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ABSTRACT

Context. Magnetic fields generated in the early Universe undergo turbulent decay during the radiation-dominated era.
The decay is governed by a decay exponent and a decay time. It has been argued that the latter is prolonged by
magnetic reconnection, which depends on the microphysical resistivity and viscosity. Turbulence, on the other hand, is
not usually expected to be sensitive to microphysical dissipation, which affects only very small scales.
Aims. We want to test and quantify the reconnection hypothesis in decaying hydromagnetic turbulence.
Methods. We perform high-resolution numerical simulations with zero net magnetic helicity using the Pencil Code

with up to 20483 mesh points and relate the decay time to the Alfvén time for different resistivities and viscosities.
Results. The decay time is found to be longer than the Alfvén time by a factor that increases with increasing Lundquist
number to the 1/4 power. The decay exponent is as expected from the conservation of the Hosking integral, but a
timescale dependence on resistivity is unusual for developed turbulence and not found for hydrodynamic turbulence. In
two dimensions, the Lundquist number dependence is shown to be leveling off above values of ≈ 25, 000, independently
of the value of the viscosity.
Conclusions. Our numerical results suggest that resistivity effects have been overestimated by Hosking and Schekochihin
in their recent work to reconcile the cosmic void observations with primordial magnetogenesis. Instead of reconnection,
it may be the magnetic helicity density in smaller patches that is responsible for the resistively slow decay. The leveling
off at large Lundquist number cannot currently be confirmed in three dimensions.
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1. Introduction

The study of decaying turbulence plays an important role
in the early Universe during the radiation-dominated era,
when the magnetic field is well coupled to the plasma. While
turbulence speeds up the decay, it can also lead to a signif-
icant increase in the typical length scale, which could then
be many times larger than the comoving horizon scale at the
time of magnetic field generation (Brandenburg et al. 1996;
Christensson et al. 2001; Banerjee & Jedamzik 2004). This
is important, because magnetogenesis processes during the
electroweak era, when the age of the Universe was just a
few picoseconds (Vachaspati 1991; Cheng & Olinto 1994;
Baym et al. 1996), tend to produce magnetic fields of very
small length scales of the order of 1AU or less.

From the study of decaying hydrodynamic turbulence, it
has been known for a long time that turbulent energy den-
sity and length scale evolve like power laws (Batchelor 1953;
Saffman 1967). The exponents depend on the physics of the
decay, specifically on the possibility of a conserved quantity

that governs the decay, for example magnetic helicity in the
hydromagnetic case (Hatori 1984; Biskamp & Müller 1999).
The endpoints of the evolution, however, depend on the rel-
evant timescale, which is traditionally just taken to be the
turnover or, in the magnetic case that we consider here, the
Alfvén time (Banerjee & Jedamzik 2004). More recently,
Hosking & Schekochihin (2023) argued that the turnover
time should be replaced by the reconnection time, which
could be significantly (up to 105.5 times) longer. This would
result in an endpoint where the magnetic field strength is
larger and the turbulent length scale smaller than other-
wise, when the decay time is just the Alfvén time.

One of the hallmarks of turbulence is the fact that its
large-scale properties are nearly independent of viscosity
and resistivity, which act predominantly on the smallest
scales of the system. On the other hand, magnetic re-
connection is a process that could potentially limit the
speed of the inverse cascade. This idea has been invoked
by Hosking & Schekochihin (2023) to explain a premature
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termination of the decay process by the time of recombina-
tion of the Universe, when its age was about 400,000 years.

The purpose of our paper is to analyze numerical sim-
ulations with respect to their decay times at different val-
ues of the resistivity. In Sect. 2, we discuss the decay time
and its relation to other quantities. In Sect. 3, we present
our numerical simulation setup and show the results for a
resistivity-dependent decay in Sect. 4. We then compare
with a purely hydrodynamic decay in Sect. 5 and with the
two-dimensional (2–D) hydromagnetic case in Sect. 6, be-
fore concluding in Sect. 8. In Appendix A, we provide a
historical note on the anastrophy, i.e., the mean squared
magnetic vector potential, and in Appendix B, we show
detailed convergence tests for some of our 2–D results.

2. Decay and turnover times

In the following, we focus on the decay of magnetic field.
Magnetically dominated turbulence is characterized by the
turbulent magnetic energy density EM and the magnetic
integral scale ξM. Both EM(t) and ξM(t) can be defined in
terms of the magnetic energy spectrum EM(k, t) such that
EM =

∫

EM dk and ξM =
∫

k−1EM dk/EM. In decaying tur-
bulence, both quantities depend algebraically rather than
exponentially on time. Therefore, the decay is primarily
characterized by power laws,

EM ∝ t−p and ξM ∝ tq, (1)

rather than by exponential laws of the type EM ∝ e−t/τ .
The algebraic decay is mainly a consequence of nonlinearity.
On the other hand, in decaying hydromagnetic turbulence
with significant cross helicity, for example, the nonlinearity
in the induction equation is reduced and then the decay is
indeed no longer algebraic, but closer to exponential; see
Brandenburg & Oughton (2018).

An obvious difference between algebraic and exponen-
tial decays is that in the former, EM(t) is characterized
by the nondimensional quantity p, while in the latter, it
is characterized by the dimensionful quantity τ . Following
Hosking & Schekochihin (2023), a decay time τ can also be
defined for an algebraic decay and is then given by

τ−1 = −d ln EM/dt. (2)

In the present case of a power-law decay, this value of
τ = τ(t) is time-dependent and can be related to the in-
stantaneous decay exponent

p(t) = −d ln EM/d ln t (3)

through τ = t/p(t), i.e., no new parameter emerges, except
for t itself. However, a useful way of incorporating new in-
formation is by relating τ to the Alfvén time τA = ξM/vA
through

τ = CMξM/vA, (4)

where CM is a non-dimensional parameter, and vA is the
Alfvén velocity, which is related to the magnetic energy
density through EM = B2

rms/2µ0 = ρv2A/2, where ρ is the
density, µ0 the vacuum permeability, and Brms the root-
mean-square (rms) magnetic field.

