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ABSTRACT

We analyze direct numerical simulations of large-scale dynamos in inhomogeneous nonhelically-driven

rotating turbulence with and without shear. The forcing is modulated so that the turbulent intensity

peaks in the middle of the computational box and drops to nearly zero at the two ends above and below

the midplane. A large-scale dynamo is driven by an α effect of opposite signs between the two hemi-
spheres. In the presence of shear, the hemispheric magnetic helicity flux from small-scale fields becomes

important and can even overcompensate for the magnetic helicity transferred by the α effect between

large and small scales. This effect has not previously been observed in non-shearing simulations. Our

numerical simulations show that the hemispheric magnetic helicity fluxes are nearly independent of

the magnetic Reynolds number, but those between large and small scales, and the consequent dynamo
effect, are still found to decrease with increasing Reynolds number—just like in nonshearing dynamos.

However, in contrast to nonshearing dynamos, where the generated mean magnetic field declines with

increasing magnetic Reynolds number, it is now found to remain independent of it. This suggests that

catastrophic dynamo quenching is alleviated by the shear-induced hemispheric small-scale magnetic
helicity fluxes that can even overcompensate the fluxes between large and small scales and thereby

cause resistive contributions.

Keywords: Astrophysical magnetism (102) — Magnetic fields (994)

1. INTRODUCTION

Many astrophysical bodies harbour large-scale mag-
netic fields. Late-type stars and galaxies are the

main examples where a dynamo converts kinetic en-

ergy into large-scale magnetic energy (Charbonneau

2014; Brandenburg & Ntormousi 2023). Disks around
young stars and compact objects are additional exam-

ples, where the existence of large-scale magnetic fields

has so far only been inferred from simulations (Armitage

2011; Jiang et al. 2014; Davis & Tchekhovskoy 2020).

In all these cases, there is turbulence, the bodies ro-
tate, and they are stratified in the sense that the density

and/or the turbulent velocity vary in space. This, to-

gether with the overall rotation, causes the turbulence to

become helical, which leads to an α effect (Parker 1955;
Steenbeck et al. 1966), where the coefficient α relates

brandenb@nordita.org

the mean electromotive force to the mean magnetic field.
Also the magnetic field attains helicity, which affects the

α effect (Pouquet et al. 1976). The underling theory

has been the subject of textbooks (Moffatt 1978; Parker

1979; Krause & Rädler 1980; Zeldovich et al. 1983), but
later it became clear that magnetic helicity conserva-

tion causes such dynamos to saturate at progressively

lower values as the microphysical resistivity decreases

or the conductivity increases (Gruzinov & Diamond

1996; Ji 1999; Kleeorin et al. 2000; Brandenburg
2001; Vishniac & Cho 2001; Field & Blackman 2002;

Blackman & Brandenburg 2002). The resulting mean

magnetic field would then be very weak for astrophysi-

cally relevant resistivities.
Blackman & Field (2000) coined the term catas-

trophic quenching, which, in its original form, refers

to the actual value of α becoming very small at low

resistivities. In particular, numerical simulations by

Cattaneo & Hughes (1996) have shown that for mean
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fields defined as volume averages, the value of α dimin-

ishes to zero as the conductivity increases. It was there-

fore thought to be difficult to explain the generation of

the large-scale magnetic fields observed in many astro-
physical bodies with an α effect. It quickly became clear

that the problem of catastrophic quenching is connected

with the homogeneity of the turbulence in such simple

numerical setups. In those cases, there can be no mag-

netic helicity flux and magnetic helicity is then well con-
served in the limit of large conductivity. To avoid this

difficulty, Vishniac & Cho (2001) envisaged an α effect

that is computed from a specifically designed magnetic

helicity flux such that the magnetic helicity is conserved
exactly. However, the anticipated magnetic helicity

fluxes have not yet been found in numerical simulations

(Hubbard & Brandenburg 2012). With just inhomo-

geneous turbulence, many numerical simulations show

that the amplitude of the resulting mean magnetic field
decreases with increasing conductivity (Del Sordo et al.

2013; Rincon 2021; Bermudez & Alexakis 2022). This

phenomenon is then generally also still referred to as the

catastrophic quenching problem, even though α itself
may no longer be catastrophically small. On the other

hand, corresponding analytic calculations of the mean

magnetic helicity fluxes by Kleeorin & Rogachevskii

(2022) have not shown a dependence of the magnetic he-

licity flux on the microphysical conductivity. The reason
for catastrophic quenching remains therefore obscured.

Many previous numerical simulations employed helical

forcing. The purpose of the present work is to avoid this

by adopting a more natural setup in which a non-helical
flow is being driven. Kinetic helicity of the flow can then

emerge self-consistently as a result of stratification and

rotation. We also consider the effect of shear and how

it contributes to the α effect (Rüdiger & Brandenburg

2014). Shear may also be responsible for driving mag-
netic helicity fluxes (Vishniac & Cho 2001). In this

paper, we focus on the analysis of the magnetic heli-

city fluxes resulting from a simulation in slab geometry

with horizontal xy averages depending on time and disk
height z. In the middle of the domain at z = 0, the

averaged turbulent intensity has a maximum. The an-

gular velocity vector points in the positive z direction,

which allows us to associate the regions above and below

the midplane with north and south. This geometry can
also be applied to the two sides around the equator of a

sphere, where the z coordinate corresponds to latitude.

For our numerical simulations, we employ the Pencil

Code (Pencil Code Collaboration et al. 2021). Since it
advances the magnetic vector potential, the magnetic

field is always solenoid and the code is well suited for the

task of analyzing magnetic helicity and its flux. Other

codes that evolve instead the magnetic field and use di-

vergence cleaning to keep the magnetic field solenoidal

can spontaneously produce or destroy small-scale mag-

netic helicity (Brandenburg & Scannapieco 2020), al-
though schemes have been devised to conserve mag-

netic helicity at the expense of modifying the magnetic

field in neighboring places (Zenati & Vishniac 2023).

The Pencil Code has also been used successfully

in various earlier studies of magnetic helicity fluxes
(Hubbard & Brandenburg 2010, 2011; Del Sordo et al.

2013; Brandenburg 2018a).

In Section 2, we describe our numerical simulations

and the test-field method that is used to compute tur-
bulent transfer coefficient. We also discuss the decompo-

sition of magnetic helicity fluxes into contributions be-

tween hemispheres and between large and small scales.

In Section 3, we describe the results without and with

shear. We conclude in Section 4.

