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Powerful lasers may in future produce magnetic fields that would allow us to study
turbulent magnetohydrodynamic inverse cascade behavior. This has so far only been
seen in numerical simulations. In the laboratory, however, the produced fields may be
highly anisotropic. Here, we present corresponding simulations to show that, during
the turbulent decay, such a magnetic field undergoes spontaneous isotropization. As a
consequence, we find the decay dynamics to be similar to that in isotropic turbulence. We
also find that an initially pointwise nonhelical magnetic field is unstable and develops
magnetic helicity fluctuations that can be quantified by the Hosking integral. It is a
conserved quantity that characterizes magnetic helicity fluctuations and governs the
turbulent decay when the mean magnetic helicity vanishes. As in earlier work, the ratio
of the magnetic decay time to the Alfvén time is found to be around 50 in the helical
and nonhelical cases. At intermediate times, the ratio can even reach a hundred. This
ratio determines the endpoints of cosmological magnetic field evolution.

1. Introduction

In the absence of any initial velocity field and without any type of forcing, an initially
random magnetic field can only decay. This decay can be sped up by turbulent gas
motions driven through the Lorentz force that is being exerted by the magnetic field
itself. The decay of such a random field obeys powerlaw behavior where the magnetic
energy density EM decays with time t like EM(t) ∝ t−p, and the magnetic correlation
length ξM increases like ξM ∝ tq. For a helical magnetic field, we have p = q = 2/3
(Hatori 1984; Biskamp & Müller 1999), while for a nonhelical magnetic field, we have
p = 10/9 and q = 4/9 (Hosking & Schekochihin 2021; Zhou et al. 2022). Such a decay
has been seen in many hydromagnetic numerical simulations (Brandenburg et al. 2015;
Hosking & Schekochihin 2021; Armua et al. 2023; Brandenburg et al. 2023), but not yet
in plasma experiments. With the advance of high-powered lasers it is already possible to
produce magnetic fields in the laboratory (Tzeferacos et al. 2018), and similar advances
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may also allow us to achieve sufficient scale separation to perform meaningful inverse
cascade experiments. However, such magnetic fields may be strongly anisotropic, so the
question arises to what extent this affects the otherwise familiar decay dynamics.

Our goal here is to study the decay of an array of magnetic flux tubes with an electric
current that is aligned with the magnetic field (Jiang et al. 2021). Such a field is indeed
highly anisotropic such that the correlation length in the direction along the tubes is
much larger than that perpendicular to it. A simple numerical realization of such a
magnetic field is what is called the Roberts field I, which is more commonly also known
as Roberts flow I. It is one of four flow fields studied by Roberts (1972) in the context of
dynamo theory. The field is fully helical, but with a slight modification, it can become a
pointwise nonhelical field, which is then called the Roberts field II. Both fields are here
of interest. They are defined in section 2, along with a proper measure of anisotropy, the
relevant evolution equations, and relevant input and output parameters. In section 3, we
present numerical results for both flows using different magnetic diffusivities and scale
separation ratios. Inverse cascading during the turbulent decay of helical and nonhelical
magnetic fields has applications to primordial magnetic fields in the radiation dominated
era of the Universe, which are discussed in section 4. We conclude in section 5.

2. Our model

2.1. Roberts fields

To fix our geometry, we assume magnetic flux tubes to extend in the z direction and
being perpendicular to the xy plane. Such a field can be realized by the so-called Roberts
field I, i.e., the magnetic field B is given by

B = BI ≡ ∇× φẑ +
√
2k0φẑ, where φ = k−1

0 B0 sin k0x sin k0y. (2.1)

is an xy periodic field. Such a magnetic field has a component in the z direction, but no
variation along that direction, so it is highly anisotropic. This may change with time as
the magnetic field undergoes a turbulent decay. The Roberts field I is maximally helical
with A · B =

√
2k−1

0 B2
0(sin

2 k0x + sin2 k0y), so 〈A · B〉 =
√
2k−1

0 B2
0 . Here, A is the

magnetic vector potential and B = ∇×A. The Roberts field II, by contrast, is given by

B = BII ≡ ∇× φẑ + kf φ̃ẑ, where φ̃ = k−1
0 B0 cos k0x cos k0y, (2.2)

where φ̃ is 90◦ phase shifted in the x and y directions relative to φ(x, y) and kf =
√
2k0 is

the eigenvalue of the curl operator for field I, i.e., ∇×BI = kfBI, so BI ·∇×BI = kfB
2
I ,

while BII ·∇×BII = 0 pointwise. Both for fields I and II, we have 〈B2〉 = 2B2
0 .