As was stressed by Hosking & Schekochihin (2023),
Eq. (4), can be used to define the endpoints of the evolution-
ary tracks in a diagram of Brms versus ξM, or, equivalently,

vA versus ξM, i.e., vA = vA(ξ). They also emphasized that
the location of these endpoints is sensitive to whether or
not CM depends on the resistivity of the plasma. If it does
depend on the resistivity, this could be ascribed to the ef-
fects of magnetic reconnection, which might slow down the
turbulent decay.

Magnetic reconnection refers to a change of mag-
netic field line connectivity that is subject to topolog-
ical constraints. A standard example is x-point recon-
nection (see, e.g., Craig & McClymont 1991; Craig et al.
2005), which becomes slower as the x-point gets de-
generated into an extremely elongated structure (Sweet
1958; Parker 1957); see Liu et al. (2022) for a review. It
is usually believed that in the presence of turbulence,
such structures break up into progressively smaller ones,
which makes reconnection eventually fast, i.e., independent
of the microphysical resistivity (Galsgaard & Nordlund
1996; Lazarian & Vishniac 1999; Comisso & Sironi 2019).
However, whether this would also imply that τ becomes in-
dependent of the resistivity, remains an unclear issue. For
example, Galsgaard & Nordlund (1996) found that resistive
heating becomes independent of the value of the resistiv-
ity. Another question concerns the speed at which magnetic
flux can be processed through a current sheet (Kowal et al.
2009; Loureiro et al. 2012). Also of interest is of course
the timescale on which the topology of the magnetic field
changes (Lazarian et al. 2020). These different timescales
may not all address the value of CM that relates the decay
time to the Alfvén time.

In magnetically dominated turbulence, the effect of the
resistivity is quantified by the Lundquist number. For de-
caying turbulence, it is time-dependent and defined as

Lu(t) = vA(t) ξM(t)/η. (5)

This quantity is similar to the magnetic Reynolds number
if we replace vA by the rms velocity, urms. Here, however,
the plasma is driven by the Lorentz force, so the Lundquist
number is a more direct way of quantifying the resistivity
than the magnetic Reynolds number. The Alfvénic Mach
number is defined as MaA = urms/vA.

In addition to varying η, we also vary ν such that the
magnetic Prandtl number PrM = ν/η is typically in the
range 1 ≤ PrM ≤ 5. It is then also convenient to define the
Lundquist number based on the reconnection outflow,

Luν(t) = Lu(t)/
√

1 + PrM ; (6)

see Hosking & Schekochihin (2023) for details.

3. Numerical simulations

We perform simulations of the compressible hydromagnetic
equations for the magnetic vector potential A, the veloc-
ity u, and the logarithmic density ln ρ in the presence of
viscosity ν and magnetic diffusivity η, i.e.,

∂A

∂t
= u×B + η∇2

A, (7)

Du

Dt
=

1

ρ
[J ×B +∇ · (2ρνS)]− c2s∇ ln ρ, (8)

D ln ρ

Dt
= −∇ · u, (9)
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Table 1. Summary of magnetohydrodynamic simulations analyzed in this paper. The time unit of τξ and τE is [t] =
(csk1)

−1.

Run ηk1/cs νk1/cs PrM Lu Luν CM C
(1/4)
L Cξ CE τξ τE ǫK/ǫM MaA N3

M0 4× 10−7 4× 10−6 10 5600 1700 34.4± 0.8 4.0 90 0.38 0.79 0.27 1.0 0.21 20483

M1 4× 10−7 2× 10−6 5 5830 2600 30.5± 0.8 3.5 87 0.35 0.72 0.23 0.9 0.24 20483

M2 1× 10−6 2× 10−6 2 2354 1660 26.2± 0.3 3.8 81 0.32 0.63 0.20 0.6 0.28 20483

M3 1× 10−6 5× 10−6 5 2186 980 25.6± 0.6 3.7 80 0.32 0.74 0.22 0.8 0.25 10243

M4 2.5× 10−6 5× 10−6 2 823 580 20.1± 0.5 3.7 73 0.27 0.61 0.17 0.6 0.31 10243

M5 5× 10−6 5× 10−6 1 386 386 14.5± 0.7 3.3 64 0.23 0.45 0.12 0.5 0.38 10243

Fig. 1. Visualization of Bz on the periphery of the com-
putational domain for Run M1, where PrM = 5.

using as initial condition a random magnetic field such
that EM(k, 0) has a k4 subinertial range for k < kp
(Durrer & Caprini 2003), and a k−2 inertial range for
k > kp (Brandenburg et al. 2015). In all cases, we choose
kp/k1 = 60, where k1 = 2π/L is the smallest wavenum-
ber in our cubic domain of size L3. In Eqs. (7) and (8),
B = ∇×A is the magnetic field, J = ∇×B/µ0 is the cur-
rent density, and Sij = (∂iuj + ∂jui)/2− δij∇ ·u/3 are the
components of the rate-of-strain tensor S. There is no mag-
netic helicity on average, but the fluctuations in the local
magnetic helicity density h = A·B lead to a decay behavior
where the correlation integral of h, which is also known as
the Hosking integral, is conserved (Hosking & Schekochihin
2021; Schekochihin 2022; Zhou et al. 2022). We use the
Pencil Code (Pencil Code Collaboration et al. 2021),
which has also been used for many earlier simulations
of decaying hydromagnetic turbulence (Zhou et al. 2022;
Brandenburg et al. 2023). All our simulations are in the
magnetically dominated regime, because the velocity is just
a consequence of and driven by the magnetic field.

Because the magnetic field is initially random, the re-
sulting velocity is also random and it drives a forward tur-
bulent cascade with kinetic and magnetic energy dissipa-
tion rates ǫK = 〈2νρS2〉 and ǫM = 〈ηµ0J

2〉. Their ratio

scales with Pr
1/3
M (Brandenburg 2014; Galishnikova et al.

2022). If kp/k1 is large (we recall that we use the value
60), there is also an inverse cascade (Brandenburg et al.

Fig. 2. Visualization of Jz at z = π along with a zoom-in
on the lower left corner for Run M0, where PrM = 10, at
t = 318. The value of ξM at that time is indicated by the
length of the short white lines.