2. DESCRIPTION OF THE MODEL

2.1. Governing equations

We consider nonhelically driven inhomogeneous tur-
bulence of an isothermal gas with constant sound speed

cs in the presence of rotation with the angular velocity

vector Ω ≡ (0, 0,Ω). In some cases, we include an ad-

ditional shear flow, V = (0, Sx, 0), where S = −qΩ is a

constant and q is the shear parameter. Shear flows with
q < 2 are Rayleigh-stable, but unstable to the MRI for

q > 0; see Balbus & Hawley (1998) for a review. Ke-

plerian shear corresponds to q = 3/2, while shear in

galactic disks corresponds to q = 1 (Beck et al. 1996).
The turbulence is stochastically driven with a forcing

function f (x, t), whose intensity is modulated in the z

direction with a profile function fprof(z) = cos2(k1z/2),

where k1 = 2π/L is the lowest wavenumber in a cube

of size L3. The forcing is applied on the right-hand side
of the evolution equation for the velocity U , which then

reads (Brandenburg et al. 1995, 2008a)

DU

Dt
= f(x, t)−U ·∇U − SUxŷ − 2Ω×U

−c2s∇ ln ρ+
1

ρ
[J ×B +∇ · (2ρνS)] , (1)

where D/Dt = ∂/∂t+ V ·∇ is the advective derivative
with respect to the shear flow, ρ is the density, B is the

magnetic field, J = ∇×B/µ0 is the current density, µ0

is the vacuum permeability, ν is the viscosity, and S is

the traceless rate-of-strain tensor with the components
Sij = (∂iUj + ∂jUi)/2 − δij∇ · U/3. The tensor S is

not to be confused with the constant scalar S, which

denotes the uniform background shear when q 6= 0. The

logarithmic density obeys the continuity equation in the
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form
D ln ρ

Dt
= −U ·∇ ln ρ−∇ ·U . (2)

The magnetic field B = ∇×A is solved in terms of the

magnetic vector potential A,

DA

Dt
= −SAyx̂−E −∇Φ, (3)

where E = ηµ0J − U × B is the electric field

with SAyx̂ ≡ ES being the contribution from the

shear, η is the magnetic diffusivity, and Φ is the
electrostatic potential. In Equation (3), we have

adopted the advecto-resistive gauge, in which Φ =

−VyAy − η∇ · A (Candelaresi et al. 2011). As shown

in Brandenburg et al. (1995), the inclusion of the ad-
vective term VyAy is necessary for being able to adopt

shearing–periodic boundary conditions. This means

that the magnetic diffusion operator reduces to η∇2A;

see Candelaresi et al. (2011) for further details. In

some cases, we also compute the vector potential in
the Coulomb gauge, ACou = A − ∇Λ, by solving

∇2Λ = ∇ ·A with appropriate boundary conditions.

The nonhelical forcing function f(x, t) is given by

(Haugen et al. 2004)

f(x, t) = f0cs (csk/δt)
1/2 e× k

|e× k| e
ik(t)·x+iϕ(t), (4)

where e is a random vector that is not aligned with k,

ϕ(t) is a random phase (|ϕ| ≤ π), and f0 is the ampli-

tude. At each time step, a new forcing vector k(t) is cho-
sen randomly from a set of wavevectors k whose lengths

|k| lie in a narrow band kf−δk/2 ≤ k < kf+δk/2, where

kf = 8 and δk = 1 is used for all the runs discussed in

this paper.
To analyze the possibility of large-scale dynamo ac-

tion, it is useful to compute planar averages. Ow-

ing to the inhomogeneity in the z direction, we adopt

xy averages, which are denoted by an overbar, e.g.,
U(z, t) =

∫

u(x, t) dxdy/L2. Fluctuations about the

average are then denoted by lowercase symbols, e.g.,

u = U −U , b = B −B, and j = J − J .

2.2. Control parameters and initial conditions

The value of the overall root-mean square (rms) ve-
locity urms is characterized by the Mach number, Ma =

urms/cs. When there is shear, the value of urms does not

include this shear flow. Since we are here not interested

in studying compressibility effects, we adopt subsonic

Mach numbers and take Ma <∼ 0.1 for all runs. The
values of ν and η are characterized by the fluid and

magnetic Reynolds numbers,

Re = urms/νkf and ReM = urms/ηkf , (5)

respectively. The ratio PrM = ν/η is the magnetic

Prandtl number. In the following, we vary PrM by keep-

ing the value of Re fixed. Another control parameter is

the relative forcing wavenumber, kf/k1. The amount of
rotation and shear are quantified by the Coriolis and

shear numbers,

Co = 2Ω/urmskf and Sh = S/urmskf , (6)

respectively. As initial condition, we use U = ln ρ/ρ0 =

0, so the initial density is equal to some reference density

ρ0.

The initial magnetic vector potential is calculated
from a weak Gaussian-distributed field with an rms

value Brms such that the rms Alfvén speed vA =

Brms/
√
µ0ρ0 is a small fraction of cs. When ReM ex-

ceeds a certain critical value, there is dynamo action,
i.e., vA/cs grows exponentially and saturates eventually

at a value around 0.1. Instead of quantifying vA/cs, it is

useful to quantify the ratio vA/urms, or, equivalently, the

value of Brms in units of the equipartition field strength,

Beq =
√
µ0ρ0 urms. The rms value of the large-scale field

is denoted by Brms.

Owing to the presence of rotation and stratification

of the turbulent intensity, we expect the generation of

kinetic helicity, ω · u, where ω = ∇×u is the vorticity of
the fluctuating velocity. Following Jabbari et al. (2014),

we determine the resulting kinetic helicity in terms of

the non-dimensional ratio

ǫf(z) = ω · u/u2
rmskf , (7)

which is characterized primarily by the amplitude of its

variation, defined here as

ǫf0 = 2 〈ǫf(z) sin k1z〉 . (8)

As in Jabbari et al. (2014), we expect ǫf0 to increase

linearly with increasing rotation rate and with increas-
ing stratification of turbulent intensity, provided these

values are not too large.

The simulations are performed with the Pencil Code

(Pencil Code Collaboration et al. 2021). Numerical re-

sults are usually presented as averages over a statisti-
cally steady stretch in time. Error margins are esti-

mated as the largest departure over any one third of the

full time series.

