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ABSTRACT10

Turbulent flows are known to produce enhanced effective magnetic and passive scalar diffusivities,11

which can fairly accurately be determined with numerical methods. It is now known that, if the flow12

is also helical, the effective magnetic diffusivity is reduced relative to the nonhelical value. Neither the13

usual second-order correlation approximation nor the various τ approaches have been able to capture14

this. Here we show that the helicity effect on the turbulent passive scalar diffusivity works in the15

opposite sense and leads to an enhancement. We have also demonstrated that the correlation time16

of the turbulent velocity field increases by the kinetic helicity. This is a key point in the theoretical17

interpretation of the obtained numerical results. Simulations in which helicity is being produced self-18

consistently by stratified rotating turbulence resulted in a turbulent passive scalar diffusivity that was19

found to be decreasing with increasing rotation rate.20

Keywords: Astrophysical magnetism (102) — Magnetic fields (994)21

1. INTRODUCTION22

In many astrophysical plasmas such as stellar convec-23

tion zones, the interstellar medium, and accretion discs,24

the Reynolds numbers are extremely large. Therefore,25

to describe the large-scale behavior of such flows, one of-26

ten replaces the small viscosity or diffusion coefficients27

by effective ones. Turbulent diffusivities in the evolution28

equations for passive scalars act similarly as ordinary29

(molecular or atomic) ones, except that they character-30

ize the diffusion of larger scale structures, as described31

by the corresponding averaged or coarse-grained evolu-32

tion equations. Denoting the mean passive scalar con-33

centration C by an overbar, the equation for C is given34

by35

∂C

∂t
= −∇ ·

(

U C
)

+ (κ+ κt)∇2C, (1)36

where we have allowed for the possibility of a mean flow37

U , while κ and κt are the microphysical and turbulent38

diffusion coefficients, respectively. The diffusion coeffi-39
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cients are proportional to the product of the mean free40

path and the typical velocity of particles or, in the tur-41

bulent case, the product of the integral turbulent scale42

and the rms velocity. Equation (1) is written for turbu-43

lence without stratification of the mean density or tem-44

perature, so that effective pumping velocity caused by45

the turbulent thermal diffusion vanishes (Elperin et al.46

1997; Rogachevskii 2021).47

The derivation of the turbulent diffusion coefficients48

is usually done by some approximations. Meanwhile,49

significant progress has been made by numerically com-50

puting these turbulent coefficients. A particularly useful51

approach is the test-field method (Schrinner et al. 2005,52

2007), which was originally applied to magnetic fields53

in spherical geometry and then to Cartesian domains54

(Brandenburg 2005; Brandenburg et al. 2008). This55

method is sufficiently accurate to identify subtle effects56

caused by kinetic helicity in the flow (Brandenburg et al.57

2017).58

In the presence of magnetic fields, the kinetic heli-59

city causes completely new qualities of its own. Unlike60

the case of turbulent or microphysical diffusion, helicity61
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also produces non-diffusive effects that lead to a desta-62