2.2. Quantifying the emerging anisotropy

To quantify the degree of anisotropy, we must separate the derivatives of the magnetic
field along the z direction (∇‖) from those perpendicular to it (∇⊥), so ∇ = ∇‖ +∇⊥.
We also decompose the magnetic field analogously, i.e., B = B‖+B⊥. The mean current
density can be decomposed similarly, i,e., J = J‖+J⊥, but this decomposition mixes the
underlying derivatives. We see this by computing J ≡ ∇ ×B (where the permeability
has been set to unity). Using this decomposition, we find

J = ∇‖ ×B⊥ +∇⊥ ×B‖ +∇⊥ ×B⊥, (2.3)

noting that ∇‖×B‖ = 0. The term of interest for characterizing the emergent isotropiza-
tion is the first one, ∇‖×B⊥, because it involves only parallel derivatives (z derivatives),
which vanish initially. We monitor the ratio of its mean squared value to 〈J2〉.
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The last term in equation (2.3) is just J‖ = ∇⊥ ×B⊥, but the first and second terms
cannot simply be expressed in terms of J⊥, although ∇‖ × B⊥ would be J⊥ if the
magnetic field only had a component in the plane, and ∇⊥ × B‖ would be J⊥ if the
magnetic field only had a component out of the plane. We therefore denote those two
contributions in the following by J⊥⊥ and J⊥‖, respectively, so that J⊥⊥ + J⊥‖ = J⊥.
Thus, as motivated above, to monitor the emergent isotropization, we determine

〈J2
⊥⊥〉/〈J2〉. For isotropic turbulence, we find that this ratio is about 4/15 ≈ 0.27,

and this is also true for 〈J2
⊥‖〉/〈J2〉; see Appendix A for an empirical demonstration. In

the expression for 〈J2〉, there is also a mixed term, J2
⊥m = −2〈Bx,zBz,x + By,zBz,y〉,

which turns out to be positive in practice. Here, commas denote partial differentiation.
Thus, we have

〈J2〉 = 〈J2
⊥⊥〉+ 〈J2

⊥‖〉+ 〈J2
⊥m〉+ 〈J2

‖ 〉. (2.4)

In the isotropic case, we find 〈J2
‖ 〉/〈J2〉 = 1/3, and for the mixed term we then have

〈J2
⊥m〉/〈J2〉 = 2/15 ≈ 0.13.

2.3. Evolution equations

To study the decay of the magnetic field, we solve the evolution equations of magneto-
hydrodynamics (MHD) for an isotropic compressible gas with constant sound speed cs,
so the gas density ρ is proportional to the pressure p = ρc2s . In that case, ln ρ and the
velocity u obey

D ln ρ

Dt
= −∇ · u, (2.5)

Du

Dt
= −c2s∇ ln ρ+

1

ρ
[J ×B +∇ · (2ρνS)] , (2.6)

where D/Dt = ∂/∂t+u ·∇ is the advective derivative, ν is the kinematic viscosity, S is
the rate-of-strain tensor with components Sij = (ui,j + uj,i)/2− δij∇ ·u/3, and α is the
photon drag coefficient (Banerjee & Jedamzik 2004), which is included in some of our
simulations. To ensure that the condition ∇ ·B = 0 is obeyed at all times, we also solve
the uncurled induction equation for A, i.e.,

∂A

∂t
= u×B − ηJ . (2.7)

As before, the permeability is set to unity, so J = ∇×B is the current density.
We use the Pencil Code (Pencil Code Collaboration et al. 2021), which is well

suited for our MHD simulations. It uses sixth order accurate spatial discretizations and
a third order time-stepping scheme. We adopt periodic boundary conditions in all three
directions, so the mass is conserved and the mean density is 〈ρ〉 ≡ ρ0 is constant. The size
of the domain is L⊥ × L⊥ × L‖ and the lowest wavenumber in the plane is k1 = 2π/L⊥.
By default, we choose ρ0 = k1 = cs = µ0 = 1 which fixes all dimensions in the code.