2.3. Quasi-kinematic test-field method

To characterize the nature of large-scale dynamo ac-

tion, we need to obtain the mean-field dynamo coef-
ficients that characterize the dependence of the mean

electromotive force E on B and J . The most accurate

choice is the test-field method (Schrinner et al. 2005,

2007; Brandenburg 2005; Brandenburg et al. 2008c).
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In the test-field method, we solve the equations for

the fluctuations bT that result from a certain test field

BT. We represent it by bT = ∇× aT and solve for the

vector potential aT, which, in the Weyl (or temporal)
gauge with zero electrostatic potential, obeys

∂aT

∂t
= u×BT+U×bT+u×bT−u× bT+η∇2aT. (9)

This allows us to compute ET = u× bT. We adopt

the parameterization ET

i = αijB
T

j − ηijµ0J
T

j . Since

only the x and y components are significant, we have

8 unknowns for the 4 components of αij and the 4 com-
ponents of ηij . To obtain all unknowns, we use the 4

vectorial test fields BT = (c, 0, 0), (s, 0, 0), (0, c, 0), and

(0, s, 0), where c = cos kTz and s = sin kTz. Since only

the x and y components are significant, we have exactly

8 independent equations for the 8 unknowns. We choose
kT = k1 and refer to Brandenburg et al. (2008c) regard-

ing the significance of also studying kT > k1 to obtain

full integral kernels in a parameterization involving in-

tegral kernels.
When u in Equation (9) is a solution of the non-

linear Equation (1) with the Lorentz force included,

we talk about the quasi-kinematic test-field method.

This method is nonlinear in the sense that it describes

correctly the modifications of the velocity field in re-
sponse to the actual magnetic field in the simulations

(Brandenburg et al. 2008b; Karak et al. 2014). How-

ever, it is not fully nonlinear in the sense that it

does not include the fluctuating magnetic field from a
small-scale dynamo (Rheinhardt & Brandenburg 2010;

Käpylä et al. 2022). On the other hand, there are so

far no clear cases of practical interest where the quasi-

kinematic method is known to fail; see Brandenburg

(2018b) for a review. The only exception is the case
where magnetic fluctuations are produced by apply-

ing externally maintained currents to drive the system.

Those cases are mainly of academic interest and not

relevant to our problem at hand. The success of the
quasi-kinematic method lies probably in the fact that

the small-scale dynamo-generated magnetic fields are

not well correlated with the large-scale field.

In the present case, the time-averaged turbulent trans-

port coefficients depend on z. In addition to plotting the
individual components of αij and ηij , we also compute

the traces α ≡ (αxx +αyy)/2 and ηt ≡ (ηxx+ ηyy)/2, as

well as the antisymmetric parts, γ ≡ (αyx −αxy)/2 and

δ ≡ (ηxy − ηyx)/2. In the following, we fit ηt to Legen-
dre polynomials of cos k1z. Since these are orthogonal

polynomials, a decline of the coefficients with increas-

ing order can be interpreted as convergence. Another

quantity of interest is the z-dependent dynamo number,

Cα = α/ηtk1. In the present case, it turns out that, to a

good approximation, it has a linear profile. The values

and slopes are given in tabular form below.

2.4. Mean-field evolution

To assess the importance of the aforementioned tur-

bulent transport coefficients α, ηt, γ, and δ, we consider
numerical mean-field models, where we can rescale the

coefficients to learn about their relative importance. In

that case, we solve the 1–D mean-field equation, again

in the Weyl gauge,

∂A

∂t
= αB − ηTµ0J + γ ×B + δ × µ0J − SAyx̂, (10)

where γ = (0, 0, γ) and δ = (0, 0, δ) are vectors that
only have a z component and ηT = ηt + η is the total

magnetic diffusivity. It should be remembered, however,

that the values and profiles of the turbulent transport

coefficients have been computed under the assumption

of steady mean fields. This is obviously not the case;
see Hubbard & Brandenburg (2009) for the treatment

of time-dependent mean fields.

2.5. Magnetic helicity fluxes

The saturation level of the resulting mean magnetic

field is known to be severely limited by the ability to

shed magnetic helicity from the dynamo through mag-
netic helicity fluxes; see Zhou & Blackman (2024) for a

recent assessment. It is therefore of interest to consider

the evolution equation for the magnetic helicity bal-

ance separately for the large-scale and small-scale con-
tributions by splitting the total mean magnetic density,

A ·B, into two parts: A · B and a · b. The evolution

equation for A ·B is obtained by dotting Equation (3)

with B and adding its curl dotted with A, which yields

∂

∂t
A ·B = −2E ·B −∇ ·F , (11)

where F = E ×A + ΦB is the total magnetic helicity

flux. Note also that E ·B = ην0J ·B, i.e., the induc-

tion term does not contribute. The evolution equation
for A ·B is obtained from the evolution equation for the

mean field, ∂A/∂t = −E −∇Φ, where

E = ηµ0J −U ×B − E (12)

is the averaged electric field and E = u× b is the mean

electromotive force from the fluctuating fields. This

yields

∂

∂t
A ·B = 2E ·B − 2ηµ0J ·B −∇ ·Fm, (13)

where Fm = E ×A+ΦB is the magnetic helicity flux

from the mean field. Note, however, that in our cases
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Bz = 0 at all times owing to the fact that ∇ · B = 0,

the use of planar averages, and the fact that Bz = 0 ini-

tially. Therefore, ΦB = 0. Furthermore, the mean-field

shear contribution, ES, to the mean electric field only
leads to a lateral magnetic helicity flux and is therefore

irrelevant.

Finally, the evolution equation for a · b is obtained

from the difference A ·B −A ·B, which yields

∂

∂t
a · b = −2E ·B − 2ηµ0j · b−∇ ·F f , (14)

where F f = e× a + φb is the magnetic helicity flux of

the fluctuating field, e = E−E is the fluctuating electric
field, and φ = Vyay − η∇ · a. Contrary to Brandenburg

(2018a), we use here the more natural and more compact

notation where E is included in the definition of E; see

Equation (12).

In the statistically steady state, we can drop the time
derivative. Instead of considering volume-integrated

quantities separately for the northern and southern

hemispheres, it is convenient to plot them as fluxes in

terms of undetermined integrals,

∫ z

z
−

2ηµ0J ·B dz = +

∫ z

z
−

2E ·B dz −Fmz, (15)

∫ z

z
−

2ηµ0j · b dz = −
∫ z

z
−

2E ·B dz − F fz, (16)

in the range z− ≤ z ≤ z+, where z± = ±π/k1 are

the upper and lower boundaries of the cube. In the

following, we refer to these as “integrated terms”.

