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ABSTRACT

The braking torque that dictates the timing properties of magnetars is closely tied to the large-scale dipolar magnetic field on their
surface. The formation of this field has been a topic of ongoing debate. One proposed mechanism, based on macroscopic principles,
involves an inverse cascade within the neutron star’s crust. However, this phenomenon has not been observed in realistic simulations.
In this study, we provide compelling evidence supporting the feasibility of the inverse cascading process in the presence of an initial
helical magnetic field within realistic neutron star crusts and discuss its contribution to the amplification of the large-scale magnetic
field. Our findings, derived from a systematic investigation that considers various coordinate systems, peak wavenumber positions,
crustal thicknesses, magnetic boundary conditions, and magnetic Lundquist numbers, reveal that the specific geometry of the crustal
domain—with its extreme aspect ratio—requires an initial peak wavenumber from small-scale structures for the inverse cascade to
occur. However, this extreme aspect ratio limits the inverse cascade to magnetic field structures on scales comparable to the neutron
star’s crust, making the formation of a large-scale dipolar surface field unlikely. Despite this limitation, the inverse cascade can
significantly impact the magnetic field evolution in the interior of the crust, potentially explaining the observed characteristics of
highly magnetized objects with weak surface dipolar fields, such as low-field magnetars or central compact objects.

Key words. Magnetic fields – stars: neutron – stars: magnetars – stars: interiors – stars: evolution – stars: magnetic field

1. Introduction

Magnetars are the most magnetic objects within the population
of neutron stars (NSs) (Turolla et al. 2015; Esposito et al. 2021).
Their bright X-ray luminosity and occurrence of observed bursts
and outbursts are attributed to the restless dynamics and dissipa-
tion of a strong magnetic field (about 1014 to 1015 G) near the NS
surface (Thompson & Duncan 1995). Moreover, the large-scale
dipolar field on the surface regulates the braking torque responsi-
ble for their timing properties (Ostriker & Gunn 1969), resulting
in long spin-periods.

The origin and evolution of NS magnetic fields have been
long-debated topics. While it is widely accepted that the fossil
magnetic field inherited from the progenitor star is insufficient
to account for the strongest observed NS fields, additional am-
plification is necessary. This amplification might occurs during
the proto-NS stage through a turbulent dynamo process. Addi-
tionally, magnetic field amplification can also take place later in
an NS’s life, either due the re-emergence of a buried magnetic
field driven by Hall drift; see Igoshev et al. (2021) for a review,
or through the chiral magnetic instability (CMI) in the NS crust,
a microscopic-based mechanism that can explain the formation
of large-scale magnetic fields (Dehman & Pons 2024).

Understanding the amplification of the surface dipolar field
in magnetars is a challenging task, where macroscopic mech-
anisms like inverse cascading could be important phenomena
to consider. A recent attempt to explain this phenomenon, uti-
lizing an initial turbulent field structure derived from proto-NS
dynamo simulations (Reboul-Salze et al. 2021), is presented in

⋆ Email: clara.dehman@ua.es

Dehman et al. (2023a). The authors conducted the first 3D cou-
pled magneto-thermal simulation in the crust of a NS, incorpo-
rating temperature-dependent microphysical calculations and a
realistic stellar structure. The study aimed to determine if start-
ing from such an initial field configuration could explain the ob-
served dipolar field in magnetars. While successful in explain-
ing low-field magnetars, high-field pulsars, and Central Compact
Objects (CCOs), this study falls short in explaining the strong
surface dipolar field observed in magnetars. The surface dipolar
component remained constant over time, with no evidence of an
inverse cascade. Other simulations dedicated to the investigation
of CCOs have also sought to observe inverse cascading, as seen
in Gourgouliatos et al. (2020). However, no inverse cascade was
observed in these simulations.

Recent local simulations of the Hall cascade with initial mag-
netic helicity were presented by Brandenburg (2020). In this
study, the author proposed a model suggesting that the large-
scale magnetic field of NSs grows as a result of small-scale tur-
bulence. Initially, the magnetic field in young NSs may predom-
inantly exist at small scales, but it could later undergo an in-
verse cascade, particularly after the crust solidifies. This process
implies that the spectral magnetic energy at lower multipoles
would increase over time rather than decrease. The study further
demonstrates that the resulting dipolar field intensifies approxi-
mately linearly with time, typically growing by three orders of
magnitude, while thermal dissipation gradually diminishes.

As explained by Brandenburg (2020), the presence of an
initial helical magnetic field could be a key factor behind the
observed phenomenon of inverse cascading. The simulations
further suggest that, even with a relatively weak initial mag-
netic field, the occurrence of strong inverse cascading is evident.
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There are two possible sources of magnetic helicity in a NS.
One is through dynamo action by neutrino-driven convection in
young NS, resulting in oppositely signed magnetic helicities in
the two hemispheres (Thompson & Duncan 1995; Brandenburg
& Subramanian 2005). Another possible origin of helical mag-
netic fields in NSs is the CMI. This effect is significant during
supernova explosions, throughout the proto-NS phase, and in
young NSs. The CMI influences the evolution of the magnetic
field in these compact objects, leading to the saturation of mag-
netic helicity. This, in turn, results in the growth of magnetic
fields, which is governed by a conservation law for total chiral-
ity (Sigl & Leite 2016; Rogachevskii et al. 2017; Schober et al.
2018; Masada et al. 2018; Brandenburg et al. 2023a,b; Dehman
& Pons 2024). Consequently, adopting an initial helical mag-
netic field provides a realistic foundation for modeling the long-
term evolution of NS magnetic fields.

In addition to the significance of the initial helical field in
explaining the phenomenon of inverse cascading, several other
factors play a crucial role in comprehending the occurrence of
inverse cascading within a realistic NS crust. Building upon the
findings of Brandenburg (2020), where inverse cascading was
first observed in the NS crust, several extensions can be ex-
plored. These include incorporating a spherical shell geome-
try, accounting for the precise aspect ratio determined by apply-
ing the Tolman-Oppenheimer-Volkoff equation (Oppenheimer &
Volkoff 1939) and employing a realistic nuclear matter equation
of state (EoS). Furthermore, instead of imposing periodic bound-
ary conditions, alternative boundary conditions can be consid-
ered. Options such as potential boundary conditions at the sur-
face and perfect conductor at the crust-core interface may pro-
vide valuable insights. However, at the surface of the star, the
most suitable boundary conditions are force-free ones (Akgün
et al. 2018; Urbán et al. 2023). Finally, within the NS, the strat-
ification of matter is a crucial consideration. The inclusion of
density- and temperature-dependent microphysics becomes im-
perative for accurately computing the Hall prefactor and mag-
netic resistivity employed in the evolution equations.

In this article, we aim to explore the potential occurrence of
inverse cascading in the crust of a NS by simulating a realistic
NS scenario. Our objective is to understand the role of inverse
cascading in explaining the strong surface dipole field observed
in magnetars. Additionally, we seek to address why this phe-
nomenon has not been identified in previous studies within the
NS community. We investigate this process over a time span of
103 to 105 years, corresponding to the observed lifetime of mag-
netars. To achieve these goals, we employ both the Pencil Code1
(Pencil Code Collaboration et al. 2021) and MATINS (Dehman
et al. 2023b), taking into account the various relevant parame-
ters.

This paper is organized as follows: In Section 2, we discuss
the theoretical formalism of magnetic helicity and its realizabil-
ity conditions in both Cartesian and spherical coordinates. The
numerical setups and the initial conditions are described in Sec-
tion 3.2. The results of our simulations are presented in Sec-
tion 4, and we conclude with a discussion of our findings in Sec-
tion 5.