bilization of the non-magnetic state. This is because63

helicity is a pseudo-scalar, which can couple the axial64

magnetic field vector with the polar electric field vector65

to give an extra contribution to the turbulent electro-66

motive force in the mean-field induction equation. By67

contrast, the turbulent magnetic diffusivity is an ordi-68

nary scalar. It was therefore surprising when kinetic69

helicity was found to affect even the magnetic diffusiv-70

ity (Brandenburg et al. 2017). This effect was such that71

helicity suppresses the magnetic diffusivity by a certain72

amount. The possibility of a helicity effect on the turbu-73

lent magnetic diffusivity was already noticed in the early74

work of Nicklaus & Stix (1988), but they found an en-75

hancement of the turbulent magnetic diffusivity by the76

kinetic helicity.77

Applying the Feynman diagram technique,78

Dolginov & Silant’ev (1987) show that kinetic helicity79

can increase the turbulent diffusion of a passive scalar80

field. On the other hand, subsequent work by Zhou81

(1990) using renormalization-group theory found no ef-82

fect of helicity on the renormalized eddy viscosity. The83

effect of kinetic helicity on passive scalar diffusion was84

also investigated by Chkhetiani et al. (2006) using the85

renormalization group approach. They found that the86

effective diffusivity can be 50% larger in the helical case.87

They also noted that there is no helicity effect on the88

anomalous scaling of the structure functions.89

The results of Brandenburg et al. (2017) were recently90

verified by Mizerski (2023) using the renormalization91

group approach. In particular, he found that for small92

magnetic Reynolds numbers, the helical correction to93

turbulent diffusion of the mean magnetic field is propor-94

tional to Re2M(HKτc)
2/〈u2〉, where ReM = τc 〈u2〉/η is95

the magnetic Reynolds number, τc is the turbulent cor-96

relation time, η is the magnetic diffusion caused by an97

electrical conductivity of plasma, andHK = 〈u·ω〉 is the98

kinetic helicity. This scaling (∝ Re2M) is shown in Fig-99

ure 4 of Brandenburg et al. (2017). This confirms that100

the helical correction cannot emerge from the second-101

order correlation approximation, where the transport102

coefficients are only linear in the magnetic Reynolds103

number.104

What has not yet been specifically addressed is the105

effect of helicity on the passive scaler diffusivity, or even106

the thermal diffusivity of an active scalar such as the107

temperature or the specific entropy in the mean-field108

energy equation. Doing this is the purpose of the present109

work.110

Helicity affects the value of the turbulent passive and111

active scalar diffusivity in a clear and consistent way.112

This is similar to the helicity effect on the turbulent113

magnetic diffusivity, but this new effect is the other way114

around, i.e., the turbulent passive and active scalar dif-115

fusion is enhanced by helicity, while the turbulent mag-116

netic diffusivity is decreased. In the accompanying the-117

oretical paper by Rogachevskii et al. (2025), remaining118

puzzles are addressed and possible explanations are be-119

ing proposed.120

Of some interest in this context is the earlier work121

of Brandenburg et al. (2012), who computed turbulent122

magnetic field and passive scalar transport for rotating123

stratified turbulence. The combined presence of rota-124

tion and stratification also leads to helicity and there-125

fore to an α effect. They found a slight decrease of the126

magnetic diffusivity as the angular velocity is increased.127

At the time, this was not thought surprising because128

the focus was on new turbulent transport coefficients129

that only arise because of rotation and stratification.130

Furthermore, already rotation alone (without helicity)131

is known to decrease the turbulent magnetic diffusivity132

(Rädler et al. 2003).133

For most astrophysical purposes, only order of mag-134

nitude estimates of turbulent transport coefficients are135

usually considered. This may change in future, when136

more accurate methods and measurements become more137

commonly available both in simulations and in observa-138

tions. For example, the discrepancy in the estimate for139

the turbulent magnetic diffusivity was noticed in the-140

oretical work in high-energy astrophysics on the chiral141

magnetic effect when simple estimates for the turbulent142

magnetic diffusivity did not match previous estimates143

(Schober et al. 2018). This discrepancy was then ex-144

plained by the presence of helicity in one of the cases.145

2. OUR MODEL146

We consider both isothermal and non-isothermal tur-147

bulence and begin with the former.148

2.1. Basic equations for isothermal turbulence149

Our basic equations are the induction and passive150

scalar equations for the magnetic field B and the pas-151

sive scalar concentration C (e.g., number density of par-152

ticles). The magnetic field is also divergence-free. The153

governing equations are then154

∂B

∂t
= ∇× (U ×B −Ediff) , Ediff = −η∇×B, (2)155

156

∂C

∂t
= ∇ · (−UC − Fdiff) , Fdiff = −κ∇C. (3)157

The velocity U is obtained as a solution of the Navier-158

Stokes equations. In the kinematic test-field method, we159

ignore the feedback of the magnetic field on the flow, i.e.,160