2.4. Input and output parameters

In the following, we study cases with different values of k0. We specify the amplitude
of the vector potential to be A0 = 0.02 for most of the runs with Roberts field I and
A0 = 0.05 for Roberts field II. We use k0 = 16, so B0 = k0A0 = 0.32 for field I and 0.8 for
field II. For other values of k0, we adjust A0 such that B0 is unchanged in all cases. This
implies 〈B2〉 = 2B2

0 = 0.2 and 1.28, and therefore Brms = 0.45 and 1.13, respectively.
The initial values of the Alfvén speed, vA0 = Brms/

√
µ0ρ0, are therefore transonic. We

often give the time in code units, (csk1)
−1, but sometimes we also give it in units of
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(vA0k0)
−1, which is physically more meaningful. However, we must remember that the

actual magnetic field and therefore the actual Alfvén speed are of course decaying.
In addition to the Roberts field, we add to the initial condition Gaussian-distributed

noise of a relative amplitude of 10−6. This allows us to study the stability of the field
to small perturbations. To measure the growth rate, we compute the semilogarithmic
derivative of 〈J2

⊥⊥〉/〈J2〉 for a suitable time interval.
The number of eddies in the plane is characterized by the ratio k/k1. The aspect ratio

of the domain is quantified by L‖/L⊥. The electric conductivity is quantified by the
Lundquist number Lu = vA0/ηk0, and the kinematic viscosity is related to η through the
magnetic Prandtl number, PrM = ν/η. In all our cases, we keep PrM = 5. For most of
our runs, we use η × 10−7cs/k1 in code units.
Important output parameters are the growth rate λ = d ln(〈J2

⊥⊥〉/〈J2〉)/dt, evaluated
in the regime where it is approximately constant. It is made nondimensional through the
combination λ/vA0k0. We also present magnetic energy and magnetic helicity variance
spectra, Sp(B) and Sp(h), respectively. These spectra also depend on k and t, so we
denote the spectra sometimes also as Sp(B; k, t) and Sp(h; k, t), respectively.

Since ρ ≈ ρ0 = 1, the value of Brms is also equal to the instantaneous Alfvén speed,
vA, and its square is the mean magnetic energy density, EM = 〈B2〉/2. The latter can
also be computed from the magnetic energy spectrum EM(k, t) = Sp(B) through EM =
∫

EM(k, t) dk. The integral scale of the magnetic field is given by

ξM(t) =

∫

k−1EM(k, t) dk/EM. (2.8)

It is also of interest to compare its evolution with the magnetic Taylor microscale, ξT =
Brms/Jrms, where Jrms is the root-mean-squared current density, i.e., (∇ ×B)rms. (We
recall that the permeability was set to unity; otherwise, there would have been an extra
µ0 factor in front of Jrms.) Both in experiments and in simulations, ξT may be more
easily accessible than ξM, so it is important to find out whether the two obey similar
scaling relations.
During the decay, EM = v2A/2 decreases and ξM increases. The Alfvén time, i.e., the

ratio τA ≡ ξM/vA, therefore also increases; see Banerjee & Jedamzik (2004) and Hosking
& Schekochihin (2023) for early considerations of this point. Both for standard (isotropic)
helical decay with vA ∝ t−1/3 and ξM ∝ t2/3, as well as for nonhelical decay with
vA ∝ t−5/9 and ξM ∝ t4/9, the value of τA increases linearly with t, i.e.,

t ∝ τA(t). (2.9)

This is also consistent with the idea that the turbulent decay is self-similar (Brandenburg
& Kahniashvili 2017). It was found that the ratio t/τA(t) approaches a constant that
increases with the Lundquist number (Brandenburg et al. 2024). The difference between
the quantity t/τA(t) and the factor CM defined in Brandenburg et al. (2024) is the
exponent p = 10/9 in the relation EM ∝ t−p for nonhelical and p = 2/3 for helical
turbulence with t/τA = CM/p.
To compute the Hosking integral, we need the function IH(R, t), which is a weighted

integral over Sp(h), given by

IH(R, t) =

∫ ∞

0

w(k,R) Sp(h; k, t) dk, where w(k,R) =
4πR3

3

[

6j1(kR)

kR

]2

, (2.10)

and j1(x) = (sinx − x cosx)/x2 is the spherical Bessel function of order one. As shown
by Zhou et al. (2022), the function IH(R, t) yields the Hosking integral in the limit of
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Figure 1. Evolution of 〈J2
⊥⊥〉/〈J2〉 for (a) Roberts field I with k0 = 4 (blue), 8 (green), 16