2. Magnetic Helicity and Realizability Condition

2.1. General considerations

A helical magnetic field plays an important role in explaining
inverse cascading, which might be considered as a candidate to
1 https://github.com/pencil-code

explain the large-scale dipolar field in magnetars. The idea of
explaining inverse cascading using a helical field was first pro-
posed by Frisch et al. (1975). The first application to NS physics
was explored by Brandenburg (2020). The idea is based on the
conservation of magnetic helicity,

HM =

∫
V

A · B dV, (1)

where A is the magnetic vector potential and B = ∇ × A is the
magnetic field in a volume V .

Following Brandenburg (2020), simple coordinate-
independent measures related to magnetic helicity can be
defined in terms of the fractional helicity χ and the length scale
ξ, which are introduced through the ratios

⟨A · B⟩/⟨B2⟩ ≡ χξ, ⟨A · B⟩/⟨J · B⟩ ≡ ξ2. (2)

Here, angle brackets denote averages over closed volumes, so
⟨A · B⟩ is gauge-invariant. These relations imply that χ2 = ⟨A ·
B⟩⟨J · B⟩/⟨B2⟩2, from which the fractional magnetic helicity χ
is determined.

We recall that for a fully helical Beltrami field with peri-
odic boundary conditions, we have χ = 1. When the bound-
ary conditions are non-periodic, for example perfectly conduct-
ing on one side and a vertical field condition on the other,
Brandenburg (2017) determined analytically the quantity ϵm ≡
⟨J · B⟩/(⟨J2⟩⟨B2⟩)1/2 ≈ 0.883, which also implies χ = 0.883,
because in his case ⟨J · B⟩/⟨A · B⟩ = ⟨J2⟩/⟨B2⟩. Thus, χ can
be close to unity even in the non-periodic case. Furthermore, be-
cause χ is only an approximate quantity, it can sometimes also
exceed unity by a certain amount (Brandenburg 2020). The us-
age of χ approach offers a practical alternative to more rigor-
ous methods that are typically feasible in Cartesian coordinates,
which will be discussed next.

2.2. Cartesian coordinates

Assuming periodic boundary conditions, the spectra of mag-
netic energy and magnetic helicity, EM(k) and HM(k), can be
computed by calculating the three-dimensional Fourier trans-
forms of the magnetic vector potential Âk and the magnetic
field B̂k. The spectra are obtained by integrating |B̂k|

2 and the
real part of Âk · B̂k

∗
over shells of constant k = |k|, yield-

ing EM(k) and HM(k), respectively. Here, the asterisk denotes
complex conjugation. These spectra are normalized such that∫

EM(k) dk = ⟨B2⟩/2µ0 and
∫

HM(k) dk = ⟨A · B⟩ for k from
0 to ∞, where µ0 is the vacuum permeability. By applying the
Schwartz inequality, one can derive the so-called realizability
condition (Moffatt 1978),

k|HM(k)|/2µ0 ≤ EM(k). (3)

The realizability condition serves as an indicator of the degree
of helicity within the magnetic field. When Equation (3) is satu-
rated at a particular wavenumber k, the magnetic helicity is max-
imal at that wavenumber. If this condition holds true for any arbi-
trary k, the system is characterized as being in a state of maximal
helicity (Frisch et al. 1975).

For fully helical magnetic fields with (say) positive helicity,
i.e., HM = 2µ0EM(k)/k, Frisch et al. (1975) demonstrated that
energy and magnetic helicity cannot cascade directly, i.e., the
interaction of modes with wavenumbers p and q can only pro-
duce fields whose wavevector k = p+q has a length that is equal
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or smaller than the maximum of either |p| or |q| (Brandenburg &
Subramanian 2005), i.e.,

|k| ≤ max(|p|, |q|). (4)

This implies that magnetic helicity and magnetic energy trans-
form into progressively larger length scales, defining what is
known as the inverse cascade. It is expected that the entire spec-
trum appears to shift to the left, i.e., toward larger length scales,
in an approximately self-similar fashion (Brandenburg & Kahni-
ashvili 2017).

2.3. Spherical coordinates

In spherical coordinates, B can be expressed using two scalar
functions Φ(x) and Ψ(x), following the Chandrasekhar-Kendall
formulation (Chandrasekhar 1981):

Bpol = ∇ ×
(
∇ × Φr

)
,

Btor = ∇ × Ψr. (5)

Using the notation of Krause & Rädler (1980) and Geppert &
Wiebicke (1991), the basic idea is to expand the poloidal Φ and
toroidal Ψ scalar functions in a series of spherical harmonics:

Φ(t, r, θ, ϕ) =
1
r

∑
ℓ,m

Φℓm(r, t)Yℓm(θ, ϕ),

Ψ(t, r, θ, ϕ) =
1
r

∑
ℓ,m

Ψℓm(r, t)Yℓm(θ, ϕ), (6)

where ℓ = 1 to ∞ is the degree and m = −ℓ, ..., ℓ the order of
the multipole. Note that in 3D, the toroidal field is a mix of the
two tangential components of the magnetic field, whereas the
poloidal field is a mix of all three components. This is less triv-
ial than in 2D, where the toroidal part consists of the azimuthal
component and the poloidal part consists of the two other com-
ponents of the magnetic field.

The spectra of the magnetic helicity and the magnetic energy
in 3D spherical coordinates are, respectively, defined as follows:

HM(ℓ,m; t) = 2
∫
ℓ(ℓ + 1)

r2 ΦℓmΨℓmr2dr, (7)

EM(ℓ,m; t) =
1
2

∫
ℓ(ℓ + 1)

r2

[
ℓ(ℓ + 1)

r2 Φ2
ℓm + Φ

′
ℓm

2 + Ψ2
ℓm

]
. (8)

Here, Φ′ℓm = ∂Φℓm/∂r. From these expressions, one can define
the spectral realizability condition in terms of the poloidal and
toroidal scalar functions as

2kΦℓmΨℓm ≤
ℓ(ℓ + 1)

r2 Φ2
ℓm + Φ

′
ℓm

2 + Ψ2
ℓm. (9)

The pseudo wavenumber k =
√
ℓ(ℓ + 1)/R possesses the dimen-

sion of inverse length, where R denotes the surface of our com-
putational domain.

3. Numerical Models

3.1. Evolution Equations

Using SI units, the equations governing the Hall cascade in NS
crust can be written as (Goldreich & Reisenegger 1992)

∂B
∂t
= ∇ ×

(
−

J × B
ene

− ηµ0 J
)
, J =

1
µ0
∇ × B, (10)

where e is the unit charge, ne is the electron density, µ0 is the
vacuum permeability, and η is the magnetic diffusivity (inversely
proportional to the electrical conductivity σe).

A suitable non-dimensional measure quantifying the impor-
tance of magnetic diffusivity is the Lundquist number, given by

Lu = Brms/eneµ0η. (11)

Owing to the decay of Brms, the value of Lu is time-dependent,
but it could in principle also be defined in a position-dependent
fashion.

3.2. Numerical codes

As mentioned above, we use two numerical codes: the Pen-
cil Code2 (Pencil Code Collaboration et al. 2021) and MATINS
(Dehman et al. 2023b). The Pencil Code is primarily designed
to solve the fully nonlinear, compressible hydromagnetic equa-
tions. Its highly modular structure allows for easy adaptation
to a wide range of physical setups. It is a high-order finite-
difference code, which is efficiently parallelized, enabling there-
fore high resolution and Lundquist numbers on the order of 103.
The code can operate on a Cartesian or spherical grid and can
be configured to work within a limited sector, θ1 ≤ θ ≤ θ2 and
ϕ1 ≤ ϕ ≤ ϕ2, of a 3D spherical shell. This capability allows us
to exclude the axis to avoid singularities and to adjust the aspect
ratio as needed. Therefore, the Pencil Code is a valuable tool for
this study.