we solve161

DU

Dt
= −c2s∇ ln ρ+ f +

1

ρ
∇ · (2ρνS), (4)162
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D ln ρ

Dt
= −∇ ·U . (5)163

where ρ is the density, cs is the isothermal sound speed,164

ν is the kinematic viscosity, S is the rate of strain tensor165

with the components Sij = (∂iuj +∂jui)/2− δij∇·u/3,166

and f represents a forcing function that is δ-correlated167

in time and consists of plane waves with a mean forcing168

wavenumber kf . It is given by fi = Rijf
(nohel)
j , where169

R(k̂) = (δij − σǫijkk̂k)/
√
1 + σ2 depends on k̂ = k/k170

with k = |k| and the fractional helicity σ, and f (nohel) =171

f0 e× k/|e× k| is a nonhelical forcing function with f0172

being a scaling factor and e a random vector that is not173

aligned with k.174

2.2. Equations for non-isothermal turbulence175

In our simulations of non-isothermal turbulence, we176

measure the response of the system to imposing large-177

scale gradient of specific entropy s with a relaxation time178

τ . The evolution equations for u and s are then179

DU

Dt
= −c2s∇(ln ρ+ s/cp) + f +

1

ρ
∇ · (2ρνS), (6)180

181

T
Ds

Dt
= 2νS2 +

1

ρ
(∇ · Frad − C)− s− s̃0

τ
, (7)182

where T is the temperature, cp is the specific heat at con-183

stant pressure, Frad = −cpρχ∇T is the radiative flux,184

and C is a volumetric cooling function to compensate for185

viscous heating. Since the system is no longer isother-186

mal, the sound speed is now given by c2s = (γ − 1)cpT ,187

where γ = cp/cv is the ratio of specific heats, and cv188

is the specific heat at constant volume. For the target189

profile of specific entropy, we choose s̃0 = s0 sin kT z.190

Here, we take kT = k1 for what will later be called191

the test-field wavenumber, where k1 = 2π/L is the192

smallest wavenumber in the domain. Different val-193

ues of kT would be of interest for studying the scale194

dependence of turbulent transport, as has been done195

on various occasions (Brandenburg & Sokoloff 2002;196

Brandenburg et al. 2008, 2009).197

2.3. Parameters198

For the scale separation ratio, i.e., the ratio of the199

forcing wavenumber kf and the box wavenumber k1, we200

take kf/k1 = 5.1 in most of our cases. Although not201

stated explicitly there, this was also the value adopted202

in Brandenburg et al. (2017). Larger (smaller) values of203

kf allow us to access larger (smaller) scale separation ra-204

tios. At the end of this paper, we present a small survey205

of different choices; see also Brandenburg et al. (2008,206

2009) for such studies in other contexts. Our main207

governing control parameters are the Reynolds number208

Re = urms/νkf and the Mach number Ma = urms/cs.209

The Schmidt number, Sc = ν/κ, the magnetic Prandtl210

number, PrM = ν/η, and the thermal Prandtl number211

Pr = ν/χ are unity in all cases. Therefore, the magnetic212

Reynolds number ReM = urms/ηkf and the Péclet num-213

ber Pe = urms/χkf equal the fluid Reynolds number in214

all cases.215

2.4. Test-field methods216

The test-field method implies the simultaneous solu-217

tion of additional equations for the fluctuating magnetic218

field or the fluctuating passive scalar concentration. The219

variables are indicated by the letter T . The equations220

are obtained by subtracting the corresponding averaged221

equations from the original ones and yield222

∂bT

∂t
= ∇×

(

u×B
T
+U × bT + E

′

T

)

+ η∇2bT , (8)223

224

∂cT

∂t
= ∇ ·

(

−uC
T −UcT +F

′

T

)

+ κ∇2cT , (9)225

where E ′

T = u×b−u× b and F ′

T = −(uc−uc) are non-226

linear terms that are neglected in the second-order cor-227

relation approximation. Including those terms yields the228

new subtle effects that we found in Brandenburg et al.229

(2017) for ηt and in the present work for κt.230

In the following, we assume planar averages231

and denote them by overbars, e.g., B(z, t) =232

∫

B(x, y, z, t) dz/L2
⊥
, where L⊥ is the extent of the com-233

putational domain in the xy plane. In the spirit of the234

test-field method, one decouples Equations (8) and (9)235

from those for the actual fluctuations and solve them236

for a set of mean fields (mean scalars) such that one can237

compute αij , ηij , and κij uniquely for each time step and238

at each value of z. Using as a shorthand s = sin kT z and239

c = cos kT z, we choose sinusoidal and cosinusoidal test240

fields B
1
= (s, 0, 0), B

2
= (c, 0, 0), B

3
= (0, s, 0), and241

B
4
= (0, c, 0), as well as C

1
= s, C

2
= c, i.e., four dif-242

ferent test fields for B
T
and two different ones for C

T
.243

This allows us to compute the coefficient αij , ηij , and244

κij in the parameterizations245

ET
i = αijB

T

j − ηij(∇×B
T
)j , (10)246

247

FT

i = γiC
T − κij∇jC

T
, (11)248

where ET = u× bT , F
T = −ucT , and i, j = 1, 2 denote249

the x and y components. The aforementioned turbulent250

viscosity and passive scalar diffusivity are then given by251

ηt = (η11 + η22)/2 and κt = (κ11 + κ22)/2. The ef-252

fective pumping velocity γ of the mean magnetic field253

vanishes for homogeneous turbulence, but the effective254

pumping velocity γ of the mean passive scalar field due255

to the density stratification of the fluid (Elperin et al.256
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1997; Rogachevskii 2021) was found to lead to downward257