2015). The inverse cascade was also found in the rela-
tivistic regime (Zrake 2014) and is now understood to
be a consequence of the conservation of the Hosking in-
tegral (Hosking & Schekochihin 2021; Schekochihin 2022;
Zhou et al. 2022). However, the role played by the Hosking
integral is currently not universally accepted (Armua et al.
2023; Dwivedi et al. 2024). The lack of numerical support
could be related to insufficiently large values of kp/k1.

We define the kinetic energy spectrum EK(k, t) analo-
gously to EM(k, t), using the normalization

∫

EK(k, t) dk =
EK(t) ≡ ρ0u

2
rms/2, where ρ0 = 〈ρ〉 = const owing to

mass conservation. In magnetically driven turbulence, EK
is about one tenth of EM = B2

rms/2µ0, which seems to be
surprisingly independent of the physical input parameters
(Brandenburg et al. 2017).

In Table 1, we summarize the results of five simulations,
Runs M0–M5, where we vary η and ν, as well as the number
of mesh points, N3. We also present some relevant output
parameters that will be defined below. They are all obtained
from a statistically steady stretch of our time series data,
and error bars have been calculated as the largest departure
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Fig. 3. Magnetic and kinetic energy spectra for Run M1 at different times. Note the k−2 inertial range for large values
of k. The ∝ k4 and ∝ k2 slopes are indicated for reference. As elsewhere, time is in unit of [t] = (csk1)

−1.

from any one third of the time series. A visualization of the
z components of B on the periphery of the computational
domain for Run M1 is shown in Fig. 1. Figure 2 shows
Jz in an xy plane together with a zoom-in on the lower
left corner of the domain. The corresponding magnetic and
kinetic energy spectra are shown in Fig. 3 for different times
in units of [t] = (csk1)

−1.
The EM(k, t) ∝ k−2 inertial range can be explained by

weak turbulence scaling (Brandenburg et al. 2015), but it
becomes a bit shallower near the dissipation subrange. This
could follow from some kind of magnetic bottleneck effect
associated with reconnection, analogously to the bottleneck
effect in hydrodynamic turbulence (Falkovich 1994).

Note that at late times, the subinertial range spec-
trum of EM(k, t) becomes shallower than the initial k4

slope. This is an artifact of poor scale separation; see
Brandenburg et al. (2023) for related numerical evidence.
On the other hand, a k2 subinertial range for EK(k, t) has
been seen for some time; see Kahniashvili et al. (2013).

In our numerical simulations, we use units such that
cs = k1 = ρ0 = µ0 = 1. The resistivity, µ0η, is therefore the
same as the magnetic diffusivity. Nevertheless, most of the
results below are expressed in manifestly nondimensional
form.

4. Resistivity-dependent decay

We now analyze a collection of runs similar to those of the
recent works of Zhou et al. (2022) and Brandenburg et al.
(2023), who considered different values of Lu and also in-
cluded some runs with hyperviscosity and hyperresistivity,
unlike what we present in the present work. At variance
with those earlier papers, where the focus was always on
the decay exponent p(t), here we focus on the evolution of
the decay time, τ(t) = t/p(t).

4.1. Decay time

The goal is to determine the prefactor in the scaling relation
τ ∝ ξM/vA. Therefore, we write

t/p ≡ τ = CMξM/vA (10)

and determine

CM(t) = (t/p) vA(t)/ξM(t). (11)

We emphasize here that each of the terms is time-
dependent, including τ(t) = t/p(t), as already stressed
above. Interestingly, it turns out that the quantity CM(t)
eventually settles around a plateau,

CM = lim
t→∞

CM(t). (12)

Here and in the following, when time-dependence is not
indicated, we usually mean that the value is obtained as
a suitable limit of the corresponding time-dependent func-
tion. Of course, in numerical simulations with finite do-
mains, the limit t → ∞ needs to be evaluated with some
care so as to avoid that the final result is contaminated by
finite size effects. We do this by selecting a suitable time
interval during which certain data combinations are approx-
imately statistically stationary. We refer to those results as
late-time limits.

In Fig. 4 we show that CM(t) and Lu(t) approach an
approximately constant value towards the end of the run.
Time is given both in unit of [t] = (csk1)

−1 and in ini-
tial Alfvén times, (vA0kp)

−1, where vA0 =
√
2EM0 is the

initial Alfvén velocity and EM0 the initial magnetic energy
density. Allowing for the possibility of power-law scaling,

CM = C
(n)
L Lun, we also plot the prefactor C

(n)
L (t) for

n = 1/4 in the last panel of Fig. 4; see details below.
Towards the end of the simulation, however, there is an in-
crease in the fluctuations, which follows from the decrease
in the magnetic energy.

As discussed later in more detail in connection with 2–D
simulations, current sheets are underresolved at early times,
when ξM is small. As we now see from Fig. 4, this under-
estimates the resulting value of CM. However, for t > 100,
CM(t) approaches a plateau, suggesting that the simulation
now begins to be sufficiently well resolved – at least for the
purpose of determining CM.

In Fig. 5, we show the dependence of CM on Lu and
Luν . We see an approximate scaling ∝ Lun with n = 1/4

for Lu < 6000 and a piecewise power-law scaling ∝ Lu1/2ν ,
but with different prefactors for the runs with larger and
smaller values of the viscosity. Note that for PrM ≫ 1, we

have Luν = vAξM/
√
ην, which explains why the Lu1/2ν scal-

ing is found to be compatible with being ∝ Lu1/4. Note,

however, that for a larger viscosity, the line Lu1/2ν is shifted
upwards (towards larger values of CM). Owing to the more
complicated combined dependence on ν and Luν , we con-
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Fig. 4. Approach of CM(t), Lu(t), and C
(1/4)
L (t) to an ap-

proximately constant value toward the end of the simula-
tion for Run M1.

Fig. 5. Dependence of CM on Lu and Luν . Note the ap-

proximate scaling ∝ Lu1/4 for Lu < 6000 and a piecewise

power-law scaling ∝ Lu1/2ν with different prefactors for the
runs with larger viscosity (5×10−6 red symbols and 4×10−6

for the green symbol) and smaller viscosity (2× 10−6 blue
symbols).

tinue to employ the simpler Lun scaling for the following
discussion. It is worth noting that the exponent n = 1/4 has
been discussed by Uzdensky & Loureiro (2016) in connec-
tion with the fast growing mode of the tearing instability.