On the other hand, MATINS is a 3D code for the MAgneto-
Thermal evolution in Isolated NS crusts, based on finite-volume
numerical schemes discretized over a non-orthogonal cubed-
sphere grid, which effectively resolves the axis singularity prob-
lem in 3D spherical coordinates. The cubed-sphere formalism,
introduced by Ronchi et al. (1996) and implemented in MATINS
by Dehman et al. (2023b), uses one coordinate as the radial di-
rection, similar to spherical coordinates, with the volume com-
posed of multiple radial layers. Each layer is divided into six
patches resembling arcs of great circles, forming a spherical
shape by inflating the faces of a cube. Each patch is bordered
by four others and is described by angular-like coordinates, ξcs
and ηcs, ranging from [−π/4 : π/4]. These patches are orthogo-
nal to the radial direction but non-orthogonal to each other, ex-
cept at the patch centers. This non-orthogonality requires careful
distinction between covariant (lower indices) and contravariant
(upper indices) field components.

Additionally, MATINS incorporates a spherical star based
on a realistic EoS, including corresponding relativistic fac-
tors in the evolution equations. It also integrates the latest
temperature-dependent microphysical calculations3, enabling
coupled magneto-thermal simulations if needed (Dehman et al.
2023b,a; Ascenzi et al. 2024).

3.3. Initial Conditions

In the following, our objective is to construct an initial helical
magnetic field. We use a random initial field with a specific mag-
netic energy spectrum. It peaks at a certain wavenumber k0. For
wavenumbers k > k0, the spectrum exhibits a distinct inertial
range, which may follow a k−5/3 scaling for Kolmogorov-like
2 https://github.com/pencil-code
3 The public routines implemented in MATINS are available at http:
//www.ioffe.ru/astro/conduct/. For details, see Potekhin et al.
(2015).
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EA(k) EM(k)
1D ∝ k0 ∝ k2

2D ∝ k1 ∝ k3

3D ∝ k2 ∝ k4

Table 1. Spectrum of the magnetic vector potential A and the magnetic
field B for k ≪ k0, depicting the ascending spectra. For more details,
see Brandenburg & Boldyrev (2020).

turbulence or a k−2 scaling for wave turbulence (Brandenburg
et al. 2015). For k < k0, referred to as the sub-inertial range,
we adopt a spectrum corresponding to a random vector poten-
tial. This implies that in 3D space, the vector potential follows a
k2 spectrum and the magnetic field a k4 spectrum, as depicted in
Table 1. Such a spectrum is often used in the cosmological con-
text, where it is usually referred to as a causal spectrum (Durrer
& Caprini 2003). It means that no point is correlated with any
other, but the field is additionally divergence-free.

3.3.1. The Pencil Code

In Cartesian coordinates, we use a Fourier transform to construct
a helical initial condition for the magnetic vector potential A(k)
by applying the helicity operator Ri j(k) = δi j − iσεi jlk̂l with unit
vector k̂ = k/|k| on a non-helical transverse field given by:

A = A0
k × e
|k × e|

S A(k) eiφ. (12)

Here, A0 is an amplitude factor, φ with |φ| < π are uniformly
distributed random phases, and

S A(k) =
k−3/2

0 (k/k0)α/2−2[
1 + (k/k0)2(α+7/3)]1/4 . (13)

is a function that gives EM(k) ∝ kα for k ≪ k0 and EM(k) ∝ k−7/3

for k ≫ k0. For more details on how α scales with the dimension
of the domain, we refer to Table 1 and to the work of Branden-
burg & Boldyrev (2020). Here, k0 is the peak wavenumber of the
spectrum. For a given value of B0, the resulting initial value of
the rms magnetic field, Brms, which will be denoted as B(0)

rms, is
usually somewhat larger. For k0/k1 = 180, for example, we find
B(0)

rms/B0 ≈ 3.2 when σ = 0, and B(0)
rms/B0 ≈ 4.5 when σ = 1.

Owing to the use of Fourier transforms, our initial condi-
tions are implicitly assumed to be triply periodic in x, where
x = (x, y, z) with x1 < x < x2, y1 < y < y2, and z1 < z < z2.
Boundary conditions (see Section 3.4) will be enforced dur-
ing the simulations, potentially leading to sharp gradients at the
boundaries during the initial time steps. However, this is not a
problem later in time.

When using the Pencil Code, we can still use the Cartesian
initial condition in spherical geometry by replacing (x, y, z) →
(r, θ, ϕ). In that case, the vector potential will no longer be per-
fectly divergence-free. Also, in the simulations, we are not work-
ing in the Coulomb gauge; instead, we are working in the Weyl
gauge where the electrostatic potential vanishes. Additionally,
the fractional magnetic helicity will be different in this scenario
(see Section 2 for coordinate-independent measures of the frac-
tional magnetic helicity).

In the following, we characterize the surface magnetic field
in the Cartesian simulations through its two-dimensional energy
spectrum, EM(k; x, t), where k = |k| and k = (ky, kz) is the
wavevector in the yz plane. We choose a value of x that is close

to the outer boundary, x2. Owing to the reduction in dimension-
ality, the otherwise k4 spectrum of the magnetic field turns into
a k3 spectrum (see Table 1).

3.3.2. The MATINS code

According to the Chandrasekhar-Kendall formalism (Chan-
drasekhar 1981), the magnetic field B can be decomposed in
spherical coordinates, into poloidal Φ(x) and toroidal Ψ(x)
scalar functions, as explained in Section 2.3. The initial magnetic
field structure can be constructed by selecting a set of spherical
harmonics (see Equation (6)), which defines the angular part of
the magnetic field configuration. For additional details, consult
Appendix B of Dehman et al. (2023b).

As mentioned at the beginning of Section 3.3, our goal is
to start the simulations with a locally isotropic spectrum char-
acterized by an ℓ3 slope4. Thus, we express the poloidal scalar
function Φ(x) as:

Φ(x) =
1
r

∑
ℓm

ϕℓm(ra) fℓ(r) Yℓm(θ, ϕ), (14)

with

Φℓm(ra) =
∑
ℓm

1
ℓ(ℓ + 1)

∫
dS r Br(ra, θ, ϕ) Yℓm(θ, ϕ). (15)

Here, Φℓm(ra) represents the weights of the multipoles, extracted
from simulations using the Pencil Code at a given radial layer ra
near the surface of the star R, dS r is the surface differential, fℓ(r)
is the radial spectral mode function, and Br is the contravariant
radial component of the magnetic field, as MATINS employs a
non-orthogonal cubed-sphere metric. This selection ensures the
achievement of the desired locally isotropic ℓ3 initial sub-inertial
range.

To establish a locally isotropic magnetic field across all ra-
dial layers, we define fℓ(r) as follows:

fℓ(r) = sin(keff
ℓ r), keff

ℓ = ι
√
ℓ(ℓ + 1)/R, (16)

where keff
ℓ is the radial wavenumber. The choice of keff

ℓ is mo-
tivated by the dimensional argument of the realizability condi-
tion; see Equations (3) and (9). The parameter ι is a constant that
can be adjusted in our simulations to ensure the desired num-
ber of multipoles along the radial direction, as one can define
k0R ∝ ι ℓ0. Here, k0 and ℓ0 are the peak wavenumber and degree
of the multipoles in the spectrum, respectively. For ι = 1, keff

ℓ
simplifies to the wavenumber k.