(orange), 32 (red), and 64 (black dashed), and for (b) Roberts field II with k0 = 2 (black), 4
(blue), 8 (green), 16 (orange), 32 (red), and 64 (black dashed). The short thick line on the upper
right indicates the value of 4/15, which is reached only at much later times outside this plot.
The insets demonstrates that 〈J2

⊥⊥〉/〈J2〉 → 4/15 much later.

large radii R, although R must still be small compared with the size of the domain. They
referred to this as the box-counting method for a spherical volume with radius R.

3. Results

3.1. Isotropization

In figure 1, we show the evolution of 〈J2
⊥⊥〉/〈J2〉 for Roberts fields I and II. We see

that, after a short decay phase, exponential growth commences followed by a saturation
of this ratio. We expect the ratio 〈J2

⊥⊥〉/〈J2〉 to reach the value 4/15 at late times; see
Appendix A. The insets of figure 1 show the degree to which this is achieved at late
times. Especially in the helical case, when inverse cascading is strong, the peak of the
spectrum has already reached the lowest wavenumber of the domain. This is probably
the reason why the value of 4/15 has not been reached by the end of the simulation.
The early growth of 〈J2

⊥⊥〉/〈J2〉 shows that both the Roberts fields I and II are unstable
to perturbations and develop an approximately isotropic state. The normalized growth
rates are given in table 1 along with the times tp of maximum growth. The normalized
values are in the range 0.7 to 6, but mostly around unity for intermediate values around
k0 = 16. The normalized times, tpvA0k0, tend to decrease with increasing values of k0
and are about ten to twenty times larger for field I than for field II. This difference was
also found in another set of simulations in which B0 was the same for fields I and II; see
Appendix B.
Visualizations ofBz on the periphery of the computational domain are shown in figure 2

for Roberts fields I and II. The initially tube-like structures are seen to decay much faster
for Roberts field II. At time t = 100, the magnetic field has much larger structures for
Roberts field I than at time t = 1000 for Roberts field II.

3.2. Spectral evolution

In figure 3, we plot magnetic energy and magnetic helicity variance spectra for the
Roberts field I. Note that the spectra are normalized by v2Ak

−1
0 and v4Ak

−3
0 , respectively.

At early times, the spectra show spikes at k ≈ kf and 2k0, respectively, along with higher
harmonics. We also show the time evolution of the normalized values of these spectra
at the lowest wavenumber k = k1. For Sp(h), we also scale by 2π2/k2, which then gives
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Table 1. Normalized growth rates λ and peak times tp for different values of k0/k1. The
hyphen indicates that no growth occurred.

field k0 = 2 4 8 16 32 64

I λ/vA0k0 = — 2.9 1.4 1.1 0.7 0.5
II λ/vA0k0 = 5.5 1.2 0.8 1.9 1.6 1.0

I tpvA0k0 = — 34 16 7.7 3.4 1.2
II tpvA0k0 = 1.0 1.6 2.0 0.3 0.2 0.1

Figure 2. Visualizations of Bz on the periphery of the computational domain at times t = 1,
10, 30, and 100 for Roberts field I (top) and at times t = 1, 10, 100, and 1000 for Roberts field II
(bottom).

an approximation to the value of the Hosking integral (Hosking & Schekochihin 2021).
Again, we see a sharp rise in both time series when the fields becomes unstable.

We also see that at late times, a bump appears in the spectrum near the Nyquist
wavenumber. This shows that the Lundquist number was somewhat too large for the
resolution of 10243. However, comparing with simulations at lower Lundquist numbers
shows that the large-scale evolution has not been adversely affected by this.
In figure 4, we show the same spectra for the case of Roberts fields II. Again, we

see spikes in the spectra at early times. Those of Sp(B) are again at
√
2k0, along with

overtones, but those of Sp(h) are now at 2
√
2k0 instead of 2 k0, and there are no spikes

of Sp(h) at t = 0. This is a consequence of the fact that the field has zero initial helicity
pointwise, and helicity is quickly being produced owing to the growth of the initial
perturbations. The plot of Sp(h; k1, t) shows nearly perfectly a constant level for tvAk0 =
100. This indicates that the Hosking integral is well conserved by that time.

