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Abstract

The origin and evolution of magnetic fields of neutron stars from birth have long been a source of debate. Here,
motivated by recent simulations of the Hall cascade with magnetic helicity, we invoke a model where the large-
scale magnetic field of neutron stars grows as a product of small-scale turbulence through an inverse cascade. We
apply this model to a simulated population of neutron stars at birth and show how this model can account for the
evolution of such objects across the PP diagram, explaining both pulsar and magnetar observations. Under the
assumption that small-scale turbulence is responsible for large-scale magnetic fields, we place a lower limit on the
spherical harmonic degree of the energy-carrying magnetic eddies of ≈40. Our results favor the presence of a
highly resistive pasta layer at the base of the neutron star crust. We further discuss the implications of this paradigm
on direct observables, such as the nominal age and braking index of pulsars.

Unified Astronomy Thesaurus concepts: Magnetars (992); Neutron stars (1108); Pulsars (1306)

1. Introduction

Neutron stars harbor the strongest known magnetic fields in
the Universe, with the large-scale poloidal field strength Bp in
the so-called magnetars exceeding values of Bp≈ 1015 G. The
magnetic field strength plays a crucial role in determining the
observational properties of a neutron star and whether, for
example, it will be seen as a standard radio pulsar or a magnetar
Borghese (2023). Furthermore, the large-scale dipolar field is
thought to be primarily responsible for the spin-down of
neutron stars (Ostriker & Gunn 1969), leading to a spin-down
law of the form  nW » W , where Ω= 2π/P is the spin frequency
of the star, with P being the rotation period, and n is the so-
called braking index that can be observationally constrained
from the combination ̈ n 2= WW W . For dipole magnetic spin-
down, one has n= 3, with deviations from this value expected
if other mechanisms are driving the spin-down (e.g., n= 1 for
winds and n= 5 for gravitational-wave emission from quad-
rupolar “mountains”).

In this picture, neutron stars are assumed to be born rapidly
rotating, in the upper left corner of the PP diagram, and evolve
toward the bottom right corner and the so-called “death” line as
they spin down with a constant magnetic field. Observed
braking indices are, however, often different from n= 3, and
there is significant observational and theoretical evidence for
magnetic field evolution during the lifetime of a neutron star;
see Igoshev et al. (2021b) for a recent review. Therefore,
understanding neutron star formation and evolution mechan-
isms is essential to understanding the observed neutron star
population.

The origin of neutron star magnetic fields is, however, still
debated. It is generally agreed that the fossil field inherited
from the progenitor star is insufficient to explain the strongest
neutron star fields; therefore, some field amplification is

necessary. Most models invoke a large-scale dynamo at birth,
powered by convection or differential rotation (Thompson &
Duncan 1993). The source of the turbulence driving the
dynamo comes from neutrino-driven convection. An additional
source of turbulence is the magnetorotational instability
(Reboul-Salze et al. 2020; Guilet et al. 2022), which draws
energy from the differential rotation, i.e., ultimately from
potential energy. This instability requires the presence of a
magnetic field, which is accomplished through a positive
feedback loop whereby magnetic energy can be amplified
further by dynamo action (Brandenburg et al. 1995). Other
possible dynamo mechanisms tap energy through fallback
accretion (Barrère et al. 2020) or through precession
(Lander 2021). In all those cases, small-scale and large-scale
dynamo action appear together. In this Letter, we define a
large-scale field as the part contained in the dipole component,
while the small-scale field is the remainder.
Magnetic field amplification can also occur later in the life of