transport of the mean passive scalar concentration (to258

the maximum of the mean fluid density) in density strat-259

ified turbulence (Brandenburg et al. 2012; Haugen et al.260

2012).261

It should be noted that in the original application262

of the test-field method, Schrinner et al. (2005, 2007)263

used a combination of constant and linearly varying test264

fields. This choice is appropriate for computing turbu-265

lent transport properties on the largest possible scales,266

but it is not well suited for the use in periodic domains.267

This was the main reason why Brandenburg (2005) em-268

ployed sinusoidal and cosinusoidal test fields, but it269

also provided a natural way of computing the depen-270

dence of the turbulent transport coefficients on differ-271

ent length scales or for different wavenumbers. The re-272

sulting formulation of the electromotive force in Fourier273

space translates directly into one in terms of integral274

kernels (Brandenburg et al. 2008). This allowed us to275

avoid the restriction to large scale separation in space276

and time by replacing the multiplications with turbu-277

lent transport coefficients by a convolution with the ap-278

propriate integral kernels; see Hubbard & Brandenburg279

(2009) and Rheinhardt & Brandenburg (2012) for cor-280

responding studies. The effect of different spatial281

scales on turbulent mixing was also investigated by282

de Avillez & Mac Low (2002) using checkerboard pat-283

terns, but this approach cannot so easily be utilized in284

the framework of mean-field theory.285

2.5. Active scalar diffusivity286

To determine the turbulent radiative diffusion coeffi-287

cient, we use the standard mean-field expression for the288

enthalpy flux (Rüdiger 1989),289

Fenth = −χtρT∇S, (12)290

where the actual enthalpy flux is computed as Fenth =291

(ρU)′cpT ′, and correlate their z components against292

each other to determine χt. Here, primes denote the293

departures from the horizontal means. This method294

follows that employed by Käpylä & Singh (2022), who295

also computed the turbulent kinematic viscosity in an296

analogous way be correlating the yz component of the297

Reynolds stress against the corresponding component of298

the mean-field strain tensor. The current setup differs299

from that in Käpylä & Singh (2022) in that a large-scale300

velocity is not imposed and therefore no off-diagonal301

Reynolds stress is present. The emergence of such302

off-diagonal components in shear flows was studied by303

Mitra et al. (2009), who found an increase of the turbu-304

lent magnetic diffusivity.305

2.6. Simulations, data, and error bars306

We use the Pencil Code for our simulations307

(Pencil Code Collaboration et al. 2021). It uses sixth308

order accurate spatial derivatives and a third order309

timestepping scheme. It also allows us to compute tur-310

bulent transport coefficients with the test-field method.311

For that purpose, we invoke the modules testfield z312

and testscalar within the Pencil Code.313

We present our results for α, ηt, and κt in normalized314

form and divide α by A0 = urms/3 and ηt and κt by315

D0 = urms/3kf . This allows us to compare runs with316

different rms velocity amplitudes.317

Our results for the turbulent transport coefficients are318

functions of z and t. Since the turbulence in our simula-319

tions is homogeneous, we average the resulting transport320

coefficients over z. The resulting time series is then av-321

eraged over statistically steady intervals and error bars322

have been estimated by taking the largest departure to323

the average from any one third of the full time series.324

For sufficiently long time series, the resulting errors are325

rather small, so we often exaggerate them by a factor of326

3 or 4, as is indicated in the plots below.327

3. RESULTS328

3.1. Passive scalar results and comparison329

Although the results for ηt have already been com-330

puted in Brandenburg et al. (2017), we compute them331

here again by invoking similar test-field routines in332

the Pencil Code at the same time. The test-field333

method for passive scalars was already described in334

Brandenburg et al. (2009). Rädler et al. (2011) applied335

it to passive scalar diffusion in compressible flows. In the336

following, we use urms and kf to express our results in337

nondimensional form by normalizing the diffusivities by338

urms/3kf . Using earlier test-field results, this was found339

to be an accurate estimate (Sur et al. 2008).340

Figure 1 shows a comparison of time series of κt and341

ηt for nonhelical and helical cases and Re = 2.4. While342

κt appears to be unaffected by the presence of helicity,343

ηt is suppressed, as already found by Brandenburg et al.344

(2017). For Re = 120, however, κt is found to be en-345

hanced by the presence of helicity; see Figure 2. We346

have considered a number of additional simulations with347

other values of Re. The dependence on Re is shown in348

Figure 3; see also Table 1 for a summary. The trend349

in ηt does not follow a smooth dependence, suggesting350

that statistical noise or other unaccounted factors may351

have influenced the results.352

The forcing is kept constant between different runs, so353

the resulting rms velocity depends on how stiff the sys-354

tem is against this forcing. We see that the value of the355

Mach number increases slightly with increasing values of356

the Reynolds number. We also see that the Mach num-357
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Figure 1. Time series of κt (upper panel) and ηt (lower
panel) for Runs A without helicity (solid black line) and with
helicity (dashed red line) with Re = 2.4. The thick black and
red horizontal lines denote the time-averaged values.