Fig. 6. Dependence of EM(t) and ξM(t) for three values of
PrM.

If it is really true that CM is proportional to Lun, as

found above, we can write CM = C
(n)
L Lun, and then deter-

mine C
(n)
L as the late-time limit of

C
(n)
L (t) =

t

p

v1−n
A

ξ1+n
M

ηn. (13)

This is the formula that was used to compute C
(n)
L and to

plot its time-dependence C
(n)
L (t) for n = 1/4; see the last

panel of Fig. 4. Looking at Table 1, we find 3.3 ≤ C
(1/4)
L ≤

3.8.

4.2. Evolution of EM(t) and ξM(t)

It is of interest to know whether the resistivity dependence
of CM(t) is equally distributed among ξM and vA (or EM).
Figure 6 shows that there are indeed systematic differences
in the decay laws for different values of the resistivity, but
the differences are small and easily overlooked.

To examine the dependence of CM(t) on Lu, we write
the decay laws for ξM(t) and EM(t) in a more detailed form
than Eq. (1), i.e.,

ξM(t) = ξM0 (1 + t/τξ)
q, (14)

EM(t) = EM0 (1 + t/τE)
−p. (15)

Here, the coefficients ξM0 and EM0 just depend on the ini-
tial condition and are thus not dependent on Lu, so the
Lu-dependence can only enter through the coefficients τξ
and τE . We can determine them as the limits of the time-
dependent functions τξ(t) and τE(t), which are obtained by
inverting Eqs. (14) and (15), and are given by

τξ(t) =
t

[ξM(t)/ξM0]
1/q − 1

, (16)
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Fig. 7. Evolution of τE(t) and τξ(t) for three values of PrM
with fixed and moderate viscosity. Note that these times
tend to be approximately constant a late times with values
approximately consistent with those in Table 1.

τE(t) =
t

[EM(t)/EM0]
−1/p − 1

. (17)

Figure 7 shows the evolution of τξ(t) and τE(t) for
Runs M3–M5 with fixed and moderate viscosity.

Using the late-time limits of Eqs. (14) and (15), as well
as those of Eqs. (16) and (17), the equation for CM can now
be decomposed in the form

CM = CξCE , (18)

such that Eq. (11) is obeyed. Here, we can determine Cξ

and CE as the late-time limits of

Cξ(t) = τ qξ−1
M and CE(t) = τp/2vA. (19)

In this connection, it it important to remember that for a
self-similar evolution (Brandenburg & Kahniashvili 2017),
which is here approximately satisfied (see Fig. 3), we have

q + p/2 = 1, (20)

so that CM = (t/p) vA/ξM is obeyed. For t ≫ τE , τξ, using
again τ = τ(t) = t/p(t), we have

Cξ ≈ (τξ/p)
qξ−1

M0 and CE ≈ (τE/p)
p/2vA0. (21)

so that CM = (vA0/pξM0) τ
q
ξ τ

p/2
E

. It is then natural to ex-
pect that both τξ and τE scale in the same way with Lu
as CM itself. Equation (21) also allows us to compute the
timescales τξ = p (CξξM0)

1/q and τE = p (CE/vA0)
2/p.

In Fig. 8, we show the dependence of τξ and τE on Lu.
Note that, while the two show a similar dependence ap-

proximately ∝ Lu1/4, there possibly is also evidence for a
leveling off for larger values of Lu.

Fig. 8. Dependence of τξ and τE on Lu. The two show

a similar dependence on Lu approximately ∝ Lu1/4, but
there is possibly also evidence for a leveling off for larger
values of Lu.

5. Comparison with hydrodynamic decay

Hydrodynamic decay is characterized by the kinetic energy
density EK(t) = ρ0u

2
rms/2 and the hydrodynamic integral

scale ξK(t) =
∫

k−1EK dk/EK. We define the instantaneous
kinetic energy decay exponent pK(t) = −d ln EK/d ln t and
the decay time τK(t) = t/pK(t). We relate τK(t) to the
turnover time urms/ξK through τK = CKξK/urms, and
thus determine CK as the late-time limit of CK(t) =
[t/pK(t)]urms(t)/ξK(t), which is defined analogously to
Eq. (11).

Purely hydrodynamic simulations can be performed by
just ignoring the magnetic field, or putting B = 0. In
Table 2, we summarize such simulations for different val-
ues of ν, which is quantified by the Reynolds number,
Re = urmsξK/ν. Figure 9 shows that, for Re ≥ 100, CK

does not change much with Re. This was also not expected.
It also confirms that the prolonged decay time found in
Sect. 4 is indeed a purely magnetic phenomenon. Whether
or not the resistivity dependence in the magnetic case must
be ascribed to reconnection remains an open question. As
discussed in Sect. 2, magnetic reconnection refers to topo-
logically constrained changes of magnetic field lines, but in
the present case of a turbulent magnetic field, there is no
connection with the standard picture of reconnection. An
obvious alternative candidate for explaining the resistively
prolonged decay time may be related to magnetic helicity
conservation in local patches, as described by the conser-
vation of the Hosking integral. While this idea seems more
plausible to us, it is not obvious how to distinguish recon-
nection from magnetic helicity conservation in patches. It is
true that magnetic helicity would vanish in two dimensions,
but in that case it should be replaced by the anastrophy; see
Appendix A for a historical note on this word. One aspect
that might be different between the concepts of reconnec-
tion and magnetic helicity conservation in patches could be
the dependence on PrM. Our present results have not yet
shown such a dependence, which might support the idea
that the dependence on resistivity is related to magnetic
helicity conservation in patches.
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Table 2. Summary of hydrodynamic simulations discussed in Sect. 5.