3.3. Spontaneous production of magnetic helicity variance

As we have seen from figure 4, the case of zero magnetic helicity variance is unstable and
there is a rapid growth of Sp(h) also at small wavenumbers. This was already anticipated
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Figure 3. Evolution of magnetic energy and magnetic helicity variance spectra, Sp(B) and
Sp(h), respectively, for Roberts field I with k0 = 16 at different times ti indicated by different
colors and line types as seen in the time traces on the right. The open black symbols in panels
(b) and (d) correspond to the dotted lines in panels (a) and (c).

by Hosking & Schekochihin (2021), and the present experiments with the Roberts field II
show this explicitly.
We now discuss the function IH(R, t); see Hosking & Schekochihin (2021) and Zhou

et al. (2022). The result is shown in figure 5. For small values of R, IH(R) increases
∝ R3. This indicates that the mean squared magnetic helicity density is not randomly
distributed on those scales. In the present case, the actual scaling is slightly shallower
than R3, which is probably due to the finite scale separation. For R ≈ 1, corresponding
to scales compatible to the size of the computational domain, we see that IH(R) has
a plateau. It is at those scales, R = R∗, that we must determine the Hosking integral
IH(t) = IH(t, R∗). In figure 6, we show the time dependence of IH(t) for Roberts field
II with k0 = 16 normalized both by v4A0/k

5
0 (which is constant) and by E2

Mξ5M (which is
time-dependent). Note that the time axis is here also logarithmic. We see an early rapid
growth of IH(t) over eight orders of magnitude.
Previous work showed that the value of IH(t) can greatly exceed the dimensional

estimate E2
Mξ5M (Zhou et al. 2022). Figure 6 shows that at late times, tvA0k0 > 100, this

is also the case here. After the initial rapid growth phase, however, the normalized value
of IH(t) is still well below unity (around 0.03). The growth of IH/E2

Mξ5M after tvA0k0 > 100
is mostly due to the decay of EM and it is later counteracted by a growth of ξM. The
dashed blue and orange lines in figure 6(a) show separately the evolutions for E2

M/v4A0

and ξ5Mk50, respectively.
If the Hosking scaling applies to the present case of initially anisotropic MHD turbu-

lence, we expect ξM ∝ t4/9 and therefore ξ5M ∝ t20/9. The actual slope seen in figure 6
is however around 3 at late times. For EM, we expect a t−10/9 scaling and therefore
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Figure 4. Same as figure 3, but for the Roberts field II at different times ti as seen in the time
traces on the right.

Figure 5. IH(R) for Roberts field II with (a) k0 = 4 at t = 1 (black), 1.5 (blue), 2.2 (green), 3.2
(orange), and 4.6 (red). and (b) k0 = 16 at t = 46 (black), 147 (blue), 316 (green), 570 (orange),
and 824 (red). The arrow indicates the sense of time.

E2
M ∝ t20/9, i.e, the reciprocal one of ξ5M. Again, the numerical data suggest a larger

value of around 3. In section 4.1, we analyze in more detail the anticipated scaling of
EM(t) ∝ t−p and ξM ∝ tq. We find that the two instantaneous scaling exponents p and q
are indeed larger than what is expected based on the Hosking phenomenology. However,
the instantaneous scaling exponents also show a clear evolution toward the expected
values.
It is interesting to observe that the evolution of IH proceeds in two distinct phases. In

the first one, when tvA0k0 < 2, IH shows a rapid growth that is not exponential; see the
inset of figure 6, where the growth of IH is shown on a semilogarithmic representation.
The growth is closer to that of a power law, at the approximate exponent would be
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Figure 6. Time dependence of (a) IH(t) (black solid line) along with E2
Mξ5M (red solid line) in

units of v4Ak
−5
0 as well as E2

M/v4A0 (blue dashed line) and ξ5Mk5
0 (orange dashed line) and (b) the

ratio IH/E2
Mξ5M for Roberts field II with k0 = 16. The plateaus at 0.03 and 3000 are marked

by dotted lines. In (a), the dashed-dotted straight lines indicate the slopes ∝ t8 (black), ∝ t3