Note that in both Equations (15) and (16) there

are three terms of which two are manifestly gauge-
invariant. Therefore, also the third term, Fmz and

Fmz in each equation, respectively, must be gauge-

invariant. This argument was already applied by

Hubbard & Brandenburg (2010) in their work on mag-
netic helicity fluxes from a dynamo embedded in a con-

ducting halo.

It is convenient to present the magnetic helicity fluxes

in normalized form. For the following, we define the

reference flux as

Fm0 = ηt0k1

∫ z+

z
−

B
2
dz. (17)

This is analogous to the work of Brandenburg (2018a),

except that there k21 instead of k1 was written by mis-

take.
To compare the current helicity with the kinetic he-

licity, we define ǫMf (z) = j · b/u2
rmskf and its amplitude

as ǫMf0 = 2
〈

ǫMf (z) sin k1z
〉

. Finally, the ratio between

the small-scale current and magnetic helicity densities

Figure 1. Sketch of the magnetic helicity fluxes between
north and south (upper and lower boxes), and between large
scales (LS, left) and small scales (SS, right). In the steady
state, the four magnetic helicity reservoirs can still have sinks
or sources because of the microphysical resistivity. This can
still be important, especially at small scales, and therefore
the small-scale magnetic helicity fluxes, F fz, may not bal-
ance the 2E · B term, which is therefore indicated by the
dashed arrow.

is characterized by the ratio k2eff = j · b/a · b, where

the two terms have been computed from a sinusoidal

fit, analogously to ǫMf0 . These quantities are discussed in

Section 3. It should be noted, however, that the depar-
ture of keff from the value of kf is mainly a measure of

the departure of the magnetic vector potential from the

Coulomb gauge, because the term ∇ ·A in the expres-

sion for J = −∇2A + ∇∇ · A can be important. By
contrast, the ratio (−∇2a) · b/a · b is typically found to

be close to the actual value of kf = 8 k1, even when the

Coulomb gauge is not used.

2.6. Magnetic helicity cycle

In this section, we explain that there is a continuous

flux of magnetic helicity both between hemispheres and
between scales. This is illustrated in Figure 1.

Owing to the presence of rotation and a finite gradient

in the turbulent intensity, an α effect is expected based

on the formula by Steenbeck et al. (1966),

α ≈ −ℓ2Ω ·∇ ln(ρurms), (18)

where ℓ is a suitable length scale. We refer here to
Rüdiger & Kichatinov (1993) for analytical calculations

based on the consideration of homogeneous background

turbulence that is being affected by stratification and ro-

tation, and Brandenburg et al. (2013) for simulation re-
sults over a broad range of astrophysical settings. Equa-

tion (18) predicts a positive (negative) value of α in

the upper (lower) disk plane. This, in turn, implies

negative (positive) kinetic helicities of the small-scale
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Table 1. Summary of the results for our test-field runs. Run E has uniform shear with q = 0.5.

—— η−1
t0 × —— — B−1

eq × —

Run Sh Re ReM PrM ηk1/cs η
(0)
t η

(1)
t η

(2)
t η

(3)
t Cα(z) −ǫf0 ǫMf0 keff Co Brms Brms

A 0 17.5 3.5 0.2 2.5 × 10−3 0.80 0.89 0.17 0.01 2.81 z 0.48 −0.06 8.8 1.78 0.52 0.43

B 0 16.9 16.9 1 5× 10−4 0.71 0.87 0.24 0.06 2.52 z 0.47 −0.12 11 1.84 0.57 0.34

C 0 16.4 82 5 10−4 0.71 0.87 0.24 0.06 2.30 z 0.48 −0.14 14 1.91 0.58 0.22

D 0 15.8 158 10 5× 10−5 0.64 0.76 0.18 0.04 2.22 z 0.47 −0.14 17 1.98 0.59 0.19

E 0.63 12.3 123 10 5× 10−5 0.49 0.45 0.01 0.04 1.37 z 0.22 0.007 3.0 2.50 1.39 0.34

velocity and magnetic fields in the upper (lower) disk

plane. It is known that, at least in the absence of shear,

the magnetic helicity of the small-scale field is then
also negative (positive) in the upper (lower) disk plane

(Del Sordo et al. 2013; Rincon 2021). Assuming that

small-scale magnetic helicity is transported down the

gradient of the magnetic helicity density and/or mag-

netic energy density (Kleeorin & Rogachevskii 2022), we
expect a small-scale magnetic helicity flux from south

to north; see the dashed line in Figure 1. It is shown

here as a dashed line, because in our simulations with-

out shear, this flux appears to be too weak, while in our
runs with shear, it appears to be too large to balance

the corresponding fluxes at large scales.

There is also a magnetic helicity flux from small to

large scales, which is given by the integral of 2E · B.

This term has a contribution αB
2
, which is positive in

the north, but since it enters with a minus sign, the

associated flux points from small to large scales, and in

the opposite direction in the south where α is negative;

see Figure 1.

3. RESULTS

We have performed a series of runs with different pa-

rameters; see Table 1 for a summary. In all cases without

shear, we use 2563 meshpoints and keep the viscosity
fixed (νk1/cs = 5 × 10−4), so the level of turbulence

stays unchanged, but ReM is increased by decreasing

the value of η. This makes the dynamo stronger, so

Brms/Beq increases. This quenches the velocity field,

and therefore the values of Re decrease with increas-
ing values of PrM. We notice, however, that, as PrM
and Brms/Beq increase, the normalized rms value of the

mean field, Brms/Beq, decreases. As already emphasized

above, this is at the core of the problem of catastrophic
quenching.

For Runs A–E, we also have obtained test-field results,

while for Runs F–H, we have focussed on the analysis

of the contributions to the magnetic helicity balance.

In some of those runs, we also increased the resolution.

Those runs have uniform shear with q = 0.5. This choice

is motivated by demanding that |V |/cs does not exceed
unity. The values of Re and ReM are given for the sat-

urated state.

3.1. Dynamos without shear

For all the cases in Table 1, there is dynamo action.

The resulting magnetic field has spatio-temporal coher-

ence with a systematic large-scale magnetic field oscil-
lation on a time scale long compared with the turnover

time of the turbulence. As noted above, however, al-

though Brms is seen to increase with increasing mag-

netic Reynolds number, ReM = PrMRe, the rms mag-
netic field contained in the mean field, Brms, is seen to

decrease.

