.65 ± 0.01	0.125	0.131
b	5.1	120.6	2.27 ± 0.01	2.48 ± 0.06	1.72 ± 0.06	1.31 ± 0.13	-0.69 ± 0.01	0.123	0.130
с	10.0	59.3	2.49 ± 0.01	2.71 ± 0.02	1.88 ± 0.04	1.33 ± 0.04	-0.76 ± 0.00	0.119	0.129

⁵⁴⁰ sive and active scalars, on the other hand, there is no ⁵⁴¹ dynamo effect. Furthermore, in some special determinis-⁵⁴² tic flows (the Roberts-IV flow; see Devlen et al. (2013)), ⁵⁴³ the effective magnetic diffusivity can even be negative ⁵⁴⁴ and thereby lead to dynamo action. Such an effect ⁵⁴⁵ was never found for passive or active scalars or mag-⁵⁴⁶ netic fields in turbulent flows at high Reynolds num-⁵⁴⁷ bers. What has been previously found, however, is a ⁵⁴⁸ suppression of both η_t and κ_t for potential (compress-⁵⁴⁹ ible) flows (Rädler et al. 2011; Rogachevskii et al. 2018). ⁵⁵⁰ In the present work, however, we have only considered ⁵⁵¹ nearly incompressible flows for actual turbulence simu-⁵⁵² lations, as opposed to some constructed flows such as ⁵⁵³ the Roberts flow.

⁵⁵⁴ We thank Nathan Kleeorin for useful discussions and the ⁵⁵⁵ referees for their reports. We also acknowledge the dis-⁵⁵⁶ cussions with participants of the Nordita Scientific Pro-557 gram on "Stellar Convection: Modelling, Theory and ⁵⁵⁸ Observations", Stockholm (September 2024). This re-559 search was supported in part by the Swedish Research 560 Council (Vetenskapsrådet) under Grant No. 2019-04234, ⁵⁶¹ the National Science Foundation under grant no. NSF 562 AST-2307698, a NASA ATP Award 80NSSC22K0825. ⁵⁶³ and the Munich Institute for Astro-, Particle and Bio-⁵⁶⁴ Physics (MIAPbP), which is funded by the Deutsche 565 Forschungsgemeinschaft (DFG, German Research Foun-⁵⁶⁶ dation) under Germanys Excellence Strategy - EXC-567 2094 - 390783311. Part of this work was supported by ⁵⁶⁸ the Japan Society of the Promotion of Science (JSPS) 569 Grants-in-Aid for Scientific Research JP23K25895. We 570 acknowledge the allocation of computing resources pro-⁵⁷¹ vided by the Swedish National Allocations Committee 572 at the Center for Parallel Computers at the Royal In-573 stitute of Technology in Stockholm, and by the North 574 German Supercomputing Alliance (HLRN) in Göttingen 575 and Berlin, Germany.

⁵⁷⁶ Software and Data Availability. The source code used ⁵⁷⁷ for the simulations of this study, the PENCIL CODE ⁵⁷⁸ (Pencil Code Collaboration et al. 2021), is available on ⁵⁷⁹ https://github.com/pencil-code/. The simulation se-⁵⁸⁰ tups and corresponding secondary data are available on ⁵⁸¹ http://doi.org/10.5281/zenodo.15083000.

APPENDIX

583

A. COMPARISON WITH EARLIER WORK

In Figure 9, we compare with the values of the α effect and the turbulent magnetic and passive scalar diffusivities from the earlier work of Brandenburg et al. (2012), in which kinetic helicity is being produced by the interaction with rotation and stratification. Here, we have estimated the fractional helicity from the product of Coriolis number $C_{0} = 2\Omega/u_{\rm rms}k_{\rm f}$ and gravity number $G_{\rm r} = 1/H_{\rho}k_{\rm f}$, where Ω is the angular velocity, $k_{\rm f}$ is the forcing wavenumber of the turbulence, and H_{ρ} is the density scale height. We used a formula by Jabbari et al. (2014), $\epsilon_{\rm f} = 2 \operatorname{Co} \operatorname{Gr}$. For the present simulations, we used $\epsilon_{\rm f} \approx 2\sigma/(1 + \sigma^2)$.