(orange), and ∝ t−3 (blue). The inset in (a) shows the growth of IH(t) in a semilogarithmic
representation along with a line ∝ e30t.

around six, which is rather large. During this phase, the turbulent cascade has not yet
developed, but a nonvanishing and nearly constant value of IH has been established.
However, in units of E2

Mξ5M, its value is rather small (around 0.03).
In the second phase, when tvA0k0 > 100, turbulence has developed, and a turbulent

decay has developed. It is during this time that the ratio IH(t)/E2
Mξ5M approaches

larger values (around 3000) that were previously seen in isotropic decaying turbulence
simulations (Zhou et al. 2022). The reason for this large value was argued to be due to
the development of non-Gaussian statistics in the magnetic field. However, Brandenburg
& Banerjee (2025) presented an estimate in which the value of this ratio is equal to C2

M.
With CM ≈ 50, this would agree with the numerical findings.

4. Cosmological applications

4.1. Evolution in the diagnostic diagram

In view of the cosmological applications of decaying MHD turbulence, it is of interest
to consider the evolution of the actual Alfvén speed vA(t) =

√

2EM/ρ in an evolutionary
diagram as a parametric representation versus ξM(t); see figure 7(a). With vA ∝ t−p/2

and ξM ∝ tq, we expect that vA ∝ ξ−κ
M with κ = p/2q = 1/2 for the fully helical case

of Roberts field I. This is in agreement with early work showing that vA ∝ t1/3 and
ξM ∝ t2/3 (Hatori 1984; Biskamp & Müller 1999).
In figure 7(a), we have also marked the times t = 10 (open symbols) and t = 100 (filled

symbols). The points of constant times depart significantly from the lines of constant
Alfvén time, τA, for which vA = ξM/τA grows linearly with ξM. We expect the times to
be larger by a factor CM than the corresponding values of τA(t). This is indeed to case:
the point t = 100 lies on the line τA = 1, i.e., t/τA = 100. This is twice as much as our
nominal value of about 50.
There is an interesting difference between the cases of Roberts fields I and II in

that for field II, there is an extended period during which ξM shows a rapid decrease
before the expected increase emerges. The fact that such an initial decrease of the
characteristic length scale is not seen for Roberts field I is remarkable. The rapid
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Figure 7. (a) Parametric representation of vA versus ξM for Roberts fields I (red) and II (blue).
The solid (dotted) curves are for η = 2 × 10−7 (η = 4 × 10−6). Note that the red dotted line

for η = 4 × 10−6 starts at the same value vA =
√
1.28 as the nonhelical runs (blue lines).

The similarity between the dotted and solid red lines shows that the initial amplitude does not
matter much. The open (filled) symbols indicate the times t = 10 (t = 100). The dashed-dotted
lines give the slopes κ = 1/2 and 5/4 for Roberts fields I (red) and II (blue), respectively. (b) pq
diagram field fields I (red) and II (blue) with η = 2× 10−7. Larger symbols indicate later times.

Figure 8. (a) t/τA and (b) Lu versus time for Roberts fields I (red) and II (blue).

development of smaller length scales is probably related to the breakup of the initially
organized tube-like structures into smaller scales. In the helical case, however, the
nonlinear interaction among helical modes can only result in the production of modes with
smaller wavenumbers, i.e., larger length scales; see Frisch et al. (1975) and Brandenburg
& Subramanian (2005) for a review. Such a constraint does not exist for the nonhelical
modes, where this can then reduce the effective starting values of ξM and therefore also of
the effective Alfvén time, τA = ξM/vA, early in the evolution. In Appendix B, we present
similar diagrams for different values of k0, but with a drag term included that could be
motivated by cosmological applications.
We inspect the time-dependences of t/τA = vAt/ξM and Lu = vAξM/η for Roberts

fields I and II in figure 8. We see that t/τA(t) reaches values in excess of 100 for t = 100
in both cases. This is more than what has been seen before, but it also shows significant
temporal variations.