a neutron star due to the reemergence of a buried magnetic field
due to ohmic dissipation (Muslimov & Page 1996; Ho 2011) or
Hall drift (Gourgouliatos & Cumming 2015). Most of these
models of magnetic field evolution in neutron stars assume
initially low-order multipoles (Gourgouliatos & Holler-
bach 2018; Gourgouliatos et al. 2020) although the true
magnetic field structure is a matter of considerable
debate (Igoshev et al. 2021b). Alternatively, the magnetic field
could be predominantly of small scales at a very young age of
the neutron star, but the field could then undergo what is known
as inverse cascading (Wareing & Hollerbach 2009, 2010;
Igoshev et al. 2021a). The spectral magnetic energy at small
wavenumbers or low multiples would then increase with time
rather than decrease. This idea was advanced in a recent paper
(Brandenburg 2020, hereafter B20), where it was shown that
the resulting large-scale field, BLS, increases approximately
linearly with time, typically by 3 orders of magnitude in the
models of B20, while the thermal emission continues to
decrease.
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In this Letter, we investigate the implications of the scenario
proposed in B20 on a simulated population of neutron stars and
observables such as the braking index, characteristic age τchar,
and the viability of this idea to explain the neutron star
population. We begin in Section 2 discussing the motivation
for a model where the magnetic field grows from a small-scale
turbulent field at birth to a large-scale field. In Section 3, we
describe the spin evolution of a neutron star under this
hypothesis and perform simulations showcasing the evolution
of a population of neutron stars for various observables in
Section 4. We discuss implications of our results and conclude
in Section 5.

2. Growth of Large-scale Field

A proto–neutron star is typically fully convective at birth and
remains so for tens of thousands of turnover
times (Epstein 1979), corresponding to a time of ( ) 1 minute
(Burrows & Lattimer 1986). It is commonly assumed that,
within this time, the progenitor magnetic field is destroyed and
then regenerated by a dynamo (Thompson & Duncan 1993).
However, given the limited time between the collapse of the
progenitor star and the end of the convective period, it is
conceivable that only a small-scale magnetic field with scales
comparable to the size of the turbulent eddies is generated. At
the neutron star surface, the scale of such a field can be
estimated by the density scale height H, which we expect to
coincide roughly with the thickness of the crust of ≈5% of the
neutron star radius (Cumming et al. 2004). This corresponds to
a typical wavenumber k= 1/H and thus to a typical spherical
harmonics degree of ℓ= (H/R)−1≈ 20, where R is the radius of
the neutron star. Note, however, that the thickness of the crust
will depend on the star’s mass,and the details of the equation
of stateand the scale height will be some fraction of this
thickness. Therefore, we will explore a range ℓ10 40max  .

Eventually, when the neutron star solidifies, the magnetic
field in the crust is still randomly distributed in space. It then
decays in a way analogous to a turbulent decay, but here the
dynamics are governed by the Hall cascade (Goldreich &
Reisenegger 1992). In this case, similar to the case of ordinary
magnetohydrodynamic (MHD) turbulence, the magnetic field
undergoes an inverse cascade, where not only the peak of the
magnetic energy spectrum moves toward smaller k, but also the
spectral energy at the smallest wavenumber increases in time.
Numerical simulations in B20 found the large-scale field BLS to
increase with decreasing rms magnetic field strength, Brms, like
B B ;LS rms

5µ - see his Figure 12(b).
In the Hall cascade, Brms decays with time like Brms∝ t− p/2,

where p= 2/5 is the decay exponent of the magnetic energy
for a helical field (B20). Thus,

( )B B t, 1LS rms
5µ µ-

so the large-scale magnetic field increases linearly with time;
see Sarin et al. (2023) for supplemental material showing that
the growth of BLS is actually closer to t1.2 although this minor
departure from the expected linear growth will be ignored here.
This linear growth applies to the case when the magnetic field
is fully helical (see Runs E and F in Figure 12 of B20).
However, it also applies to the case of nearly nonhelical fields
(see Runs C and D in Figure 12 of B20) because the magnetic
helicity is nearly unchanged, but the magnetic energy decays,
so the ratio increases, making the magnetic field in the end

nearly fully helical; see Tevzadze et al. (2012) for similar
behavior in the MHD case.
The increase of BLS continues until the largest scale in the

system has been reached. Mathematically, the scale increases
with t like ξM∝ t q, where q= 2/5= 0.4 in the helical case and
4/13≈ 0.31 in the nonhelical case (Brandenburg 2023). When
ξM becomes comparable to R, we must adopt global spherical
geometry.
So far, inverse cascading has not yet been seen in global