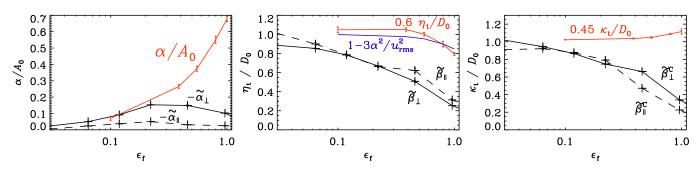


Figure 9. Dependence of the fractional helicity, $\epsilon_{\rm f}$, and comparison of the values of α and the turbulent magnetic and passive scalar diffusivities with the earlier work of Brandenburg et al. (2012), in which kinetic helicity is being produced by the interaction with rotation and stratification. The originally used symbols of Brandenburg et al. (2012) have been retained: $-\tilde{\alpha}_{\perp}$ and $-\tilde{\alpha}_{\parallel}$ for the normalized perpendicular and parallel components of the α effect, $\tilde{\beta}_{\perp}$ and $\tilde{\beta}_{\parallel}$ for those of the magnetic diffusivity, and $\tilde{\beta}_{\perp}^{\rm C}$ and $\tilde{\beta}_{\parallel}^{\rm C}$ for those of the passive scalar diffusivity. The tildes indicate appropriate normalization. In the second panel, we also show in blue $1 - 3\alpha^2/u_{\rm rms}^2$.

There is not much agreement with our present simulations, shown in red. This shows that other effects such as the ⁵⁹⁰ rotational suppression of turbulent transport plays a more dominant role than just the helicity.

REFERENCES

- ⁵⁹² Brandenburg, A. 2005, AN, 326, 787,
- ⁵⁹³ doi: 10.1002/asna.200510414
- 594 Brandenburg, A., Rädler, K. H., & Kemel, K. 2012, A&A,
- ⁵⁹⁵ 539, A35, doi: 10.1051/0004-6361/201117871
- ⁵⁹⁶ Brandenburg, A., Rädler, K.-H., & Schrinner, M. 2008,
- 597 A&A, 482, 739, doi: 10.1051/0004-6361:200809365
- Brandenburg, A., Schober, J., & Rogachevskii, I. 2017, AN,
 338, 790, doi: 10.1002/asna.201713384
- 600 Brandenburg, A., & Sokoloff, D. 2002, GApFD, 96, 319,
- doi: 10.1080/03091920290032974
- ⁶⁰² Brandenburg, A., Svedin, A., & Vasil, G. M. 2009, MNRAS,
 ⁶⁰³ 395, 1599, doi: 10.1111/j.1365-2966.2009.14646.x
- 604 Chkhetiani, O. G., Hnatich, M., Jurčišinová, E., et al. 2006,
- 605 PhRvE, 74, 036310, doi: 10.1103/PhysRevE.74.036310
- ⁶⁰⁶ de Avillez, M. A., & Mac Low, M.-M. 2002, ApJ, 581, 1047,
 ⁶⁰⁷ doi: 10.1086/344256
- ⁶⁰⁸ Devlen, E., Brandenburg, A., & Mitra, D. 2013, MNRAS,
 ⁶⁰⁹ 432, 1651, doi: 10.1093/mnras/stt590
- ⁶¹⁰ Dolginov, A. Z., & Silant'ev, N. A. 1987, Zh. Eksp. Teor.
 ⁶¹¹ Fiz., 93, 159
- 612 Elperin, T., Kleeorin, N., & Rogachevskii, I. 1997, Phys.
- 613 Rev. E, 55, 2713, doi: 10.1103/PhysRevE.55.2713
- ⁶¹⁴ Furutsu, K. 1963, J. Res. Natl Bureau Standards D.
- 615 Radio Propagation, 67D, 303323
- 616 Haugen, N. E. L., Kleeorin, N., Rogachevskii, I., &
- 617 Brandenburg, A. 2012, PhFl, 24, 075106
- 618 Hubbard, A., & Brandenburg, A. 2009, ApJ, 706, 712,
- 619 doi: 10.1088/0004-637X/706/1/712