4.2. Universality of prefactors in decay laws?

The decay of a turbulent magnetic field is constrained by a certain conservation laws:
the conservation of mean magnetic density IM = 〈h〉, where h = A · B is the local
magnetic helicity density, and the Hosking integral, IH =

∫

h(x)h(x+ r) d3r. When the
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Figure 9. Compensated evolutions of ξM and EM allowing the nondimensional prefactors in
equation (4.1) to be estimated.

Table 2. Summary

Reference C
(ξ)
M C

(ξ)
H C

(E)
M C

(E)
H C

(E)
M C

(E)
H

Brandenburg & Banerjee (2025) 0.12 0.14 4.3 4.0 0.7 0.025
Brandenburg et al. (2023) — 0.12 — 3.7 — 0.025
Brandenburg & Larsson (2023) — 0.15 — 3.8 — 0.025
present work 0.04 0.10 15 6 — —

magnetic field is fully helical, the decay is governed by the conservation of IM, and when
it is nonhelical, it is governed by the conservation of IH. The time of crossover depends

on the ratio t∗ ≡ I
1/2
H /I

3/2
M (Brandenburg & Banerjee 2025). Specifically, the correlation

length ξM(t), the mean magnetic energy EM(t), and the envelope of the peaks of the
magnetic energy spectrum EM(k, t) depends on the values of the conserved quantities
with (Brandenburg & Larsson 2023)

ξM(t) = C
(ξ)
i Iσi t

q, EM(t) = C
(E)
i I2σi t−p, EM(k) 6 C

(E)
i I

(3+β) q
i kβ . (4.1)

where σ is the exponent with which the length enters in Ii: σ = 3 when the mean magnetic
helicity density governs the decay (i = M) and σ = 9 for the Hosking integral (i = H).
In figure 9, we show the appropriately compensated evolutions of ξM and EM such that

we can read off the values of C
(ξ)
i and C

(E)
i for the helical and nonhelical cases.

In table 2, we summarize the values for the six coefficients reported previously in
the literature and compare with those determine here. The fact that the coefficients are
now somewhat different under different circumstances suggests that they might not be
universal, although the more complicated setup of the present experiment as well as
limited scale separation may have contributed to their present results. This question is
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significant, however, because universality would mean that the decay laws of the form
(e.g., Vachaspati 2021)

ξM(t) = ξM(t0) (t/t0)
q
, EM(t) = EM(t0) (t/t0)

−p
(4.2)

could be misleading in that they suggest some freedom in the choice of the values of
ξM(t0) and EM(t0) at the time t0. Comparing with equation (4.1), we see that

ξM(t0)/t
q
0 = C

(ξ)
i Iσi , and EM(t0) t

p
0 = C

(E)
i I2σi , (4.3)

so they cannot be chosen arbitrarily, but they must obey a constraint that depends on
the relevant conservation law.

5. Conclusions

We have seen that a tube-like arrangement of an initial magnetic field becomes unstable
to small perturbations. The resulting magnetic field becomes turbulent and tends to
isotropize over time. This means that tube-like initial conditions that could be expected
in plasma experiments would allow us to study the turbulent MHD decay dynamics –
even for moderate but finite scale separation of 4:1 or more. In other words, the number
of tubes per side length should be at least four.
We have also seen that a pointwise nonhelical magnetic field, as in the case of the

Roberts field II, is unstable and develops magnetic helicity fluctuations. After about
one Alfvén time, the Hosking integral reaches a finite value, but a fully turbulent decay
commences only after about one hundred Alfvén times. From that time onward, the value
of the Hosking integral relative to that expected on dimensional grounds reaches a value
of several thousand, a value that was also found earlier (Zhou et al. 2022).

Our present results have confirmed the existence of a resistively prolonged turbulent
decay time whose value exceeds the Alfvén time by a factor CM ≈ τ/τA. As emphasized
above, the fact that this ratio depends on the microphysical magnetic diffusivity is in
principle surprising, because one of the hallmarks of turbulence is that its macroscopic
properties should not depend on the microphysics of the turbulence. It would mean that it
is not possible to predict this behavior of MHD turbulence by ignoring the microphysical
magnetic diffusivity, as is usually done in so-called large eddy simulations.
The present results have shown that the decay time can exceed the Alfvén time by

a factor of about, which is similar to what was found previously (Brandenburg et al.