Run νk1/cs Re CK C
(1/4)
L Cξ CE τξ τE N3

H1 1× 10−7 573 5.5± 0.5 1.1 230 0.024 7.5 0.12 10243

H2 2× 10−7 280 5.8± 1.0 1.4 234 0.024 7.8 0.12 10243

H3 5× 10−7 134 4.9± 0.5 1.4 205 0.024 5.8 0.12 10243

H4 1× 10−6 110 4.4± 0.6 1.4 164 0.027 3.5 0.16 10243

H5 2× 10−6 35 3.7± 0.7 1.5 167 0.022 4.9 0.13 5123

Table 3. Similar to Table 1, but for the two-dimensional hydromagnetic simulations analyzed in Sect. 6. Here, kp/k1 =
200.

Run ηk1/cs νk1/cs PrM Lu CM C
(1/4)
L Cξ CE τξ τE ǫK/ǫM MaA N2

2m1 5× 10−9 5× 10−7 100 75,000 36.7± 4.6 2.2 221 0.164 0.34 1.26 13 0.41 163842

2m2 2× 10−9 2× 10−7 100 182,000 39.5± 1.0 1.9 241 0.164 0.41 1.25 21 0.43 163842

2m3 1× 10−9 1× 10−7 100 358,000 42.7± 1.7 1.7 254 0.168 0.46 1.30 33 0.44 163842

2m4 1× 10−9 2× 10−8 20 356,000 43.8± 2.5 1.8 248 0.175 0.50 1.50 11 0.44 81922

2m5 2× 10−9 2× 10−8 10 178,000 43.9± 3.0 2.1 247 0.177 0.49 1.53 6.0 0.44 81922

2m6 2× 10−9 2× 10−8 10 178,000 45.3± 1.8 2.2 254 0.178 0.47 1.45 6.0 0.44 163842

2M1 4× 10−9 2× 10−8 5 90,800 42.5± 2.1 2.4 241 0.175 0.47 1.34 3.5 0.45 81922

2M2 2× 10−8 1× 10−7 5 19,000 36.8± 2.6 3.1 217 0.169 0.37 1.40 2.9 0.45 81922

2M3 1× 10−7 5× 10−7 5 3900 30.2± 2.0 3.8 191 0.157 0.34 1.36 1.5 0.42 40962

2M4 1× 10−7 5× 10−7 5 770 18.9± 0.6 3.6 347 0.054 1.30 3.66 0.8 0.42 40962

2M5 1× 10−9 1× 10−9 1 365,000 44.1± 1.8 1.8 252 0.175 0.52 1.49 0.7 0.44 81922

2M6 5× 10−9 5× 10−9 1 72,300 39.9± 1.9 2.4 232 0.171 0.43 1.43 0.8 0.46 81922

2M7 2× 10−8 2× 10−8 1 18,700 36.8± 1.7 3.1 233 0.157 0.44 1.23 0.8 0.46 81922

2M8 1× 10−7 1× 10−7 1 3830 31.0± 0.7 3.9 213 0.146 0.35 1.07 0.7 0.45 81922

2M9 5× 10−7 5× 10−7 1 742 18.7± 0.8 3.6 156 0.119 0.22 0.83 0.5 0.51 40962

2M10 5× 10−7 5× 10−7 1 125 10.0± 0.4 3.0 284 0.035 0.83 1.66 0.5 0.63 40962

Fig. 9. Dependence of CK on Re. The line Re0.1 is shown
for comparison, but the data are also nearly compatible
with being independent of Re.

6. Hydromagnetic decay in two dimensions

We now perform 2–D simulations where B = ∇ × (ẑAz)
lies entirely in the xy plane; see Table 3 for a summary.
Equation (7) then reduces to

DAz

Dt
= η∇2Az, (22)

which obeys conservation of anastrophy, 〈A2
z〉 = const

(Fyfe & Montgomery 1976; Pouquet 1978, 1993), and the
magnetic helicity density vanishes pointwise, so the Hosking
integral is then also zero. These simulations are different
from recent ones by Dwivedi et al. (2024), who performed
2.5–D simulations. In their case, there was a magnetic field
component out of the plane. The anastrophy was then not
conserved and the Hosking integral was finite.

As we stated above, our present measurements of CM

as a function of Lu cannot directly be compared with
the reconnection rate determined by Loureiro et al. (2012),
Comisso et al. (2015), or Comisso & Bhattacharjee (2016).
In addition, it is not obvious how relevant a 2–D simulation
is in the present context, because in 2–D, the anastrophy is
conserved, while the Hosking integral is strictly vanishing.

In our present purely 2–D simulations, values of Lu up
to about 3 × 105 have been reached. To allow for a longer
nearly selfsimilar evolution, we have used kp/k1 = 200 in-
stead of 60. The simulation results give the prefactors in
the scaling expected from anastrophy conservation as

ξM(t) ≈ 0.13 〈A2
z〉1/4 t1/2, EM(t) ≈ 15 〈A2

z〉1/2 t−1, (23)

where µ0 = ρ0 = 1 has been used. We also see from
Fig. 10 that the spectral peaks evolve underneath an en-
velope EM(k, t) ≤ 60 〈A2

z〉 k.
Figure 11 shows magnetic and kinetic energy spectra for

Run 2m2 with Lu = 1.8×105 collapsed on top of each other

by plotting ξβM(t)EM

(

kξM(t)
)

versus kξM(t) for β = 1. This
plot suggests that the subinertial range scalings of EM(k, t)

7
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Fig. 10. Similar to Fig. 3, but for Run 2M1. Note that the magnetic peaks lie underneath a kβ envelope with β = 1, as
expected in the case of anastrophy conservation.

Fig. 11. Magnetic energy spectra (left) and kinetic energy spectra (right) for Run 2m2 with Lu = 1.8 × 105 and
PrM = 100, at times t = 5, 20, 100, and 400, collapsed on top of each other by plotting both versus kξM(t) and scaling
them with ξM. This makes their heights agree, as expected.