The choice of the radial function fl(r), as defined, does not
adhere to the potential and perfect conductor boundary condi-
tions imposed at the surface and the crust-core boundary, respec-
tively. However, considering our goal of conducting simulations
with a large Lundquist number on the order of 100...1000, it is
anticipated that the initial condition’s influence on the global
evolution will be minimal. Also, as discussed above, the mag-
netic field is expected to readjust to the imposed boundary con-
ditions after a few evolution time steps, a behavior also observed
in the Pencil Code simulations. It is worth noting that, in order
to construct an initial field that respects boundary conditions, the
solution of Bessel functions would be necessary, which inspired
our current choice of the sine function.
4 The plotted energy spectrum (Equation (8)) in MATINS is a 2D spec-
trum decomposed into spherical harmonics along θ and ϕ coordinates
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To construct an initial helical field, the toroidal scalar func-
tion Ψ(x) must be expressed as

Ψ(x) = kΦ(x), (17)

where k =
√
ℓ(ℓ + 1)/R. Upon examining Equation (9), it be-

comes apparent that, at the surface of the star, the ratio of the left-
hand side to the right-hand side approaches one, indicating that
the magnetic field tends toward maximal helicity. However, the
presence of the Φ′ 2

ℓm term on the right-hand side of Equation (9)
prevents the Chandrasekhar-Kendall formalism from achieving
a fully helical field. It is worth noting that different choices of
the radial function also ensure a helical field if Equation (17) is
enforced.

The magnetic field components are computed using the curl
operator applied to Φ(x) and Ψ(x) in cubed-sphere coordinates;
see Dehman et al. (2023b). This method guarantees that the ini-
tial magnetic field structure is divergence-free up to machine pre-
cision and effectively avoids the axis-singularity problem inher-
ent in spherical coordinate. Our experience shows that this ap-
proach yields satisfactory results for our objectives, particularly
in generating a visually more locally isotropic field, as will be
demonstrated in Section 4.

3.4. Boundary Conditions

In our simulations, we confine the magnetic field to the crust
of the star. Consequently, the inner boundary conditions are im-
posed by requiring the normal (radial) component of the mag-
netic field to vanish at the lower boundary (r = r0). This phys-
ically represents the transition from normal to superconducting
matter. Under these assumptions, the Poynting flux at the inner
boundary is zero, preventing any energy flow into or from the
core of the star. In the Pencil Code, this boundary condition, in
terms of the magnetic vector potential, translates to

∂Ar

∂r
= Aθ = Aϕ = 0 (r = r0). (18)

On the other hand, MATINS imposes inner boundary conditions
on both the electric and magnetic fields. This stems from the di-
rect evolution of the magnetic field components within the code.
In cubed-sphere coordinates, the tangential components of the
electric and magnetic fields at the inner boundary are expressed
as follows:

Eξ,η(r0) =
1
2

Eξ,η(r0 + dr),

Bξ,η(r0 − dr) =
r0

r0 − dr
Bξ,η(r0). (19)

In the equations above, we have omitted the angular coordinates
for brevity. The radial coupling among the nearest neighbors, oc-
curring over a distance dr, is implemented to address the issue of
odd-even decoupling or checkerboard oscillations, which arise
from two slightly different solutions—one corresponding to odd
grid points and the other to even grid points. This phenomenon
is a known issue with second-order central difference schemes
when applied to the second derivative of a function. By adopting
this approach, we mitigate tangential currents at the crust-core
interface and improve stability during the evolution.

At the outer boundary, all components of the magnetic field
are continuous, if surface current sheets are excluded. In the Pen-
cil Code simulations, the magnetic field is radial at the outer

boundary, which, in terms of the magnetic vector potential, trans-
late to

Ar = 0,
∂Aθ
∂r
= −

Aθ
r
,
∂Aϕ
∂r
= −

Aϕ
r

(r = R). (20)

Along the θ (or y) direction, perfect boundary conditions were
imposed. Moreover, in the Pencil Code, we sometimes use peri-
odic boundary conditions.

Conversely, in MATINS, we implement an external potential
(current-free) solution for the magnetic field at the surface of the
star, governed by ∇×B = 0 and ∇ ·B = 0. This magnetic field is
expressed as the gradient of a magneto-static potential that sat-
isfies the Laplace equation (Dehman et al. 2023b). The potential
is expanded in spherical harmonics, allowing us to express the
three components of the magnetic field at the surface of the star
as

Br = B0

∑
ℓm

(ℓ + 1) bm
ℓ Yℓm, (21)

where B0 is a normalization factor and bm
ℓ corresponds to the

dimensionless weight of the multipoles:

bm
ℓ =

1
B0(ℓ + 1)

∫
dS r

r2 BrYℓm. (22)

The angular components of the magnetic field are given by:

Bθ = −B0

∑
ℓm

bm
ℓ

∂Yℓm
∂θ
, (23)

Bϕ = −
B0

sin θ

∑
ℓm

bm
ℓ

∂Yℓm
∂ϕ
, (24)

which are then converted into the Bξ and Bη components on the
cubed-sphere grid within the code. For a detailed description of
the magnetic boundary condition in MATINS, see Dehman et al.
(2023b).

3.5. Units and simulation parameters

For the Pencil Code simulations, we present the results in nondi-
mensional form by introducing the following units:

[x] = R, [t] = R2/η, [B] = eneµ0η. (25)

This implies that the current density is measured in units of
[J] = [B]/µ0R. To express the Pencil Code results in dimen-
sional units, we multiply by the appropriate units described
above. Moreover, we consider a Hall cascade with a characteris-
tic wavenumber k0, which represents the initial peak of the spec-
trum. This peak wavenumber is related to the spherical harmonic
degree ℓ0, where most of the energy is concentrated, through the
relation k0 =

√
ℓ0(ℓ0 + 1)/R. We set 1/eneµ0 = 1 and adopt a

time-dependent prescription for the magnetic diffusivity η:

η(t) =
{
η0 if t ≤ 0.1
η0 e−0.4t if t > 0.1

(26)

Here, η remains constant throughout most of the evolution time,
except for the very late stage (after t > 0.1). This adjustment
ensures an increase in the Lundquist number at later times (t >
0.1) if the simulation continues for that duration. Additionally,
for the Pencil Code, we use different mesh points depending on
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the aspect ratio considered in each simulation. The specific mesh
points used are detailed in Table 2.

In MATINS, we use physical units commonly applied in as-
trophysics, defined as follows:

[x] = 1 km, [t] = 1 yr, [B] = 1 G,
[J] = 1 G km−1, [EM(ℓ)] = 1 erg. (27)

We have set the average magnetic field strength to approx-
imately 1012 G and fixed the Hall prefactor at 1/eneµ0 =
1 km2/Myr 1012 G. Instead of varying these parameters, we ad-
justed the magnetic resistivity η (as shown in Table 3) to achieve
a Lundquist number Lu of order 100, consistent with the mag-
netic field strengths typical of magnetars. Additionally, the grid
consists of 64 × 472 × 6 mesh points, with nr = 64 radial mesh
points, nξ = nη = 47 angular mesh points, and 6 patches forming
the cubed-sphere structure.

In the following section, we will use t (in Myr) to represent
time in MATINS simulations and the dimensionless t̃ = ηt/R2

for time in the Pencil Code simulations. To compare time be-
tween the two codes, it is essential to use a dimensionless quan-
tity. Specifically, we compare the value of ηt/R2.