2024). During intermediate times, however, the decay time can even be a hundred times
longer than the Alfvén time. The dimensionless prefactors in the dimensionally motivated
powerlaw expressions for length scale and mean magnetic energy density are also roughly
similar to what was previously obtained from fully isotropic turbulence simulations.
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Figure 10. Evolution of 〈J2
⊥m〉/〈J2〉, 〈J2

⊥⊥〉/〈J2〉, and 〈J2
‖ 〉/〈J2〉 for decaying isotropic

turbulence with an initial peak wavenumber k0/k1 = 8 using 10243 meshpoints (a) with helicity
and (b) without helicity.
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Appendix A. 〈J2

⊥⊥
〉/〈J2〉 for isotropic turbulence

We have examined the evolution of 〈J2
⊥⊥〉/〈J2〉 for isotropic turbulence using a setup

similar to that of Brandenburg et al. (2023); see figure 10. The scale separation, i.e.,
the ratio of the peak wavenumber to the lowest wavenumber in the domain is 8 for this
simulation and the Lundquist number, which is the rms Alfvén speed times the correlation
length divided by the magnetic diffusivity, is about 104. The other parameters are as in
the earlier work of Brandenburg et al. (2023); see the data availability statement of the
present paper.
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Figure 11. Same as figure 7(a), but for cα = 3, showing a parametric representation of Brms

versus Brms/Jrms and ξM for Roberts field I (left) with k0 = 2 (black), 4 (blue), 8 (green), and 16
(orange), 32 (red), 64 (black), and 128 (blue). The open (filled) symbols in both plots indicate
the times t = 10 (t = 100).

Table 3. Similar to table 1, showing normalized growth rates λ and peak times tp for different
values of k0, but with the photon drag term included. Here, unlike the case of table 1, the values
of B0 are the same for Roberts fields I and II. The hyphen indicates that no growth occurred.
The lowest value of k0 has been set in italics to indicate that we used here what we called the
rotated Roberts field.

field k0 = 0.71 1 2 4 8 16 32 64

I λ/vA0k0 = — — 0.01 0.02 0.05 0.05 0.05 0.05
II λ/vA0k0 = 0.12 0.15 0.19 0.20 0.22 0.22 0.19 0.13

I tpvA0k0 = — — 310 122 62 31 12 4.5
II tpvA0k0 = 78 51 27 14 6.7 3.5 1.8 1.2

Appendix B. Diagnostic diagrams for different k0

In figure 7, we did already present a diagnostic diagrams of vA vs. ξM for kp = 16. We
also performed runs for different values of kp to compute the growth rates and the times
tp of maximum growth in table 1, but not all the runs were long enough to compute
similar tracks in the diagnostic diagram. In figure 11, we show such a diagram for a case
in which a drag term of the form −αu is included on the right-hand side of equation (2.6).
Here, we choose a drag coefficient that automatically changes in time so as to allow for
a nearly self-similar decay. Using a multiple of 1/t is an obvious possibility, but it would
always be the same at all locations and for different types of flows. The local vorticity
might be one possible option for a coefficient that varies in space and time, and has the
right dimension. Another possibility, which is also the one chosen here, is to take α to
be a multiple of

√

µ0/ρ0|J | and write α = cα
√

µ0/ρ0|J |, where cα is a dimensionless
prefactor, and µ0 = ρ0 = 1 has been set. Again, as was already clear from figure 7, the
tracks without helicity show a marked excursion to smaller values of ξM before displaying
a decay of the form vA ∝ ξ−κ

M . The corresponding values of λ/vA0k0 and tpvA0k0 are given
in table 3.
Our definition of the Roberts fields follows the earlier work by Rheinhardt et al. (2014).

In the original paper by Roberts (1972), however, the field was rotated by 45◦. In that
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case, φ = cos k0x∓ cos k0y, where the upper and lower signs refer to Roberts fields I and
II. For this field, a lower eigenvalue of the curl operator, namely kf = k0, can be accessed.
In that case, we can accommodated 1 pair of flux tubes instead of four. This can be done
both for fields I and II. They are given by

BI =





sin k0y
sin k0x

cos k0x− cos k0y



 , BII =





sin k0y
sin k0x

cos k0x+ cos k0y



 , (B 1)

which satisfies BI ·∇×BI = kfB
2
I and BII ·∇×BII = 0, just like the nonrotated field.

But here, kf = k0 is the eigenvalue of the curl operator.
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