simulations. There are multiple reasons for this. First, it helps to
initialize the simulations with a magnetic field having a broken
power-law energy spectrum with a proper inertial range and a
sufficiently steep subinertial range. Second, large numerical
resolution is required to obtain inverse cascading, at least in the
nonhelical case (B20 used 10243 mesh points). The global
simulations of Gourgouliatos et al. (2020), for example, did not
have power laws, extended only to spherical harmonic degrees
of 80, and did not include magnetic helicity, which is the case
considered here. Dehman et al. (2023) also presented global
simulations with initially complex magnetic field configura-
tions but again not with power-law initial fields or with helicity.
In the absence of suitable global simulations, we argue here

that we can substitute the spherical harmonics representation of
the Laplacian, ℓ(ℓ+ 1)/R2, by just k2, as in Cartesian geometry.
Simplifying this further to k≈ ℓ/R and using k t q

M
1x» µ- -

with q= 2/5 in the helical case, we have

( )ℓ kR Rt . 2q» µ -

As argued above, the initial value of ℓ is expected to be
somewhere around ℓ 20max » and will then decrease to ℓ= 1,
like

( ) ( )ℓ ℓ t , 3q
max 1t= -

where τ1 marks the start of the decay. Thus, we have ℓ= 1
at t ℓ q

2 1 max
1t tº = .

After that time, the inverse cascade stops, and then even the
large-scale field can only decay. This decay is expected to be
either exponential or in a power-law fashion. We assume here
the latter and thus propose

( )
( )

( )B B
t

t

1

1
4

mLS
2

p,0
2 1

2

2

t
t

=
+
+

for the time evolution of the large-scale magnetic field, where
Bp,0 is the initial large-scale poloidal (dipolar ℓ= 1) component
of the neutron star magnetic field. Here, m dictates the slope of
the large-scale field decay, which is not well constrained.
Finally, let us note that the value of τ1 is linked, in the
simulations of B20, to the diffusive timescale td M

2x h» ,
where η is the magnetic resistivity. Low values of τ1 generally
correspond to a high resistivity, as we will discuss in the
following sections.

3. Spin Evolution

With the behavior of the magnetic field described above, we
can continue to describe the evolution of the neutron star spin.
For the sake of simplicity, we start with the standard vacuum
spin-down formula (Ostriker & Gunn 1969) ignoring other
spin-down mechanisms such as gravitational-wave emission.
Using Equation (4), our neutron star spin evolution is then

2
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governed by

( ) ( )
( )

( ) B R t

c I

t

t6

1

1
. 5

m

p,0
2 6 3

3
1

2

2

t
t

W = -
W +

+

Here, c is the speed of light, and I is the moment of inertia of
the neutron star. We emphasize that the above model is
effectively the common vacuum-dipole spin-down equation
(Ostriker & Gunn 1969) except for accounting of the evolution
of the large-scale magnetic field following Equation (4). Under
the assumption that the magnetic field evolves from small
scales to large scales in a fully helical manner, the timescales τ1
and τ2 can be related to each other via

( )ℓ . 62 1 max
5 2t t=

Here, ℓmax can be estimated as the inverse ratio of the electron
density scale height to the radius of the neutron star, i.e.,
( )H Re

1- . As discussed above, the magnetic field grows until
ℓ→ 1, i.e., until the wavenumber approaches a dipole from the
initial small-scale wavenumber ℓmax. For later reference, values
of ℓ 40max = , 20, and 10 correspond to τ2/τ1≈ 104, 1800, and
300. Owing to the linear scaling of BLS in Equation (1), the
ratios τ2/τ1 also correspond to the amplification factor of the
large-scale field.

4. Simulation

With the model for the spin and magnetic field evolution of
neutron stars described above, we now consider the effect of
such a model on several neutron star properties and observables
through a series of simulations. For each of our simulations, we
draw the initial spin-period P0 and initial magnetic field Bp,0

from astrophysically motivated distributions p (Igoshev et al.
2022; Pagliaro et al. 2023), in particular,

( ) ( )
( ) ( )





p P
p B

ln s 1.25, 0.99 ,
log G 8, 11 ,

0

10 p,0

= -
=

where  and  denote normal and uniform distributions in
given ranges.