4. Simulations

Constructing the NS background model entails solving
the Tolman-Oppenheimer-Volkoff equations (Oppenheimer &
Volkoff 1939), considering a nuclear EoS at zero-temperature5.
This approach involves describing both the liquid core and the
solid crust of the star. Through these calculations, we can de-
termine the thickness of the NS crust, estimated to be approxi-
mately 1 km in relation to its overall radius of about 10 km. This
estimation reveals the extreme aspect ratio of the crust, approx-
imately 1:30, with A = (R − r0)/πR. In our simulations con-
ducted in Cartesian, spherical (Pencil Code), and cubed-sphere
(MATINS) coordinates, we account for the actual aspect ratio of
the NS crust.

Below, we delve into the various runs relevant to our study.
We focus on simulations favoring the inverse cascade in the crust
of a NS. The simulations conducted with the Pencil Code are de-
tailed in Table 2, while those performed using MATINS are out-
lined in Table 3.

4.1. Reference Run

In this section, we describe the reference run in our study, run
R1, performed using the Pencil Code in Cartesian coordinates
(see Table 2). This run is constructed based on our experience
and represents the optimal configuration to validate the inverse
cascade in a NS crust. Run R1 is characterized by an average
value of Lu on the order of a few hundred. In our Cartesian do-
main, the crustal shell extends from x = 0.9...1, y = 0...1, and
z = 0...1, corresponding to spherical coordinates in the range
r/R = 0.9...1, θ/π = 0...1, and ϕ/π = 0...1.

The initially helical magnetic field for run R1 is formulated
as detailed in Section 4. Given the extreme aspect ratio (A ≈

5 NSs consist of degenerate matter, typically characterized by tempera-
tures lower than the Fermi temperature for their entire existence. In this
specific temperature range, quantum effects, as dictated by Fermi statis-
tics, overwhelmingly dominate over thermal effects. Therefore, the EoS
for NSs can be effectively approximated as that of zero temperature,
allowing us to largely ignore thermal contributions for most of their
lifespan.

1:30) of the NS crust, attributed to its small thickness, our ex-
perience has shown that a sufficiently small-scale magnetic field
structure is necessary to facilitate inverse cascading. As a result,
the magnetic spectrum should predominantly feature small-scale
structures with ℓ0 = k0R ≈ 200. This corresponds to a wave-
length 2π/k0 = 0.03 R, which is about one-hundredth of the lati-
tudinal extent but only about one third of the crust’s depth.

Fig. 1. Spectral energy of the Cartesian reference run R1. The magnetic
spectra are displayed at t̃ = 2 × 10−6 (black), t̃ = 6 × 10−6 (blue),
t̃ = 2 × 10−5 (yellow), and t̃ = 6 × 10−5 (red).

In Figure 1, we present magnetic energy spectra of run R1 at
four distinct dimensionless times: t̃ = 2 × 10−6 (black), 6 × 10−6

(blue), 2 × 10−5 (yellow), and 6 × 10−5 (red). The magnetic field
exhibits inverse cascading with a temporal decay scaling as k3/2

(not shown). At later times, t̃ > 2 × 10−5, the spectrum of the
magnetic field ceases to exhibit temporal decay, indicating that
the magnetic energy is no longer dissipating. We attributed this
behavior to the lower magnetic diffusion value η (Equation (26)),
which acts in favor of enhancing the Hall-dominant evolution.
For comparison, we must remember that after t̃2 = 2 × 10−5, the
value of η is assumed to decrease like t̃−0.4, which is rather slow.
As a result, at t̃3 = 6× 10−5, η(t̃3) = 1.8× 10−4 is only 8% below
the original value and Lu(t̃3) = 80.

Toward the end of the simulation, we notice that the inverse
cascade stalls when ℓ0 ≈ 30, with almost no transfer of energy
toward the dipolar component. In the following sections, we will
examine the impact of the coordinate system, peak wavenum-
ber position, aspect ratio, and boundary conditions to understand
what is limiting the inverse cascade from transferring energy to
larger-scale structures.

4.2. Different coordinate systems

To study the impact of the coordinate systems on the inverse
cascade, we replicated run R1 in spherical coordinates using the
Pencil Code in run R2 (see Table 2) and in cubed-sphere coor-
dinates using MATINS in run Rι5 (see Table 3). These two runs
have an average value of Lu similar to that of run R1, both being
on the order of a few hundred. The crustal shell is in the range
r/R = 0.9...1 for both runs. In run R2, we choose θ/π = 0.1...0.9
to avoid the axis singularity problem in 3D spherical coordinates,
while ϕ/π = 0...1. By contrast, run Rι5 covers the full crustal
shell and has θ/π = 0...1, and ϕ/π = 0...2.

The meridional slices of the Br(r, θ) component of the mag-
netic field for run R2 are illustrated in Figure 2 at three different
times: t̃ = 6 × 10−7, 2 × 10−6, and 6 × 10−6 (from left to right).
Initially, the magnetic spectrum predominantly features small-
scale structures on the order of k0R ≈ 200 (at t̃ = 6 × 10−7). As
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Table 2. Summary of the Pencil Code simulations. Cartesian simulations are indicated by ‘Cart’, while spherical simulations are denoted by ‘Sph’.
Simulations with perfect conductor boundary conditions on the inner surface and vertical field boundary conditions on the outer surface in the
radial directions are labeled as ‘PC-VF’. By contrast, simulations with periodic boundary conditions in the radial directions are labeled as ‘P’. The
time is set to t̃1 = η0t1/R2 = 2 × 10−6 and t̃2 = η0t2/R2 = 2 × 10−5. Note that ℓ0 = k0R for the Cartesian runs.

Run geom/B.C. r/R θ/π ϕ/π ℓ0(t̃0) ℓ0(t̃2) Lu(t̃1) Lu(t̃2) k0ξ(t̃0) χ(t̃0) Mesh points
R1 Cart/PC-VF 0.9...1 0...1 0...1 200 50 260 132 0.50 1.19 64 × 20482

R2 Sph/PC-VF 0.9...1 0.1...0.9 0...1 200 60 251 124 0.60 1.12 64 × 20482

R3 Cart/PC-VF 0.8...1 0...1 0...1 200 30 361 202 0.61 1.16 128 × 20482

R4 Cart/PC-VF 0.8...1 0...0.5 0...0.5 200 10 487 272 0.61 1.15 128 × 10242

R5 Cart/PC-VF 0.8...1 0...0.5 0...0.5 50 10 724 464 0.46 0.87 128 × 10282

R6 Cart/P 0.9...1 0...1 0...1 200 60 283 168 0.61 1.19 64 × 20482

Fig. 2. Meridional slices of Br(r, θ) for run R2, with ℓ0(t̃0) = 200 at
t̃ = 6 × 10−7, 2 × 10−6, and 6 × 10−6 (from left to right).

the evolution processes, the emergence of large-scale structures
from small-scale ones becomes increasingly apparent, ultimately
resulting in magnetic field structures comparable in size to the
NS crust. This growth in scale hints at why the inverse cascade
concludes, which can be attributed to the extreme aspect ratio
A of the NS crust. This inverse cascade in the magnetic field of
run R2 is also evident in the magnetic energy spectra shown in
Figure 3 at different times.

To verify if the same behavior occurs with cubed-sphere co-
ordinates, we conducted simulations using MATINS. This test is
also essential for determining if two different numerical codes
yield similar results. As demonstrated previously using the Pen-

Fig. 3. Spectral energy of the spherical run R2. As in Figure 1, the mag-
netic spectra are shown at t̃ = 2× 10−6 (black), 6× 10−6 (blue), 2× 10−5

(yellow) and 6 × 10−5 (red).

cil Code, for the inverse cascade to occur, the initial magnetic
spectrum should predominantly exhibit small-scale structures
with ℓ0 ≈ 200. However, achieving the necessary resolution with
MATINS is challenging because it is non-parallelized, unlike the
Pencil Code.