Figure 2. Similar to Figure 1, but for Runs F with Re =
120.

ber is slightly enhanced in the simulations with helical358

forcing. This suggests that such flows are less effective359

in dissipating energy. These slight changes in Ma do not360

significantly affect our results for ηt and κt, because we361

always present our results in normalized form and we362

are here only interested in subsonic turbulence. Note363

also that the compressibility of the turbulence affects364

only non-helical contributions to the turbulent diffusion365

(Rogachevskii et al. 2018).366

In Appendix A, we compare our results with different367

degrees of helicity with earlier simulations of rotating368

stratified turbulence in which helicity is automatically369

Figure 3. Reynolds number dependence of κt (upper
panel) and ηt (lower panel) for nonhelical (solid lines) and
helical (dashed lines). The error bars have been exaggerated
by a factor of 3.

being produced in self-consistent way. It turns out, how-370

ever, that the enhancement of turbulent diffusion by he-371

licity is not being reproduced in such simulations. We372

argue that this is caused by the more dominant effect of373

rotation which strongly suppresses turbulent transport.374

3.2. Active scalar results375

The results of simulations similar to those of376

Käpylä & Singh (2022) are shown in Figure 4. Here we377

see the turbulent heat diffusivity computed from an im-378

posed entropy gradient (see Käpylä & Singh 2022, for379

details) for non-helical and helical cases. For Pe = Re >380

10, there is a statistically significant increase of χt by381

about 10% for the helical cases relative to the nonheli-382

cal ones. These results were obtained by correlating the383

actual enthalpy flux with the mean-field expression given384

by Equation (12). In Käpylä & Singh (2022), an alter-385

native independent method was used where the mean386

entropy profile is initially forced and then allowed to387

decay. This yielded very similar results.388

The kinetic helicity effects on turbulent diffusion of the389

mean magnetic and scalar fields are partially related to390

the helicity effect on the effective correlation time. To391

examine this in more detail, we compute the correlation392
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Table 1. Values of κnhel
t and κhel

t as well as ηnhel
t and ηhel

t , normalized by D0 ≡ urms/3kf , for the nonhelical and helical cases,
and αhel normalized by A0 ≡ urms/3, for the helical cases for different values of Re. The value of Ma is given for completeness.

Run Re κnhel
t /D0 κhel

t /D0 ηnhel
t /D0 ηhel

t /D0 αhel/A0 Manhel Mahel

A 2.4 1.14± 0.01 1.12± 0.01 1.12± 0.01 0.84± 0.015 −0.83± 0.01 0.062 0.063

B 3.4 1.47± 0.03 1.45± 0.03 1.39± 0.02 0.97± 0.011 −0.95± 0.02 0.068 0.070

C 5.0 1.87± 0.04 1.93± 0.04 1.72± 0.00 1.06± 0.03 −1.02± 0.02 0.077 0.081

D 8.7 2.26± 0.03 2.54± 0.01 1.96± 0.05 1.15± 0.02 −0.96± 0.01 0.089 0.099

E 20.7 2.54± 0.02 2.94± 0.01 2.03± 0.03 1.40± 0.02 −0.83± 0.02 0.105 0.120

F 45.5 2.50± 0.03 2.82± 0.07 1.95± 0.08 1.58± 0.16 −0.75± 0.03 0.116 0.128

G 120.6 2.27± 0.01 2.58± 0.12 1.73± 0.08 1.46± 0.28 −0.69± 0.07 0.123 0.130

Table 2. Values of χnhel
t and χhel

t normalized by D0 ≡
urms/3kf , for the nonhelical and helical cases. The value of
Ma is given for completeness.