In Figure 2, we show zt diagrams, also known as but-

terfly diagrams, for the two relevant components of B

for Run D with PrM = 10. We see migration of the mag-
netic field away from the boundaries at k1z± = ±π. This

is expected for α2 dynamos with a non-uniform distribu-

tion of α (Stefani & Gerbeth 2003; Cole et al. 2016), or

even for a uniform α, but with different boundary con-
ditions on two opposite ends; see Brandenburg (2017).

3.2. Turbulent transport coefficients

To identify the nature of the large-scale dynamo seen

above, it is useful to compute the turbulent transport

coefficients for the horizontal averages applied in this

study. All our test-field runs have ν = 5×10−4cs/k1. We

adopt the expansion ηt =
∑3

ℓ=0 η
(ℓ)
t Pℓ(cos k1z). In the

range k1|z| ≤ 2.5, we determine a linear fit to Cα(z) ≈
α/ηtk1. For larger values of |z|, Cα varies no longer

linearly, so this part is ignored in the fit.

In Figure 3, we show time-averaged profiles of α(z),
γ(z), ηt(z), and δ(z) for Run D with PrM = 10. For nor-

malization purposes, we adopt the following estimates

for the α effect and the turbulent magnetic diffusivity:

α0 = −ǫf0urms/3, ηt0 = urms/3kf . (19)



7

Figure 2. Butterfly diagrams for Bx (left) and By (right) for Run D with PrM = 10. PrM = 10, η = 5× 10−5, ν = 5× 10−4.

Figure 3. The black lines denote the time-averaged normalized profiles of α, γ, ηt, and δ for Run D with PrM = 10,
η = 5× 10−5, ν = 5× 10−4. In the four panels, the red (blue) lines denote αxx (αyy), αyx (−αxy), ηxx (ηyy), and ηxy (−ηyx).
The ratio, α/ηtk1, shows local extrema at k1z = ±2 of about 5, but has here a nearly linear profile as a function of z.

Note that in all our simulations (both with and with-
out shear) α0 is negative. In Figure 3, the ratio α/ηtk1
shows local extrema at k1z = ±2 of about ±5, but has

here a more linear profile as a function of z than for

Run A. The profile γ(z) quantifies turbulent pumping.
It is negative in the southern hemisphere and positive

in the northern hemisphere. Since γ play the role of an

advection vector (albeit without any material motion),

this corresponds to magnetic field pumping away from

the midplane; see Shukurov & Subramanian (2022) for
a review. The profile δ(z) describes the Ω×J or Rädler

effect (Rädler 1969), which is known to contribute to dy-

namo action, although this term alone cannot contribute

to a change in B
2
. The sign of δ is here as expected from

theory, and it also agrees with earlier test-field results

(Brandenburg et al. 2008a).

For the corresponding results for Run A with PrM =

0.2, the ratio α/ηtk1, again, shows local extrema at
k1z = ±2 of about ±5.

3.3. Importance of mean-field effects

To assess the relative importance of the turbulent
transport coefficients, we have solved the relevant mean-

field model with Equation (10) using the coefficient from

Run D. We find that the model with all the mean-field

transport coefficients included yields a slow growth with
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Table 2. Growth rates λ for mean-field models for differ-
ent combinations of cγ and cδ using the test-field results for
Run D, Run D with shear, and Run E with shear. In the last
row, the factor cα by which α needs to be scaled to reach a
marginally excited state, is given for Run D.

. . . . . . . λ/csk1 . . . . . . .

cα cγ cδ Run D Run D+Sh Run E+Sh

1 1 1 0.0021 0.023 0.0051

1 0 1 0.0017 0.021 0.0046

1 1 0 0.0022 0.021 0.0054

1 0 0 0.0020 0.020 0.0050

0.25 0 0 0 ... ...

the growth rate λ/csk1 = 0.0021. The fact that this

number is different from zero, even though the orig-

inal direct numerical simulation has reached a steady
state, remains unexplained. To reach a marginally ex-

cited state, we would need to scale down the α tensor

by a factor of about four to reach a marginally excited

state. Similar departures from the expected vanishing
growth rate have been seen before; see Warnecke et al.

(2021) for simulations in spherical geometry, where the

α tensor needed to be scaled up to reach a marginally

excited state.

We now study the relative importance of the off-
diagonal terms of both the αij and ηij tensors. In Ta-

ble 2, we give the values of λ after having rescaled the

off-diagonal components of the two tensors by scaling

coefficients

αij → cγ αij , ηij → cδ ηij , i 6= j. (20)

Thus, when cγ = 0 (1), the γ effect is ignored (included),

and when cδ = 0 (1), the δ effect is ignored (included).
For Run D, we also have shown the factor cα = 0.25

by which α needs to be scaled to reach a marginally

excited state. We also studied models in which we in-

cluded spatiotemporal nonlocality by solving a differen-
tial equation for E (Rheinhardt & Brandenburg 2012;

Brandenburg & Chatterjee 2018; Pipin 2023), but this

did not change the value of cα significantly.

From the results presented in Table 2, we see that

ignoring the γ effect for the profiles from Run D (Fig-
ure 3), decreases the growth rate slightly. Thus, the

inclusion of the γ effect supports dynamo action in our

case. On the other hand, ignoring the δ effect increases

the growth rate slightly. Therefore, the inclusion of the
δ effect suppresses dynamo action slightly. On the other

hand, the changes in the growth rate are surprisingly

small, so it is probably reasonable to say that the im-

portance of the off-diagonal components in the model

is small and that the dynamo is well described by an

isotropic α2 dynamo.

Next, we add shear of the same strength as for Run E

(Table 2), but we continue using the mean-field trans-
port profiles of Run D (Figure 3). This is obviously in-

consistent, but it allows us to isolate the effect of shear in

the mean-field model from that of the profiles for αij and

ηij . The overall growth rate is about ten times larger

than without shear, but the differences in the growth
rates for different combinations of cγ and cδ are small.

In summary, we find that both the γ effect and the δ

effect contribute slightly to dynamo action, and that

excluding them decreases the growth rate slightly.
On the other hand, when one uses the actual profiles

for Run E together with shear, we find not only larger

differences for different combinations of cγ and cδ, but

the overall grow rates are also decreased by a factor of

about 4 and are now only about 2.5 times larger than
for the profiles of Run D and no shear. In particular,

the inclusion of the δ and shear–current effects supports

dynamo action while the inclusion of the γ effect di-

minishes dynamo action. In units of urmskf , the value
λ/csk1 corresponds to λ/urmskf = 0.01.