- Jabbari, S., Brandenburg, A., Losada, I. R., Kleeorin, N., &
 Rogachevskii, I. 2014, A&A, 568, A112,
- 622 doi: 10.1051/0004-6361/201423499
- ⁶²³ Käpylä, P. J., & Singh, N. K. 2022, JFM, 952, R1,
 ⁶²⁴ doi: 10.1017/jfm.2022.906
- 624 doi: 10.1017/jfm.2022.906
- 625 Kishore, G., & Singh, N. K. 2025, ArXiv:2502.02946
- 626 Mitra, D., Käpylä, P. J., Tavakol, R., & Brandenburg, A.
- ⁶²⁷ 2009, A&A, 495, 1, doi: 10.1051/0004-6361:200810359
- 628 Mizerski, K. A. 2023, PhRvE, 107, 055205,
- 629 doi: 10.1103/PhysRevE.107.055205
- ⁶³⁰ Nicklaus, B., & Stix, M. 1988, GApFD, 43, 149,
 ⁶³¹ doi: 10.1080/03091928808213623
- 632 Novikov, E. A. 1965, JETP, 20, 1290
- 633 Pencil Code Collaboration, Brandenburg, A., Johansen, A.,
- et al. 2021, J. Open Source Softw., 6, 2807,
- 635 doi: 10.21105/joss.02807
- 636 Rädler, K.-H., Brandenburg, A., Del Sordo, F., &
- 637 Rheinhardt, M. 2011, PhRvE, 84, 046321,
- 638 doi: 10.1103/PhysRevE.84.046321
- 639 Rädler, K.-H., Kleeorin, N., & Rogachevskii, I. 2003,
- GApFD, 97, 249, doi: 10.1080/0309192031000151212
- $_{641}$ Rheinhardt, M., & Brandenburg, A. 2012, AN, 333, 71,
- 642 doi: 10.1002/asna.201111625
- 643 Rogachevskii, I. 2021, Introduction to turbulent transport
- ⁶⁴⁴ of particles, temperature and magnetic fields: analytical
- 645 methods for physicists and engineers (Cambridge
- 646 University Press), doi: 10.1063/5.0188732,2024
- 647 Rogachevskii, I., Kleeorin, N., & Brandenburg, A. 2018,
- ⁶⁴⁸ JPlPh, 84, 735840502, doi: 10.1017/S0022377818000983

- 649 Rogachevskii, I., Kleeorin, N., & Brandenburg, A. 2025,
- ⁶⁵⁰ ApJ, submitted; arXiv:2501.13807,
- 651 doi: 10.48550/arXiv.2501.13807
- ⁶⁵² Rüdiger, G. 1989, Differential rotation and stellar
- convection. Sun and the solar stars (Berlin: AkademieVerlag)
- ⁶⁵⁵ Schober, J., Rogachevskii, I., Brandenburg, A., et al. 2018,
 ⁶⁵⁶ ApJ, 858, 124, doi: 10.3847/1538-4357/aaba75
- 657 Schrinner, M., Rädler, K.-H., Schmitt, D., Rheinhardt, M.,
- ⁶⁵⁸ & Christensen, U. 2005, AN, 326, 245,
- 659 doi: 10.1002/asna.200410384

- 660 Schrinner, M., Rädler, K.-H., Schmitt, D., Rheinhardt, M.,
- ⁶⁶¹ & Christensen, U. R. 2007, GApFD, 101, 81,
- 662 doi: 10.1080/03091920701345707
- 663 Sur, S., Brandenburg, A., & Subramanian, K. 2008,
- 664 MNRAS, 385, L15, doi: 10.1111/j.1745-3933.2008.00423.x
- 665 Zhou, Y. 1990, PhRvA, 41, 5683,
- doi: 10.1103/PhysRevA.41.5683