An alternative approach involves concentrating more struc-
tures exclusively in the radial direction. This initial magnetic
field configuration can be conceptualized as a squashed magnetic
field structure, achieved by selecting an ι value greater than one;
see Equation (16). The ι parameter is determined based on the re-
sults from run R1. During this run, the initial value ℓ0(t̃0) ≈ 200
decreased to ℓ0(t̃2) ≈ 30. By that time, the radial scale has be-
come π/k ≈ 0.1, which is equal to the thickness of crust, and
the inverse cascade concluded. This suggests that ℓ cannot drop
much below the inverse aspect ratio ≳ A−1 for the inverse cas-
cade to remain active. To cover a factor F ≈ 200/30 for the in-
verse cascade in the MATINS simulations with ℓmax = 80, where
the affordable spherical degree would be ℓafford

0 ≈ 40, we would
need to decrease the radial scale by a squashing factor ι. The ι
parameter can therefore be calculated using the following equa-
tion:

ι ≳
F

A ℓafford
0

. (28)

For instance, with ℓafford
0 ≈ 40 in MATINS, an ι value of approxi-

mately 5 is necessary to accommodate ℓ0 ≈ 200.
Figure 4 presents the magnetic energy spectra for the Rι5

simulation at four different times: t0 = 0.0 (black), t1 = 0.005
(blue), t2 = 0.01 (yellow), and t3 = 0.02 Myr (red). Similar to
the Cartesian and spherical runs (R1 and R2) conducted with the
Pencil Code, the magnetic field in run Rι5 exhibits an inverse
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Table 3. Summary of MATINS simulations on a cubed-sphere grid representing a crustal shell. The time is set to t0 = 0.0, t1 = 0.005, t2 = 0.01 and
t3 = 0.02 Myr, resulting in ηt1/R2 = 6 × 10−6 and ηt3/R2 = 2 × 10−5, with η set to 1.2 × 10−2 km2/Myr. Note that in MATINS, ℓ0 ≡ ιℓafford

0 .

Run r/R θ/π ϕ/π ℓ0 η [km2/Myr] Lu(t0) Lu(t3) k0ξ(t0) χ(t0) Mesh points
Rι1 0.9...1.0 0...1 0...2 40 8 × 10−3 60 58 0.54 0.72 64 × 472 × 6
Rι3 0.9...1.0 0...1 0...2 120 4.5 × 10−3 103 98 0.63 0.85 64 × 472 × 6
Rι5 0.9...1.0 0...1 0...2 200 1.2 × 10−2 107 90 0.64 0.92 64 × 472 × 6
Rι10 0.9...1.0 0...1 0...2 400 1.5 × 10−2 106 91 0.40 0.69 64 × 472 × 6
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Fig. 4. Spectral energy of the cubed-sphere run Rι5 at t0 = 0.0 (black),
t1 = 0.005 Myr (blue), t2 = 0.01 Myr (yellow), and t3 = 0.02 Myr (red).

cascade, featuring ascending ℓ3 spectra and demonstrating tem-
poral decay that scales as ℓ3/2 on the cubed-sphere grid. Figure 5
shows meridional slices of the Br(r, θ) component of the mag-
netic field for run Rι5 at t = 0.0, 0.01 and, 0.02 Myr. The radial
magnetic field structures are visibly squashed along the radial
direction. Notably, the inverse cascade observed in MATINS is
less pronounced than in the Pencil Code, as demonstrated in Fig-
ures 4 and 5. This discrepancy may be related to the ι parameter
(Equation (28)), which represents the squashing factor.

The similarity in behavior among run R1, run R2, and run
Rι5, in Cartesian, spherical, and cubed-sphere coordinates re-
spectively, suggests that the choice of the coordinate system is
not significant, provided the correct aspect ratio is maintained.
However, note that in these three models, even with different
geometrical coordinates, the inverse cascade is still limited to
ℓ0 ≈ 30, with almost no transfer of energy toward the dipolar
component.

4.3. Effects of peak position

In this section, we explored the impact of different initial k0R
values on the inverse cascade using MATINS simulations. In the
first case, we set ι = 1 (see Equation (28)) for run Rι1, resulting
in k0R = 40. In the second simulation, we increased ι to 10 for
run Rι10, resulting in k0R = 400. These two simulations were
conducted to verify our interpretation of the squashed initial field
configuration used in MATINS and assess whether it produces the
expected results.

Figure 6 displays the results for runs Rι1 (upper panel) and
Rι10 (lower panel) at different evolution times. For run Rι1, no
inverse cascade is observed, likely because the field structures
are comparable to the thickness of the crust. In contrast, for run
Rι10, the inverse cascade occurs and is more pronounced than in
run Rι5.

0.75
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0.00

−0.75

−0.10

Fig. 5. Meridional slices of Br(r, θ) for run Rι5 at t = 0.0, 0.01 Myr and,
0.02 Myr (from left to right).

4.4. Aspect ratio

To investigate the influence of the aspect ratio on the inverse
cascade, we conducted a replication of the reference run R1.
In this iteration, we adjusted solely the crust aspect ratio. On
the one hand, in the new run R3 (see Table 2), we doubled the
crustal thickness. Consequently, the crustal shell is now in the
range r/R = 0.8...1, accounting for one-fifth of the entire NS
cross-sectional area, as opposed to the previous one-tenth. On
the other hand, in the new run R4, we also doubled the crustal
thickness and, in addition, we reduced θ/π and ϕ/π from the
range of 0...1 to 0...0.5. Therefore, the geometry of our domain
now approaches a cubic configuration.

The magnetic energy spectra for runs R3 and R4 are de-
picted in the upper and lower panels of Figure 7, respectively. In
this representation, magnetic spectra are plotted at t̃ = 6 × 10−7

(black), 2 × 10−6 (blue), 6 × 10−6 (yellow), and 2 × 10−5 (red).
Compared to the reference run R1 (Figure 1), R3 and R4 exhibit
a more pronounced inverse cascading phenomenon with several
distinct behaviors.

For run R3, ℓ0 ≈ 20, while for run R4, ℓ0 ≈ 10 at t̃ = 2×10−5.
In contrast, for run R1, ℓ0 ≈ 50 at the same time. Additionally, at
ℓ0 ∼ 1, the spectral magnetic energy tends to maintain a constant
value for run R1 (EM(k) ≈ 6×10−10), while runs R3 and R4 tend
to accumulate energy in the dipolar component, with EM(k) ≈
10−8 for run R3 and EM(k) ≈ 10−6 for run R4.
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Fig. 6. Spectral magnetic energy for run Rι1 (upper panel) and run Rι10
(lower panel). As in Figure 4, the magnetic spectra are shown at t = 0.0
(black), 0.005 (blue), 0.01 (yellow), 0.02 (red), and 0.04 Myr (green).

Furthermore, run R4 demonstrates a faster inverse cascade
and dissipates less energy compared to run R3 and the refer-
ence run R1. The magnetic energy spectrum in run R4 shows a
minor temporal decay, with the spectral peak ℓ0 steadily main-
tained throughout its evolution. However, the latter behavior can
be attributable to the elevated Lundquist numbers, as indicated
in Table 2.