3.4. Interpretation of magnetic helicity fluxes

We are interested in the magnetic helicity flux between

the northern and southern hemispheres. It is convenient

to plot the magnetic helicity flux through any xy plane
as a function of z. In Figure 4, we see that for Run D,

most of the total magnetic helicity flux is contained in

the large-scale contribution, E × A. The small-scale

magnetic helicity flux is nearly negligible. The large-
scale component is nearly balanced by the fluxes 2

∫ 0

−π
E ·

B dz and 2
∫ π

0 E · B dz between different scales in the

southern and northern hemispheres. At small scales,
however, almost the entire flux is absorbed by the Ohmic

diffusion term 2ηµ0j · b, which was also found for most

of the earlier work (Del Sordo et al. 2013; Rincon 2021),

when ReM was not yet very large.
For the much more diffusive Run A with PrM = 0.2,

the situation is a bit different; see Figure 5. Here, the

integrated 2E ·B term is still balanced by the integrated

−2ηµ0j · b term, but now there is also a significant con-

tribution from the integrated 2ηµ0J · B term, which
balances E ×A. Looking at Figure 1, this means that

the microphysical magnetic diffusivity is important not

only at small scales, when the integrated 2E · B term

is entirely supplied by the integrated −2ηµ0j · b term
and not much by the e× a or integrated φb terms, but

also at large scales, when the integrated 2E ·B term is

supplied to 50% by the integrated ην0J ·B term and to

another 50% by E ×A.
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Figure 4. Magnetic helicity fluxes for Run D with PrM = 10. η = 5 × 10−5, ν = 5 × 10−4. The blue (red) lines denote the
small-scale (large-scale) contributions, where applicable, and the black dotted lines denote their sum. The black dashed-dotted
line is the zero line. Note that the j · b and J ·B terms have been plotted with a minus sign, so 2ηµ0

∫
j · b dz is here positive.

Figure 5. Similar to Figure 4, but for Run A with PrM = 0.2. η = 2.5× 10−3, ν = 5× 10−4. Note that the integrated 2E ·B
term is balanced by the integrated −2ηµ0j · b term, but there is also a significant contribution from the integrated 2ηµ0J · B
term, which balances E ×A.

Table 3. The contributions from F−1
m0 (e× a)z, 2F

−1
m0

∫
E ·B dz, and −2ηµ0F

−1
m0

∫
j · b dz to the magnetic helicity flux balance,

along with other properties, for runs with shear.

F−1
m0× −2F−1

m0× −2ηµ0F
−1
m0× — B−1

eq × —

Run Re ReM PrM ηk1/cs (e× a)z
∫
E ·B dz

∫
j · bdz −ǫf0 ǫMf0 keff Brms Brms N3

E 12.3 123 10 5× 10−5 0.035 0.035 0.005 0.22 0.007 3.0 1.39 0.34 2563

F 12.9 258 20 2.5× 10−5 0.045 0.015 0.030 0.22 0.05 15 1.58 0.31 5123

G 13.2 660 50 10−5 0.025 0.005 0.020 0.15 0.10 24 2.62 0.37 10243

H 160 160 1 5× 10−5 0.075 0.160 −0.085 0.33 −0.02 14i 0.94 0.22 5123

I 340 340 1 2× 10−5 0.060 0.040 0.020 0.26 0.04 16 1.10 0.28 5123

J 540 540 1 10−5 0.075 0.020 0.055 0.16 0.10 16 1.24 0.24 5123

K 850 850 1 5× 10−6 0.060 0.015 0.045 0.08 0.07 17 1.24 0.21 5123

L 410 164 0.4 5× 10−5 0.050 0.130 −0.080 0.33 −0.03 9i 0.94 0.22 5123

M 830 166 0.2 5× 10−5 0.075 0.075 −0.000 0.33 −0.00 3 0.91 0.20 5123

N 1650 165 0.1 5× 10−5 0.060 0.140 −0.080 0.33 −0.03 13i 0.92 0.25 5123

O 690 345 0.5 2× 10−5 0.120 0.020 0.100 0.26 +0.07 12 1.05 0.18 5123

P 1700 340 0.2 2× 10−5 0.070 0.050 0.020 0.25 +0.04 13 1.08 0.26 5123

3.5. The effect of shear

We now consider models with finite shear using q =

0.5 (so Vy = −qΩx). This value is less than what is used

to model Keplerian shear, where q = 3/2. As empha-

sized above, this is because we want to avoid supersonic

speeds on the shearing boundaries at x = ±π. In the
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Figure 6. Butterfly diagrams for Bx (left) and By (right) for Run E with shear and PrM = 10.

Figure 7. Time-averaged profiles of α, γ, ηt, and δ for Run E with shear and PrM = 10. The ratio, α/ηtk1, shows local
extrema at k1z = ±2 of about 5, but has here a more linear profile as a function of z. The red lines refer to αxx(z), αyx(z),
ηxx(z), ηyx(z), and the blue lines to αyy(z), αxy(z), ηyy(z), and ηxy(z). Note that, while ηxx ≈ ηyy, we find that αxx ≫ αyy .
Also, αyx ≫ αxy , i.e., the pumping of Bx is stronger than that of By .

present case with Ω/csk1 = 0.5 and q = 0.5, we have

Vy(±π) = ∓0.8cs. Run E is an example of a model

with shear. The fluxes for this and a few other runs

with shear are summarized in Table 3. In Figure 6, we
show butterfly diagrams for Bx and By for Run E with

shear and PrM = 10. They are consistent with ear-

lier results by Stepinski & Levy (1990), where the field

is confined to the disc, which is here accomplished by
the use of perfect conductor boundary conditions; see

Brandenburg & Campbell (1997) for further detail and

references. Similarly to the cases without shear, as we

increase the value of PrM further and ReM increases,

the ratio Brms/Beq increases, but now the level of the

mean field, Brms/Beq, stays approximately the same.

This might suggest that catastrophic quenching is now

alleviated.
In Figure 7, we show time-averaged profiles of α, γ, ηt,

and δ for Run E. We see that, while ηxx ≈ ηyy, we find

that αxx ≫ αyy. This agrees with earlier simulations

of Brandenburg (2005), but is opposite to the results of
Gressel et al. (2008). Furthermore, we find that αyx ≫
αxy, i.e., the pumping of Bx is stronger than that of

By; see Ossendrijver et al. (2002) for earlier work on
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Figure 8. Similar to Figure 4, but for Run E with shear and PrM = 10. Large-scale and small-scale magnetic helicity fluxes
nearly cancel. In the small-scale magnetic helicity equation, the integrated 2E · B term balances e× a, and the integrated
−2ηj · b term is small. We recall that the j · b and J · B terms have been plotted with a minus sign, so 2ηµ0

∫
j · b dz is now

negative.