Run Re χnhel
t /D0 χhel

t /D0 Ma

A 1.2 0.63± 0.03 0.59± 0.02 0.031

B 4.7 1.86± 0.08 1.78± 0.09 0.048

C 11.8 2.51± 0.05 2.72± 0.07 0.060

D 27.6 2.57± 0.01 2.95± 0.07 0.070

E 75.1 2.40± 0.03 2.67± 0.04 0.077

F 151.9 2.25± 0.02 2.52± 0.04 0.077

G 307.0 2.18± 0.04 2.42± 0.05 0.078

1 10 100

Re

1

10

χ
t
/
D

0

Figure 4. Dependence of χt for nonhelical (black symbols,
solid line) and fully helical turbulence (red symbols, dashed
line) as a function of Reynolds number Re = Pe/Pr with
Pr = 1 in all cases. To make the error bars more visible,
they have been exaggerated by a factor of 4.

times as the late-time limit of393

τc(t) =

∫ t

t0

〈u(t0) · u(t′)〉 dt′
/

〈

u2(t0)
〉

. (13)394

0 5 10 15 20 25 30
turmskf

0

5

10

15

20

τ
c(
t)
=

∫

t t
0
〈u

(t
0)
·
u
(t
′ )
〉d
t
′

〈u
(t
0)
〉2

ǫf = 0.928

ǫf = 0.839

ǫf = 0.545

ǫf = -0.002

Figure 5. Correlation time of turbulence computed from
time integrals of velocity autocorrelation from runs with
Re = 13 and different relative helicity ǫf = 〈u · ω〉/kfu

2
rms.

The result is shown in Figure 5 for simulations with395

Re = 13 and different values of the relative helicity. We396

see that, through the presence of kinetic helicity, the cor-397

relation time of the turbulent velocity field increases and398

is more than doubled as the kinetic helicity is increased399

from zero to one. We note that the Reynolds number400

of these simulations is very modest. Further studies at401

larger Reynolds numbers would be needed to establish402

the dependence of the correlation time on the kinetic he-403

licity in more turbulent regimes; see Rogachevskii et al.404

(2025).405

Another way to estimate the correlation time is ob-406

tained from the ratio of kinetic energy and its dissipation407

rate:408

τc =
EK

ǫK
, (14)409

where EK = 1
2 〈u2〉 and ǫK = 2ν〈S2〉. The results for410

the correlation time are summarized in Figure 6. Both411

measures of τc show an increasing trend as a function of412

the fractional helicity, ǫf = u · ω/kfu
2
rms.413



7

0.00 0.25 0.50 0.75 1.00

ǫf

2.5

5.0

7.5

τ
c
u
rm

s
k
f

τ
corr
c

τ
diss
c

Figure 6. Correlation time τc as function of ǫf from the
late-time limit of Equation (13) (black symbols) and from
Equation (14) (red symbols) normalized by the turnover time
(urmskf)

−1 for the same runs as in Figure 5. The dotted lines
are proportional to ǫ4f , and the error bars are boosted by a
factor of ten for τdiss

c and by five for τ corr
c .

Regarding the usage of the energy dissipation rate ǫK414

for the timescale arguments of turbulence, we should415

note the following points. Although developed turbu-416

lence contains a very wide range of scales, it is still417

meaningful to use ǫK for the arguments of turbulence418

timescale. In the inertial range of fully developed tur-419

bulence, we have a local equilibrium between the pro-420

duction rate of turbulent energy and its dissipation rate.421

In this range, the dissipation rate is equivalent both to422

the energy injection rate at the integral scale and to423

the energy flux (the spectral energy transfer from larger424

scale to smaller scale). In this sense, the energy dissipa-425

tion rate ǫK is the most appropriate turbulence statisti-426

cal quantity that describes the timescale of turbulence.427

This is the reason why we also adopt ǫK in the timescale428

argument of turbulence.429

Turbulent transport coefficients depend on some sta-430

tistical quantities such as the turbulent energy EK, its431

dissipation rate ǫK, kinetic helicity HK, etc, as well as432

the time and/or length scales of turbulence, which are433

determined by EK, ǫK and HK, as well as the veloc-434

ity strain rate, vorticity, pressure, etc. Generally, the435

kinetic helicity HK depends on the vorticity/rotation436

and density stratification or turbulence inhomogeneity437

as well as the external forcing. Here, for simplicity of438

the argument, we assume that deviations of the tur-439

bulence timescale from the usual eddy turnover time,440

τc = EK/ǫK, can be expressed in terms of the kinetic441

helicity as τc(HK), and examine the dependence of τc442

on HK.443

3.3. Comparisons with the theoretical predictions444

Let us compare the obtained numerical results with445

the theoretical predictions by Rogachevskii et al. (2025),446

where the path-integral approach for a random velocity447

field with a finite correlation time has been used. Ac-448

cording to the theory, the turbulent magnetic diffusion449

coefficient η
t
(HK) is given by450

η
t
(HK) = η

t0

τc(HK)