These differences with respect to the reference run R1 are
attributed to the aspect ratio, especially in run R4, since its ge-
ometry approximates cubic symmetry, whereas run R3 involves
doubling the crustal thickness. Alterations in crustal geometry
and dimensions significantly impact the inverse cascade and the
formation of the large-scale magnetic field. The realistic extreme
aspect ratio of the NS crust has limited the inverse cascade and
the transfer of energy toward the dipolar component.

At this stage, it is intriguing to explore whether a less ex-
treme aspect ratio, as used in run R4, can reveal the presence or
absence of an inverse cascade for a smaller ℓ0. To investigate this,
we replicated run R4, adjusting kℓ0 from approximately 200 to
50 for run R5, as detailed in Table 2. The magnetic energy spec-
tra for run R5 exhibit behavior similar to that of run R4, con-
firming the presence of an inverse cascade even with an initial
peak wavenumber of ℓ0 ≈ 50. Notably, at t̃2 = 2× 10−5, the peak
wavenumber for both runs R4 and R5 reaches ℓ0 ≈ 10, as shown
in Table 2. As previously mentioned, this outcome is influenced
by the crustal geometry used in both runs, which closely resem-
bles a cubic configuration. It is important to note that starting
with ℓ0 ≈ 50 in a model replicating the reference run R1 does
not result in an inverse cascade.

4.5. Periodic boundary conditions

In this section, we examine the impact of magnetic boundary
conditions on our simulations. We replicated reference run R1

Fig. 7. Spectral energy of run R3 (upper panel) and run R4 (lower panel)
in Cartesian coordinates, each characterized by different aspect ratios
compared to the reference run R1. Data is shown at t̃ = 6×10−7 (black),
2 × 10−6 (blue), 6 × 10−6 (yellow) and 2 × 10−5 (red).

and modified the magnetic boundary conditions by replacing
the perfect conductor and vertical field boundary conditions on
the inner and outer radial boundaries, respectively, with periodic
boundary conditions. This run is labeled R6, as indicated in Ta-
ble 2.

The magnetic spectrum of run R6 is illustrated in Figure 8
at four distinct times. The magnetic field undergoes pronounced
inverse cascading. However, unlike the reference run R1, run R6
exhibits energy transfer to low spherical degree (ℓ0 ∼ 1), with
EM(k) ≈ 2 × 10−9 compared to EM(k) ≈ 6 × 10−10 in run R1 at
t̃ = 2×10−5. However, this energy transfer is less efficient than in
runs R3 and R4. On the other hand, the inverse cascade remains
limited to ℓ0 ≈ 50, the same as in run R1 at t̃ = 2 × 10−5. Conse-
quently, adopting periodic boundary conditions does not explain
the formation of the large-scale magnetic field in magnetars.

In contrast to the reference run R1, where the magnetic field
undergoes temporal decay, run R6 exhibits a stable magnetic
field with the spectral peak consistently maintained throughout
its evolution. The energy spectrum of run R6 aligns with the
characteristics of fully helical MHD spectra (see Figure 5 of
Brandenburg (2020)). A fully helical or force-free field, char-
acterized by a vanishing Lorentz force (J × B = 0), remains
stationary due to the equilibrium implied by the force-free con-
dition. This observation suggests that the typical boundary con-
ditions in the NS crust result in a partially helical field, leading to
a spectrum that decays as k3/2 (Figure 1). According to the study
by Brandenburg (2017), it was found that non-periodic boundary
conditions yield a field that is 78% helical. For more detail, see
χ and ξ values in Tables 2 and 3.
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Fig. 8. Spectral energy of run R6 in Cartesian geometry, characterized
using periodic boundary conditions compared to reference run R1. Data
is shown at t̃ = 6 × 10−7 (black), 2 × 10−6 (blue), 6 × 10−6 (yellow), and
2 × 10−5 (red).

5. Discussion

Investigating the inverse cascade within NS crust poses a
formidable challenge, with limited prior exploration in the ex-
isting literature, except for the study conducted by Brandenburg
(2020). Despite this, the absence of high resolution simulations
to resolve small-scale structures while accounting for the cor-
rect aspect ratio, spherical geometry, and appropriate boundary
conditions, along with the consideration of time-dependent mag-
netic resistivity crucial due to the cooling process of NSs, was
not addressed previously.

To fill this gap, our research undertook a comprehensive ex-
amination to assess the efficacy of the inverse cascade in the NS
crust. Our focus extended to understanding its potential role in
elucidating the origin of the large-scale dipolar field observed
in magnetars — an intriguing question with substantial implica-
tions. A crucial requirement for a strong inverse cascade to occur
is the presence of an initial helical magnetic field (Brandenburg
2020). Nonhelical magnetic fields can also lead to an inverse cas-
cade from the Hall effect (Brandenburg 2023), but it is weaker.
To produce an initially helical magnetic field, we developed a
formalism for both Cartesian and spherical coordinates, allow-
ing for systematic study using the Pencil Code and MATINS.

The slenderness of the NS crust adds complexity, necessi-
tating initial peak wavenumbers from small-scale structures on
the order of k0R ≈ 200. Resolving these scales requires high-
resolution simulations, which is challenging. To overcome this,
MATINS introduces additional wavenumbers in the radial direc-
tion, whereas the Pencil Code does not encounter this issue.
However, MATINS lacks parallelization, making it less compu-
tationally powerful than the Pencil Code.

In our reference run, R1, we constructed a model in Cartesian
coordinates with an initial helical field dominated by small-scale
structures, k0R ≈ 200, while maintaining the correct aspect ratio
of the NS crust (see Section 4.1). This setup was ideal for ob-
serving the inverse cascade, as the peak wavenumber shifted to-
wards larger-scale structures within the star’s interior. However,
the spectra revealed limitations, including the dissipation of the
peak wavenumber, restriction of the cascade to k0R ≈ 30, and
negligible energy transfer to the largest-scale structure (kR ≈ 1).
To understand these phenomena, we explored the influence of
geometrical coordinates, peak position, aspect ratio, and bound-
ary conditions.

To investigate the effects of geometry, we examined differ-
ent coordinate systems in Section 4.2. We used spherical co-
ordinates in the Pencil Code (run R2), which requires axis ad-
justments to avoid singularities, and cubed-sphere coordinates in
MATINS (run Rι5), which naturally circumvent this issue. Despite
these variations, the outcomes remained consistent, indicating
that the choice between Cartesian and spherical domains has no
discernible impact when initial conditions are nearly identical.
This finding supports previous research by Mitra et al. (2009).
Additionally, in Section 4.3, we tested the effect of the peak po-
sition, confirming that small-scale initial spherical degrees were
necessary for the inverse cascade to occur.

Expanding our analysis, we assessed the role of aspect ra-
tio by exploring various configurations of the crustal domain
(Section 4.4). In the first case (Run R3), we doubled the crustal
thickness. In the second case (Run R4), we not only doubled the
crustal thickness but also halved the domain in the two angular
directions, θ/π and ϕ/π, resulting in a nearly cubic configura-
tion. Compared to reference run R1, two main differences were
observed: first, the peak wavenumber k0R continued shifting to-
ward larger-scale structures and was no longer limited to 30;
second, there was a pronounced transfer of energy toward the
largest-scale structure kR = 1. However, the dissipation of the
peak wavenumber still occurred. These findings suggest that the
thin layer of the NS crust opposes the inverse cascade, limiting
the formation of a large-scale magnetic field.