Figure 9. Similar to Figure 8, but for Run F with PrM = 20.

directionally dependent pumpings of the magnetic field
in a sphere.

The contribution from ηxy is rather small and, as

already emphasized before, that from ηyx fluctuates

around zero. It is this component that is relevant
for the shear–current effect (Rogachevskii & Kleeorin

2003, 2004). Its magnetic contribution to the shear–

current effect was thought to be an important driver

(Squire & Bhattacharjee 2015), but even the fully non-

linear test-field method did not show such a contribution
(Käpylä et al. 2020).

In Figure 8, we show magnetic helicity fluxes for

Run E. Large-scale and small-scale magnetic helicity

fluxes nearly cancel and are nearly equally important.
It is striking to note that the small-scale magnetic heli-

city flux, arising from the correlated action of the tur-

bulent eddies, roughly scales as the turbulent energy

density and has the same sign throughout the computa-

tional volume. In the third panel of Figure 8, we see the
integrated small-scale current helicity, which oscillates

from zero to a negative maximum back to zero twice.

This implies that the current helicity, and the associ-

ated magnetic helicity, oscillates through two full cycles
within the computational volume. The small-scale mag-

netic helicity flux seen in the first panel shows a negli-

gible contribution from the turbulent diffusion term of

the form −κt∇zh, where κt is a turbulent diffusivity and
h = a · b is the small-scale magnetic helicity density.

In Equation (13) for the large-scale helicity equation,

the integrated 2E ·B term balances E×A, and in Equa-

tion (14), also e× a balances 2
∫

E ·B dz, so, contrary

to the cases without shear, the integrated 2ηµ0j · b term
is small, and the integrated 2ηµ0J · B term is smaller

still. This was not the case in much of the earlier work

without shear (Del Sordo et al. 2013; Rincon 2021).

For Run F, E ×A stays unchanged, but 2
∫

E ·B dz
now decreases and 2ηµ0

∫

j · b dz increases and is of op-

posite sign compared to before; see Figure 9. This trend

persists even for Run G, although here the statistical

significance is more questionable; see Figure 10.

The ReM-dependence of the magnetic helicity fluxes in
Table 3 is unexpected. This dependence is shown more

clearly for Runs E–G and Runs H–K in Figure 11, where

−2
∫

E ·B dz displays a monotonic decrease proportional
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Figure 10. Similar to Figure 9, but for Run G with PrM = 50.

Figure 11. Summary of the small-scale magnetic helicity fluxes (blue line) and the typical values of −2
∫
E · B dz (black

lines) and −2ηµ0

∫
j · b dz (red lines) for the runs with shear in semi-logarithmic (a) and double-logarithmic (b) representations.

The latter also shows the Re−1
M scaling as the dashed-dotted line. The dashed lines connecting each three data points are for

Runs E–G (with PrM 6= 1) and the solid lines for Runs H–K (with PrM = 1). The lines for Runs E–G have been upscaled by
a factor 3 to make them coincide with those for Runs H and I. The inset shows the fluxes for Runs A–D without shear in the
same color coding.

to Re−1
M . The small-scale magnetic helicity flux diver-

gence, on the other hand, is nearly constant in all cases

and strongly exceeds −2
∫

E · B dz for large values of

ReM. As a consequence, to obey the steady-state condi-
tion of Equation (14), the magnetic helicity dissipation

must become important at large ReM. A similar behav-

ior has not previously been seen in the absence of shear;

see the corresponding plots of Del Sordo et al. (2013)
and Rincon (2021) and the inset to Figure 11. Looking

again at Table 3, we see, however, that the integrated

j · b terms do still obey Equation (16), i.e.,

e× a = −2

∫ z

z
−

(

E ·B + ηµ0j · b
)

dz. (21)

We have seen that for larger values of PrM and ReM,

the small-scale magnetic helicity flux, e× a, stays ap-
proximately unchanged, although the integrated−2E ·B
term still declines with larger values of ReM. Thus, there

is now an excess of small-scale magnetic flux from south

to north. This excess must be dissipated by the inte-

grated Ohmic term 2ηµ0j · b. Such a behavior is rather

unexpected and it seems to be a general consequence of

dynamos with shear and large values of ReM, and is not

just a specific consequence of large values of PrM.

3.6. Super-equipartition with shear

The reason why our runs with shear show strong
small-scale magnetic helicity fluxes is probably con-

nected with the fact that in those runs, the magnetic

field reaches super-equipartition strengths. This is seen

in Table 3, where Brms/Beq > 1, and in Figure 12,

where we plot for Run E the temporal evolution of 〈B2〉,
B2

eq = µ0ρ0 u
2
rms, 〈B2

y〉, and 〈B2
x〉. We see that the to-

tal (small-scale and large-scale) magnetic field reaches

super-equipartition field strengths at t ≈ 300/csk1,

which is clearly before the large-scale magnetic field sat-
urates at t ≈ 1000/csk1, which is when 〈B2

y〉 has reached
a statistically steady state. Interestingly, the large-scale

magnetic field displays an approximately exponential

growth at a rate 10−2 urmskf for the squared mean-field
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Figure 12. (a) z-profiles of 〈B2〉xyt (solid black), B2
eq (dashed blue), 〈B

2
y〉t (solid red), and 〈B

2
x〉t (dotted red). (b) t-profiles

of 〈B2〉xyz (solid black), B2
eq (dashed blue), 〈B

2
y〉z (solid red), and 〈B

2
x〉z (dotted red) for Run E, here plotted in code units,

[B] = µ0ρ0c
2
s . The dashed-dotted line indicates a slow, but exponential growth with the growth rate 10−2 urmskf , for the squared

mean-field strength.

Figure 13. Dependence of Brms (black) and Brms (red) on ReM (a) without shear and (b) with shear. Dashed lines indicate
that ReM is varied by changing PrM [Runs A–D in (a) and Runs E–G in (b)], while solid lines indicate that Re has been changed
[Runs H–K in (b)]. In (b), the open and closed circles are for Runs L–N and O+P, respectively.

strength. The growth rate of the mean field is then

half that value, which is comparable to the growth rates

found in Table 2, where λ/csk1 ≈ 0.005, corresponding
to λ/urmskf ≈ 0.01.