τ0

(

1− τ2c (HK)

3

H2
K

〈u2〉

)

, (15)451

while the turbulent diffusion coefficient κ
t
(HK) of the452

scalar field is453

κ
t
(HK) = κ

t0

τc(HK)

τ0

(

1− τ2c (HK)

6

H2
K

〈u2〉

)

, (16)454

where HK = 〈u · ω〉, η
t0

= η
t
(HK = 0), κ

t0
= κ

t
(HK =455

0) and τ0 = τc(HK = 0) = (urmskf)
−1. Applying two456

independent methods (based on the non-instantaneous457

correlation functions and the rate of energy dissipation)458

for the calculation of the correlation time versus the459

fraction of kinetic helicity, our numerical results suggest460

that461

τc(HK)/τ0 ≈ 1 + 0.5ǫ4f . (17)462

Using Equations (15)–(17), we plot in Figure 7 the de-463

pendences ηt(0) − ηt and κt(0) − κt on the fraction464

ǫf of the kinetic helicity for Re = 13. Here, ηt(0) =465

ηt(ǫf = 0) and κt(0) = κt(ǫf = 0), and α is normalized466

by A0 = urms/3, while turbulent diffusion coefficients467

are normalized by D0 = urms/3kf , where kf is the forc-468

ing wavenumber. The theoretical dependencies given469

by Equations (15)–(17) are shown as dashed and dot-470

ted blue and black curves. The theoretical results for471

ǫf >∼ 0.85 are shown as dotted lines, because they may472

not be reliable.473

As follows from Figure 7, the turbulent magnetic dif-474

fusion coefficient is reduced by the kinetic helicity, while475

the turbulent diffusion coefficient for the scalar field476

is increased by the kinetic helicity. These arguments477

can explain the results of our direct numerical simula-478

tions; see also Fig. 1 for Re = 120 in Rogachevskii et al.479

(2025).480

Using an approach based on the Furutsu-Novikov the-481

orem (Furutsu 1963; Novikov 1965), Kishore & Singh482

(2025) found that the turbulent diffusivities of both483

the mean passive scalar and the mean magnetic field484

are suppressed by the kinetic helicity. Note that485

Kishore & Singh (2025) have not taken into account the486

dependence of the correlation time on the kinetic he-487

licity. This may explain the discrepancy with our nu-488

merical results related to the helicity effect on turbulent489

diffusion of the scalar fields.490
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Figure 7. Dependencies of α (red solid line), ηt(0)−ηt (blue
solid line) and κt(0)− κt (black solid line) on the fraction ǫf
of the kinetic helicity for Re = 13. The theoretical depen-
dencies given by Equations (15)–(17) are shown by dashed
and dotted blue and black curves. The theoretical results for
ǫf >∼ 0.85 are shown as dotted lines, because they may not
be reliable.

3.4. Scale dependence491

To assess the scale dependence of the difference of tur-492

bulent transport for helical and nonhelical cases, we have493

varied the ratio kf/k1, keeping the viscosity constant.494

This implies that Re decreases with increasing kf . In all495

cases, we used 5123 meshpoints. The results for helical496

and nonhelical turbulence are compared in Figure 8 and497

Table 3. We see that there is a slight increase in the498

difference between helical and nonhelical cases. For κt,499

however, the difference between helical and nonhelical500

cases is rather weak. In all cases, we used 5123 mesh-501

points.502

4. CONCLUSIONS503

Our simulations have revealed a surprising difference504

in the helicity effect for passive and active scalars on505

the one hand and magnetic fields on the other. As for506

magnetic fields, the helicity effect does not exist for small507

Reynolds numbers. Above Reynolds numbers of about508

20, it does not change much any more and there is no509

indication that it disappears at larger values.510

The key numerical result of the present study is the511

enhancement of turbulent diffusion of the mean passive512

and active scalar fields by the kinetic helicity. This re-513

sult is opposite to the magnetic case where turbulent514

Figure 8. Scale separation dependence of κt (upper panel)
and ηt (lower panel) for nonhelical (solid lines) and helical
(dashed lines). To make the error bars more visible, they
have been exaggerated by a factor of 4.