Fig. 12. Dependence of ǫK/ǫM on PrM. The solid line de-
notes 1.3Pr0.7M , but many of the data points, predominantly
those with smaller Lu, are beneath that line. The inset
shows that for PrM = 100, ǫK/ǫM increases with Lu like
Lu0.6.

and EK(k, t) are proportional to k5 and k3, respectively.
Thus, they are steeper than expected in 3-D. This behavior
is in some ways similar to the steepening observed for helical

Fig. 13. Dependence of CM on Lu for the 2–D runs. Note
the shallow scaling ∝ Lu0.1 for 104 < Lu < 105, which is
also compatible with a leveling off at Luc = 2.5 × 104, as
described by Eq. (24) with n = 1/4. The black (red) data
points are for PrM = 5 (PrM = 1). The blue data points
denote the 3–D results from Sect. 4. The orange symbols are
for the runs with PrM = 10 and 20, listed in Table 3. The
thin dotted line gives Eq. (24) with n = 1/4 for comparison.
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Fig. 14. Visualization of Jz(x, y) of Run 2m6 with PrM = 10, Lu = 1.8× 105, Luν ≈ 5× 104, and 163842 mesh points at
t = 464 for a small part of the domain with sizes 2.8ξM(t)× 0.74ξM(t). The lengths of 100 δc, 2Lc, and ξM are indicated
by horizontal white solid, dashed, and dotted lines, respectively. The thickness of the current sheet corresponds to about
3∆x ≈ 21 δc. In its proximity, there are also indications of ringing, indicated by the black circle.

decaying magnetic fields; see Brandenburg & Kahniashvili
(2017).

In Table 3, we also give the ratio ǫK/ǫM, which is seen
to increase with PrM; see Fig. 12. This was expected based
on earlier results (Brandenburg 2014; Galishnikova et al.
2022), but it was never shown in the decaying case of mag-
netically dominated turbulence. We see that ǫK/ǫM ∝ Pr0.7M ,
which is similar to the previously studied case with large-
scale dynamo action rather than the case with just small-
scale action, where the slope was shallower. The ratio ǫK/ǫM
is found to increase also with Lu, at least for Lu ≪ 106. As
discussed in Brandenburg & Rempel (2019), an increase of
ǫK/ǫM with PrM may have implications for heating the solar
corona, where the possible dominance of kinetic energy dis-
sipation over Joule dissipation is not generally appreciated;
see Rappazzo et al. (2007, 2018) for earlier work discussing
this ratio.

Although 2–D and 3–D runs are in many ways rather
different from each other, we now determine the same diag-
nostics as in the 3–D case; see Table 3 and Fig. 13 for a plot
of CM versus Lu. We see that the CM dependence on Lu is
qualitatively similar for 2–D and 3–D turbulence. Moreover,
it becomes shallower for larger values of Lu. There is now
evidence for CM to level off and to become independent of
Lu. It is possible to fit our data to a function of the form

CM(Lu) ≈ C
(1/4)
L

(

Lu

1 + Lu/Luc

)n

, (24)

where Luc = 2.5 × 104 is a critical Lundquist number
characterizing the point where the dependence levels off,

n = 1/4, and C
(1/4)
L = 3.7. The value of Luc is larger than

that found by Loureiro et al. (2012), where the asymptotes
for small and large Lundquist numbers cross at a value
closer to 5000. However, this difference could simply be re-
lated to different definitions of the relevant length scales.
(Note that our definition of ξM does not include a 2π fac-
tor.) A comparison with the Sweet-Parker value of n = 1/2
results in reasonable agreement for small values of Lu, but
there are rather noticeable departures from the data for
intermediate values.

Our 2–D and 3–D results for CM are seen to be in good
agreement with each other, which is similar to the obser-
vation made by Bhat et al. (2021). Obviously, larger simu-

lations should still be performed to see whether the agree-
ment between 2–D and 3–D continues to larger Lundquist
numbers.

It should also be noted that some of our data with their
nominal error bars do not lie on the fit given by Eq. (24)
with n = 1/4. Especially for PrM = 100 and smaller values
of Lu, we see that CM lies systematically below the fit.
It shall be noted, however, that one would have expected
an increase with PrM like (1 + PrM)1/2, i.e., the opposite
trend, if the reconnection phenomenology was applicable;
see Eq. (16) of Hosking & Schekochihin (2023).

To check whether our simulations are sufficiently well
resolved, we show in Fig. 14 a visualization of Jz(x, y)
for Run 2m6 with PrM = 10 and 163842 mesh points
at t = 464 for a small part of the domain with sizes
2.8ξM(t)× 0.74ξM(t) where a large current sheet breaks up
into smaller plasmoids. A comparison between Runs 2m5
and 2m6 with 81922 and 163842 mesh points is shown in
Appendix B. Our main conclusions are that higher resolu-
tion suppresses the tendency to produce ringing, i.e., the
formation of oscillations on the grid scale, but that the
results for CM are not very sensitive to the numerical res-
olutions, as can be seen by comparing Runs 2m5 and 2m6
in Table 3.

Next, we compare the typical length and thickness of
current sheets in Run 2m6 with the values defined by
Uzdensky et al. (2010) for critical current sheets, Lc =

Luc η/vA and δc = Lc/Lu
1/2
c , respectively. These lengths

are indicated in Fig. 14. Here, we used Luc = 2.5 × 104 as
the critical Lundquist number, which was found to be rep-
resentative of all of our cases. We see that the current sheets
in Fig. 14 have a length that is comparable to ξM ≈ 7Lc.
This is just because Lu ≈ 7Luc. The thickness of the cur-
rent sheets is about 20 δc. They are marginally resolved with
about 3∆x, where ∆x = 2π/16384 ≈ 3.8×10−4 is the mesh
spacing. Thus, the aspect ratio of thickness to length of the

current sheets is about 20 δc/7Lc = (20/7) Lu−1/2
c ≈ 0.02.

This is about three times the nominal value estimated by
Uzdensky et al. (2010) for critical current sheets.

By comparison, Hosking & Schekochihin (2023) esti-

mated for the aspect ratio δc/ξM = Lu1/2c /Luν . For
Run 2m6 with Luν ≈ 5 × 104, this yields 0.003, which
is about six times smaller than our value of 0.02. While
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Fig. 15. Magnetic field profiles [−Bx(y) and By(y) in red] and velocity profiles [−ux(y) and uy(y) in blue] through the
current sheet (in black) for Run 2m2 (through x = 0.372) and Run 2m6 (through x = 0.270).

these discrepancies could perhaps be explained by the ab-
sence of nondimensional prefactors in the definitions of δc,
we must also consider the possibility that this is simply a
consequence of a lack of resolution.