Building on these findings, we then investigated how differ-
ent boundary conditions affect the spectral characteristics of the
inverse cascade in Section 4.5. Our results indicated that using
periodic boundary conditions (run R6), rather than perfect con-
ductor boundary conditions at the crust-core boundary or poten-
tial and vertical field boundary conditions at the surface, resulted
in no dissipation of the peak wavenumber and enhanced energy
transfer toward the dipolar component (kR = 1). Periodic bound-
ary conditions produce a fully helical magnetic field (see Bran-
denburg 2020), unlike other boundary conditions, which result
in a partially helical field (Brandenburg 2017). A fully helical
field is also a force-free field (J × B = 0), which explains the
absence of dissipation in this scenario.

While periodic boundary conditions offer insights, they are
not a realistic choice for studying the NS scenario. Similarly,
using perfect conductor boundary conditions, which expel the
field from the NS core, and vertical field or potential boundary
conditions, which prevent current flow outside the star, do not
fully capture the realistic conditions of magnetic field evolution
in a NS crust. Carefully addressing boundary conditions is cru-
cial for gaining a better understanding of the inverse cascade in
NS crusts. Although this level of detail is beyond the scope of
this paper and not feasible with the currently available numeri-
cal tools, it is important to consider for future studies.

In this study, we disregarded the temperature-dependent mi-
crophysics and the stratification within the interior of a NS crust,
anticipating that these factors would not significantly impact
our findings regarding the inverse cascade. The temperature-
dependent microphysics is expected to reduce the magnetic dif-
fusion parameter as the NS cools over time, leading to a higher
Lundquist number (see Section 5.4 of Dehman et al. 2023b). We
initiated our study with an initial Lundquist number on the or-
der of a few hundred, simulating a magnetar-like scenario. Con-
sequently, our Hall-dominant simulations are analogous to the
evolution of magnetic fields in middle-aged magnetars.

Stratification could potentially induce variations in the mag-
netic diffusion and Hall prefactor, particularly in the radial di-
rection, which might slightly alter our results. Nevertheless, the
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critical factor remains the Lundquist number. To ensure a Hall-
dominant simulation and the occurrence of an inverse cascade,
the Lundquist number must be significantly greater than one
(LU ≫ 1). Since the aspect ratio limits the inverse cascade to
field structures on the order of the crustal size, k0R ≈ 30, we ex-
pect that considering a density (or radius) dependent Lundquist
number will not change this conclusion. For more on the influ-
ence of stratification on the inverse cascade, refer to Branden-
burg (2020).

In light of these insights, it is essential to consider a realis-
tic crustal thickness with the correct aspect ratio when studying
the inverse cascade in a NS’s crust. Although the inverse cas-
cade cannot account for the formation of the large-scale dipo-
lar field in magnetars, it does occur within the crust’s interior
on smaller scales. These findings have significant implications
for NS magnetic field evolution. The field configuration identi-
fied in our study features a weak large-scale dipolar field at the
star’s surface with dominant small-scale structures in the interior
of the crust. Additionally, the inverse cascade may contribute to
the evolution of the magnetic field by transferring energy from
smaller-scale to larger-scale structures, thus reducing the dissi-
pation of small scales.

This process can potentially affect the magnetic field’s con-
figuration and stability, influencing the dynamics of the crustal
lattice and potentially impacting the NS’s asteroseismology
(Steiner & Watts 2009; Sotani et al. 2012; Neill et al. 2023),
crustal failures (Perna & Pons 2011; Pons & Perna 2011;
Dehman et al. 2020) and plastic flow within the star’s inte-
rior (Lander et al. 2015; Lander & Gourgouliatos 2019; Gour-
gouliatos & Lander 2021). The findings of our study, which
began with an initial causal spectrum, align with the work of
Dehman et al. (2023a), where the authors used an initial field
configuration derived from core-collapse dynamo simulations to
perform the long-term magneto-thermal evolution within a NS
crust. These properties naturally explain key characteristics of
low-field magnetars, CCOs, and high-field pulsars, which are
characterized by weak dipolar magnetic fields (≈ 1012 G), strong
small-scale fields, and enhanced magnetic activity, thereby help-
ing to explain X-ray observational data. In summary, while the
inverse cascade may not directly explain the dipolar magnetic
field observed in magnetars, it plays a crucial role in other pro-
cesses that influence the star’s physical and observational char-
acteristics, offering valuable insights into the complex dynamics
within NSs and their astrophysical behavior.
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Appendix A: Magnetic Formalism in 3D Spherical
Coordinates

In spherical coordinates, various formalism can be used to
describe the magnetic field. In this context, we present the
most common notations found in the literature. For any three-
dimensional solenoidal vector field B, representing the magnetic
field, we can always introduce the vector potential A such that

B = ∇ × A. (A.1)

The magnetic field B can be expressed using the poloidal Φ(x)
and the toroidal Ψ(x) scalar functions, based on the formalism
of Chandrasekhar (1981):

Bpol = ∇ × Ator = ∇ ×
(
∇ × Φr

)
,

Btor = ∇ × Apol = ∇ × Ψr. (A.2)

Using the notation of Krause & Rädler (1980) and Geppert &
Wiebicke (1991), the two scalar functions can be expanded in a
series of spherical harmonics:

Φ(t, r, θ, ϕ) =
1
r

∑
ℓm

Φℓm(r, t)Yℓm(θ, ϕ),

Ψ(t, r, θ, ϕ) =
1
r

∑
ℓm

Ψℓm(r, t)Yℓm(θ, ϕ), (A.3)

where ℓ = 1, ..., ℓmax is the degree and m = −ℓ, ..., ℓ the order of
the multipole.

The three components of the vector potential A in spherical
coordinates are obtained by combining the poloidal and toroidal
components:

Ar =
∑
ℓm

Ψℓm(r)Yℓm(θ, ϕ) ,

Aθ =
1

r sin θ

∑
ℓm

Φℓm(r)
∂Yℓm(θ, ϕ)
∂ϕ

,

Aϕ = −
1
r

∑
ℓm

Φℓm(r)
∂Yℓm(θ, ϕ)
∂θ

. (A.4)

The three components of the magnetic field B in the Newtonian
limit are given by:

Br =
1
r2

∑
ℓm

ℓ(ℓ + 1)Φℓm(r)Yℓm(θ, ϕ) ,

Bθ =
1
r

∑
ℓm

Φ′ℓm(r)
∂Yℓm(θ, ϕ)
∂θ

+
1

r sin θ

∑
ℓm

Ψℓm(r)
∂Yℓm(θ, ϕ)
∂ϕ

,

Bϕ = −
1
r

∑
ℓm

Ψℓm(r)
∂Yℓm(θ, ϕ)
∂θ

+
1

r sin θ

∑
ℓm

Φ′ℓm(r)
∂Yℓm(θ, ϕ)
∂ϕ

. (A.5)

Here, Φ′ℓm = ∂Φℓm/∂r, ignoring relativistic corrections. For
the complete form, including relativistic corrections, refer to
Dehman et al. (2023b). Using Equation (A.4) and Equa-
tion (A.5), one can derive the expressions for the spectral mag-
netic helicity Equation (7), the spectral magnetic energy Equa-
tion (8), and the spectral realisability condition Equation (9).

Article number, page 12 of 12


	Introduction
	Magnetic Helicity and Realizability Condition
	General considerations
	Cartesian coordinates
	Spherical coordinates

	Numerical Models
	Evolution Equations
	Numerical codes
	Initial Conditions
	The Pencil Code
	The MATINS code

	Boundary Conditions
	Units and simulation parameters

	Simulations
	Reference Run
	Different coordinate systems
	Effects of peak position
	Aspect ratio
	Periodic boundary conditions

	Discussion
	Magnetic Formalism in 3D Spherical Coordinates