In the shear-induced super-equipartition regime, the

rms values of the resulting large-scale magnetic field are

found to be independent of ReM. In the absence of shear,

Brms clearly declined with ReM, albeit only like Re0.3M ;
see Figure 13(a). With shear, however,Brms is nearly in-

dependent of ReM; see Figure 13(b). The fact that resis-

tive contributions through the integrated 2ηµ0j · b term

become increasingly important can be regarded as a con-
sequence of the shear-induced hemispheric magnetic he-

licity fluxes that become extremely efficient at exchang-

ing small-scale magnetic helicity between hemispheres.

We can therefore say that they overcome catastrophic

quenching so as to guarantee an ReM-independent large-
scale magnetic field.

The strong contribution of the small-scale current he-

licity term might raise concerns whether the simulation

is sufficiently well resolved. To check this, we plot in

Figure 14 an xy slice of Jx through k1z = 1, but no

signs of ringing, i.e., no oscillations on the grid scale
are seen. Instead, it shows the typical inclined patterns

associated with the shear flow, Uy(x) = −qΩx.

In Figure 15, we present kinetic and magnetic energy

spectra for Runs G and K. Both runs have shear, but

different values of PrM. The spectra are similar, except
that the magnetic and velocity spectra for Run K have

still more energy at the largest wavenumber of the mesh,

i.e., at the Nyquist wavenumber k1N/2.

4. CONCLUSIONS

In this paper we have considered a volume contain-

ing a modulated level of turbulence, which drops to zero

at the vertical boundaries, so that the internal trans-
port coefficients of the medium go to zero smoothly at

those boundaries. Consequently, the results of the sim-

ulations should be insensitive to the vertical boundary

conditions. The properties of the medium, including
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Figure 14. Slice of Jx(x, y, z∗) for Run G at k1z∗ = 1,
showing a systematic tilt from the upper left to the lower
right, with all structures being well resolved.

Figure 15. Three-dimensional kinetic (blue) and magnetic
(red) energy spectra for Runs G (solid lines) and K (dashed
lines).

rotation and shear, are otherwise uniform within the

volume.
The existence of a systematic flux of small-scale he-

licity, as seen in Figure 8, is consistent with a simple

dimensional estimate. A magnetic helicity flux arising

from turbulence should scale with u2B2τ , where τ is a
correlation time (Kleeorin & Rogachevskii 2022). How-

ever, the magnetic helicity flux is a pseudovector, with

a direction, which requires a scaling with either the ro-

tation or the shear (or more particularly with the local

vorticity), which implies an extra factor of Ωτ or Sτ .
For a uniform driving scale of the turbulence, and a

uniform shear and rotation, we expect a magnetic he-

licity flux proportional to B2, which is consistent with

the evidence in case E. Our results suggest that this flux
is significantly more sensitive to shear than to rotation.

We have shown that in a large-scale dynamo, the

magnetic helicity fluxes between large and small scales

can even become overcompensated by those between the

two hemispheres when microphysical resistive effects are

small. In the absence of shear and at small magnetic

Reynolds numbers (Run A, ReM = 3.5), these fluxes

are comparable to the reference flux defined in Equa-
tion (17). For Run D with ReM = 160, the magnetic

helicity fluxes are about 30% of the reference flux. How-

ever, while the magnetic helicity flux at large scales is

large, that at small scales is virtually absent; see Fig-

ures 4 and 5. In the presence of shear and for similar
values of ReM (Run E), the flux drops to 1–5% of the

reference flux, but now the fluxes are approximately the

same at large and small scales.

The correspondence between the magnetic helicity
flux between hemispheres and between scales is not a co-

incidence. The small-scale flux between hemispheres de-

pends on the total magnetic field strength, although the

small- and large-scale magnetic fields contribute to the

flux with different coefficients. The flow of magnetic he-
licity between scales is proportional to the square of the

large-scale field. Consequently, the saturation strength

of the large-scale field may be set by the magnetic heli-

city flux between hemispheres.
While the large fraction of small-scale magnetic heli-

city fluxes in the presence of shear is indicative of alle-

viating catastrophic quenching, we do not find that the

resistive term becomes unimportant at large magnetic

Reynolds numbers. This does not a priori mean that
such dynamos are not viable in the large ReM-regime.

The fact that 2
∫

E · B dz → 0 in the large magnetic

Reynolds number limit was thought to reflect the basic

catastrophic quenching problem of large-scale dynamos
with helicity. However, while the hemispheric small-

scale magnetic helicity flux stays constant as ReM in-

creases, it is not being used to balance the integrated

2E · B term, but it either drives or is driven by the

integrated 2ηµ0j · b term.
Our models have demonstrated that interesting flux

dynamics can occur entirely without boundaries. The

magnetic helicity fluxes occur within the volume due

to gradients of the turbulent intensity and turbulent
kinetic and magnetic helicities, as was also found by

Kleeorin & Rogachevskii (2022).

Our work has also shown that the dynamos in the

present setups are of α2- or αΩ-type, i.e., they are

driven by an α effect and supported by shear, if shear is
present. The ratio of the local value of α to the prod-

uct of the local turbulent magnetic diffusivity and the

lowest wavenumber of the domain, i.e., the z-dependent

dynamo number, which is found to be an approximately
linear function with a coefficient of 2.8 and 2.2 for

Runs A and D, respectively. This suggests that the

dynamo number decreases with increasing conductiv-
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ity. For Run E with shear, the ratio is 1.4. Turbulent

pumping points in the direction away from the mid-

plane. There is also a Rädler effect with the theoret-

ically expected sign, i.e., E has a contribution propor-
tional to Ω× J with a positive coefficient. In the pres-

ence of shear, the effect becomes anisotropic and the

component that is relevant for the shear–current effect,

namely the ηyx component for shear of the present form

S = dUy/dx, is essentially zero, which is consistent with
earlier findings (Brandenburg et al. 2008a; Käpylä et al.

2022).

Our results have applications to stellar and galactic

dynamos, where gradients of kinetic and magnetic he-
licity fluxes are expected to occur through the equa-

tor. Even the boundary between convecting and non-

convecting regions both in late-type stars and in mas-

sive stars are examples, where magnetic helicity fluxes

can be expected to encounter dynamical boundaries of
the type idealized here.
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