Runs 2m2 and 2m6 have in common that they have the
same resistivity and nearly the same value of Lu of about
1.8× 105, but Run 2m2 has a tenfold larger viscosity than
Run 2m6, so PrM is increased from 10 to 100. We see that
CM has deceased by only about 15%, which is much less

than what is expected if CM was proportional to Pr
−1/2
M .

In Fig. 15, we show for Runs 2m2 and 2m6 magnetic
field profiles, −Bx(y) and By(y), and velocity profiles,
−ux(y) and uy(y), through a particular current sheet. We
see that in Run 2m2 with PrM = 100, the profiles are much
smoother, even though the value of Lu = 1.8 × 105 is the
same in both cases. Thus, the viscosity has a significant ef-
fect in smoothing the magnetic field. Yet, the effect on the
value of CM is small.

7. Endpoints in the primordial evolutionary diagram

The evolution of primordial magnetic fields is usually dis-
played in an evolutionary diagram showing the comov-
ing values of Brms versus ξM, or, what is similar, vA ver-
sus ξM. This dependence corresponds to a power law of
the form vA = vA0(ξM/ξM0)

κ. Since ξM(t) ∼ tq, we have

vA(t) ∼ t−p/2 ∼ ξ
−p/2q
M , so κ = p/2q = 5/4 for the Hosking

scaling with p = 10/9 and q = 4/9.
Following Banerjee & Jedamzik (2004), the time t in

Eq. (10) would be replaced by the age of the Universe
at the time of recombination, trec. As emphasized by
Hosking & Schekochihin (2023), this gives an implicit equa-
tion for the magnetic field at recombination with the solu-
tion B(trec) ≈ 10−8.5 G(ξM/1Mpc) = 10−14.5 G(ξM/1 pc)
if CM = 1. However, B(trec) would be much larger and ξM
much smaller when CM ≫ 1 is taken into account.

Under the hypothesis of fast reconnection owing to plas-
moid instability (Bhattacharjee et al. 2009; Uzdensky et al.
2010), Hosking & Schekochihin (2023) estimated CM as the
square root of some effective cutoff value of about 104 for

the Lundquist number and an additional factor of Pr
1/2
M .

Here, they estimated PrM ≈ 107, so CM = 105.5 and
B(trec) ≈ 10−3 G(ξM/1Mpc) = 10−9 G(ξM/1 pc).

Our new results challenge the reliability of the antic-
ipated dependence of CM on PrM. With the current re-
sults at hand, Fig. 13 suggests that CM never exceeds

the value 3.7Lu1/4c ≈ 47, even for PrM as large as 100.
Particularly important is the fact that this result is inde-
pendent of PrM. Given that Hosking & Schekochihin (2023)
used PrM ≈ 107, which yielded an extra 103.5 factor and
therefore CM = 105.5 in their estimate, our new findings
imply that the resistivity effect is actually independent of
PrM. Although this has so far only been verified for values
of PrM ≤ 5, we suggest that a more accurate formula for
the endpoints of the evolution with CM = 47 ≈ 101.7 would
be B(trec) ≈ 10−6.8 G(ξM/1Mpc) = 10−12.8 G(ξM/1 pc).
These values are still above the lower limits inferred from
suppressed GeV photon emission from the halos of blazars
(Neronov & Vovk 2010).

8. Conclusions

The present results have shown that, up to the largest
Lundquist numbers accessible to our present direct numer-
ical simulations with 20483 mesh points, the decay times
depend on the resistivity. Only for our 2–D simulations
do we see evidence for a cutoff. The dependence of hydro-
magnetic turbulence properties on the value of the resistiv-
ity is unusual for fully developed turbulence. One wonders
whether our results reflect just a peculiar property of de-
caying turbulence, or whether there could also exist aspects
of statistically stationary turbulence that depend on the
microphysical resistivity. Possible examples of resistively
controlled time dependencies could include the time that
is needed to develop the final saturated magnetic energy
spectrum in kinetically forced turbulence, where the mag-
netic field emerges due to a dynamo action (Haugen et al.
2003; Schekochihin et al. 2004). A resistively slow adjust-
ment phase is reminiscent of what occurs for helical mag-
netic fields (Brandenburg 2001), where it has also been
possible to measure a weak resistivity dependence of the
turbulent magnetic diffusivity (Brandenburg et al. 2008).
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In the present 3–D case, of course, the magnetic heli-
city vanishes on the average. However, in the spirit of the
Hosking phenomenology of a decay controlled by the con-
servation of the Hosking integral, it is well possible that
even in decaying turbulence, the conservation of magnetic
helicity in patches of one sign of magnetic helicity plays an
important role in causing the resistively controlled decay
speed. Whether or not this is equivalent to talking about
reconnection remains an open question. As discussed in
Sect. 2, the idea of reconnection in terms of current sheets
and plasmoids may not be fully applicable in the context of
turbulence, where magnetic structures are more volume fill-
ing than in standard reconnection experiments; see Fig. 2.
Additional support for a possible mismatch between clas-
sical reconnection theory and turbulent decay times comes
from our numerical finding that the dependence of CM on
Lu seems to be independent of the value of PrM; see Fig. 13.
More extensive numerical studies with resolutions of 81923

meshpoints, which was the resolution needed to see a lev-
eling off in 2–D, might suffice to verify our 2–D findings in
the 3–D case.

Our present work motivates possible avenues for fu-
ture research. One is to do the same for turbulence with
a −αu friction term in the momentum equation. Such cal-
culations were already performed by Banerjee & Jedamzik
(2004) and the friction term has also been incorporated in
the phenomenology of Hosking & Schekochihin (2023). It is
to model the drag from photons when their mean-free path
begins to exceed the scale ξM. This is the case after the
time of recombination, when it contributes to dissipating ki-
netic energy and leads to a decoupling of the magnetic field.
The field then becomes static and remains frozen into the
plasma. According to the work of Hosking & Schekochihin
(2023), this results in a certain reduction of CM compared
to the resistively limited value. Verifying this with simula-
tions would be particularly important.