magnetic diffusion is decreased by the kinetic helicity.515

We also found that the correlation time of the turbulent516

velocity field increases because of kinetic helicity. The517

latter is one of the main points relevant for understand-518

ing the kinetic helicity effects on turbulent diffusion of519

scalar and magnetic fields (see Section 3.3).520

The enhancement of the passive scalar diffusion ex-521

amined here can be compared with the effect of ro-522

tation and stratification on the passive scalar diffusiv-523

ity. As discussed in the introduction, rotating stratified524

flows also attain kinetic helicity and for such flows, it525

was previously found that the passive scalar diffusiv-526

ity gets reduced as the rotation speed is increased, just527

like the magnetic diffusivity, which also became smaller528

(Brandenburg et al. 2012). This effect was not ascribed529

to the presence of helicity, but it was simply regarded as530

a rotational suppression of the magnetic diffusivity. This531

difference can probably be explained by the anisotropy532

of the flow that is being produced in rotating stratified533

turbulence, which is a more complicated situation than534

just a helically forced flow.535

Qualitatively, one could understand the helicity ef-536

fect on the magnetic field as a tendency to support dy-537

namo action, or, alternatively, as a tendency for rota-538

tional suppression of the magnetic diffusivity. For pas-539
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Table 3. Values of κnhel
t and κhel

t as well as ηnhel
t and ηhel

t , normalized by D0 ≡ urms/3kf , for the nonhelical and helical cases,
and αhel normalized by A0 ≡ urms/3, for the helical cases for different values of kf . The value of Ma is given for completeness.

Run kf/k1 Re κnhel
t /D0 κhel

t /D0 ηnhel
t /D0 ηhel

t /D0 αhel/A0 Manhel Mahel

a 2.2 281.1 1.66± 0.03 1.85± 0.03 1.49± 0.14 1.31± 0.05 −0.65± 0.01 0.125 0.131

b 5.1 120.6 2.27± 0.01 2.48± 0.06 1.72± 0.06 1.31± 0.13 −0.69± 0.01 0.123 0.130

c 10.0 59.3 2.49± 0.01 2.71± 0.02 1.88± 0.04 1.33± 0.04 −0.76± 0.00 0.119 0.129

sive and active scalars, on the other hand, there is no540

dynamo effect. Furthermore, in some special determinis-541

tic flows (the Roberts-IV flow; see Devlen et al. (2013)),542

the effective magnetic diffusivity can even be negative543

and thereby lead to dynamo action. Such an effect544

was never found for passive or active scalars or mag-545

netic fields in turbulent flows at high Reynolds num-546

bers. What has been previously found, however, is a547

suppression of both ηt and κt for potential (compress-548

ible) flows (Rädler et al. 2011; Rogachevskii et al. 2018).549

In the present work, however, we have only considered550

nearly incompressible flows for actual turbulence simu-551

lations, as opposed to some constructed flows such as552

the Roberts flow.553
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for the simulations of this study, the Pencil Code

(Pencil Code Collaboration et al. 2021), is available on
https://github.com/pencil-code/. The simulation se-

tups and corresponding secondary data are available on

http://doi.org/10.5281/zenodo.15083000.
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581

APPENDIX582

A. COMPARISON WITH EARLIER WORK583

In Figure 9, we compare with the values of the α effect and the turbulent magnetic and passive scalar diffusivities584

from the earlier work of Brandenburg et al. (2012), in which kinetic helicity is being produced by the interaction585

with rotation and stratification. Here, we have estimated the fractional helicity from the product of Coriolis number586

Co = 2Ω/urmskf and gravity number Gr = 1/Hρkf , where Ω is the angular velocity, kf is the forcing wavenumber of587

the turbulence, and Hρ is the density scale height. We used a formula by Jabbari et al. (2014), ǫf = 2CoGr. For the588

present simulations, we used ǫf ≈ 2σ/(1 + σ2).589

https://github.com/pencil-code/
http://doi.org/10.5281/zenodo.15083000
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Figure 9. Dependence of the fractional helicity, ǫf , and comparison of the values of α and the turbulent magnetic and
passive scalar diffusivities with the earlier work of Brandenburg et al. (2012), in which kinetic helicity is being produced by
the interaction with rotation and stratification. The originally used symbols of Brandenburg et al. (2012) have been retained:
−α̃⊥ and −α̃‖ for the normalized perpendicular and parallel components of the α effect, β̃⊥ and β̃‖ for those of the magnetic

diffusivity, and β̃C

⊥ and β̃C

‖ for those of the passive scalar diffusivity. The tildes indicate appropriate normalization. In the

second panel, we also show in blue 1− 3α2/u2
rms.

There is not much agreement with our present simulations, shown in red. This shows that other effects such as the590

rotational suppression of turbulent transport plays a more dominant role than just the helicity.591
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