Another critical aspect to verify is the absence of a de-
pendence of CM on PrM over a broader range of parameter
combinations. Given that there are always limitations on
the resolution, it may be useful to explore simulations in
rectangular domains to cover a larger range of scales. Other
possibilities include simulations with time-dependent values
of η and ν to obtain a larger separation between ξM and the
dissipation scale near the end of the simulation. However,
there is the danger that artifacts are introduced that need
to be carefully examined. Ill-understood artifacts can also
be introduced by using hyperviscosity and hyperresistivity,
which are used in some simulations. For the time being,
however, the possibility of a PrM dependence of CM can-
not be confirmed from our simulations. Whether or not this
automatically rules out reconnection as the reason for a re-
sistively limited value of CM, instead of the idea of magnetic
helicity conservation in smaller patches, remains uncertain.

As the value of PrM is increased, we also see a system-
atic increase of the kinetic to magnetic dissipation ratio,
ǫK/ǫM. Such a dependence has previously been seen for
kinetically dominated forced turbulence, but it is here per-
haps for the first time that is has been obtained for magnet-
ically dominated decaying turbulence. While such results
may be of interest to the problem of coronal heating, it
should be remembered that the present simulations have
large plasma betas, i.e., the gas pressure dominates over
the magnetic pressure. It would therefore be of interest to
check whether the obtained PrM-dependence also persists

for smaller plasma beta. The restriction to two dimensions
has been another computational simplification allowing sig-
nificantly larger Lundquist numbers to be accessed, but it
needs to be checked that the results for ǫK/ǫM are not very
sensitive to this restriction. Comparing the 3–D Runs M1
and M3 of Table 1 with the 2–D Run 2M3 of Table 3, which
have PrM = 5 and similar Lundquist numbers, we see that
the 2–D results may overestimate the ratio ǫK/ǫM by a fac-
tor of about two. Future work will need to show whether
this can also be confirmed for other parameters.
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Appendix A: Historical note on anastrophy

In recent years, the term anastrophy for the mean squared
magnetic vector potential 〈A2

z〉 = const has become in-
creasingly popular (Tronko et al. 2013; Galtier & Meyrand
2015; Zhou et al. 2021; Hosking & Schekochihin 2021;
Schekochihin 2022). In the 1970s, it was referred to as mean
square vector potential (Fyfe & Montgomery 1976) or as
the variance of the magnetic potential (Pouquet 1978). The
term anastrophy was first used in the 1987 Les Houches
lecture notes by Pouquet (1993), and it was also used by
Vakoulenko (1993), but neither of them provided an expla-
nation of its origin.

Annick Pouquet (private communication) informed us
now that the word may have been invented by Uriel Frisch
and Nicolas Papanicolaou during a meeting on a Winter
Sunday in the late 1970s at Saint-Jean-Cap-Ferrat, while
she and Jacques Léorat were also present.

The word has Greek roots, where ‘strophe’ refers to curl
or turning, and ‘ana’ therefore hints at the inverted curl of
B. This is somewhat reminiscent of the word palinstrophy,
which is the mean squared double curl of the velocity, where
‘palin’ means again. This term was also invented by Frisch
and Papanicolaou. The palinstrophy is proportional to the
rate of change of enstrophy, i.e., the mean squared vorticity.

Appendix B: Resolving the plasmoid instability

The expected thickness of critical layers, i.e., the smallest
thickness of current sheets when they become unstable to
the plasmoid instability, is expected to be of the order of
δc; see Sect. 6. To compare this with our 2–D simulations,
we show in Fig. 10 visualizations of Jz(x, y) in parts of the
full domain with sizes 5ξM × 10ξM at times t = 1, 10, 100,
and 464. Note that ξM(t) increases with time, so the x and
y ranges increase with time too. We see that each panel
contains about one pair of current tubes. Furthermore, the
other length scales, Lc and δc, increase with time by the
same factor, as expected for a self-similar evolution.

At late times, for t = 100 and 464, the current sheets
are seen to break up into plasmoids. They are obviously
better resolved in Run 2m6 with 163842 mesh points than in
Run 2m5 with only 81922 mesh points. At lower resolution,
one sees a higher tendency for ringing, i.e., the formation
of oscillations on the grid scale, which indicates that the
resolution limit has been reached. Nevertheless, Table 3 and
Fig. 13 show that, within error bars, the values of CM are
similar for the two resolutions.

It is possible that the critical current sheets are not well
resolved during a significant fraction of the duration of the
simulation. Theoretically, one expects the thinnest sheets to
set the reconnection rate, but this is also the place where
the value of PrM matters, because viscosity is unimportant
for the larger scales in the plasmoid hierarchy. Therefore,
if one does not resolve that sheet, it seems reasonable that
one would also not see a dependence on PrM. To check this,
we now consider a version of Run 2m2, where the viscosity
is ten times larger, which increases PrM from 10 to 100;
see Run 2m6. The result is shown in Fig. B.1. We see that
a lower value of Lu for PrM = 100 changes the results in
an expected fashion, thus rejecting the possibility that the
weak dependence of CM on PrM was an artifact of having
chosen unreliably large values of Lu; compare Runs 2m1
and 2m2 in Fig. B.2.

In the bottom right panel of Fig. B.1, we see the same
current sheet that was already presented in Sect. 6 as
Fig. 14. However, we also see in Fig. B.1 that there are
many other current sheets that are not yet in the process
of breaking up.
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Fig. B.1. Comparisons of visualizations of Jz(x, y) for Runs 2m5 and 2m6 with PrM = 10 and 81922 (left) and 163842

(right) mesh points at times t = 1, 10, 100, and 464. In each panel, the lengths of the dotted, dashed, and solid lines
denote the values of ξM, 5Lc, and 500 δc. Note that the bottom right panel shows the same current sheet that was
presented in Fig. 14 as a blow-up. The thick white line in that panel at (x, y) = (0.27, 0.25) marks the location of the
cross-section shown in Fig. 15.
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Fig. B.2. Similar to Fig. B.1 but for Run 2m1 with Lu = 75, 000 (left) and Run 2m2 with Lu = 182, 000 (right) using
PrM = 100 and 163842 mesh points in both cases. The thick white line in the bottom right panel at (x, y) = (0.37, 0.25)
marks the location of the cross-section shown in Fig. 15.
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