We also fix m = 2.3 throughout this work, consistent with
the decay of the magnetic field under ohmic dissipation (Pons
& Geppert 2007). We note here that a precise value of m is not
important to this work as we focus on the growth of the
magnetic field rather than the decay. We have verified that the
results are robust to our choices of m, the initial spin, and large-
scale magnetic field. Our motivation for choosing these ranges
were to show (1) that one does not need large-scale magnetic
fields at birth to make magnetars and (2) that a regular neutron
star spin population can make magnetars.

We start by investigating the evolution with time; we set
τ1= 102 yr to τ2= 106 yr, i.e., ℓ 40max » , and evolve 100
neutron stars drawn with initial periods and magnetic fields
from the distributions above forward in time. Figure 1 shows
the evolution for different observables. In particular, we show
the evolution of neutron stars across the PP diagram, the period
and period derivative as functions of time, the observable
braking index, the dipole component of the magnetic field, and
the characteristic age. Figure 1 helps illustrate the model’s main
features. For example, large-scale initial fields as small as
1011 G can be amplified to magnetar strengths (1014 G),
alleviating the concern of needing a large-scale poloidal field

at birth. In particular, the age at such field strengths depends on
the choice of τ1 and ℓmax. Similarly, the model can naturally
produce a range of braking indices despite being built only on
the assumption of vacuum-dipole emission and naturally
returns values of the braking index n 2 for young pulsars,
as measured in the observed population (Espinoza et al. 2017).
We also show the evolution of the characteristic age with time.
We find that at young ages, there is a huge discrepancy
between the characteristic age and the actual age of the neutron
star, while after some time these ages tend to agree. This is
expected as our spin evolution is only different from n= 3 at
early times. The evolution across the PP diagram also
demonstrates that the model can accommodate neutron stars
in various parts of the PP diagram despite a narrow starting
position and explain the different locations we observe for real
neutron stars.
To illustrate this last point, we now simulate a hypothetical
PP diagram with τ1= 1 yr and ℓ 40max = corresponding to

τ2= 104 yr, ignoring selection effects and drawing ages
randomly throughout the lifespan of the neutron star. In
Figure 2, the left panel shows a real PP diagram of pulsars
obtained from the ATNF catalog (Manchester et al. 2005)
through the psrqpy software package (Pitkin 2018). The
middle panel shows a 1000 simulated neutron stars with our
model drawn randomly from the above distributions and
selected at different ages. Both panels include lines for constant
magnetic fields and characteristic ages and the pulsar death
line (Zhang et al. 2000), calculated through psrqpy with the
region below shaded in yellow. The last panel shows the
histogram of the large-scale magnetic field of the 1000
simulated neutron stars at their selected ages. We emphasize
that we do not model processes such as mass transfer that is
likely responsible for neutron stars observed in the lower left of
the PP diagram, i.e., the millisecond pulsars. We caution the
reader against a direct comparison of the observed population
and our simulated population. We do not model the radio
luminosity of any of the neutron stars and therefore cannot
account for any selection effects that may limit our ability to
see neutron stars in certain parts of the PP diagram (Faucher-
Giguère & Kaspi 2006; Szary et al. 2014).
Figure 2 also demonstrates that this evolutionary model for

the magnetic field can produce neutron stars in the “magnetar”
region of the PP diagram while also accounting for the
distribution of neutron stars across the PP diagram for a small
range of initial conditions. Furthermore, it helps illustrate the
significant differences in neutron stars’ actual ages and
magnetic fields compared to the characteristic spin-down age
and constant magnetic field models. This may be important to
reconcile the often significant discrepancies in inferred ages of
neutron stars in supernova remnants with their location in the
PP diagram.
The above PP diagram represented one single case of τ1 and

ℓmax. However, as we mentioned in Section 2, these values are
unknown. In Figure 3, we show simulated PP diagrams for a
range of these values. We note that each panel has the same
initial conditions (i.e., P0 and Bp,0) and all neutron stars are
selected at the same ages, and the difference in their “observed”
locations is only due to different τ1 and ℓmax. Figure 3 can be
interpreted in two primary ways. First, for almost any choice of
τ1 and ℓmax, this model can accommodate a large portion of the
PP diagram for a small range of initial conditions and provide a

natural explanation for the often discrepant age estimates from
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spin-down and a supernova remnant. Second, to explain
magnetars with this model, we need large ℓmax and small τ1,
i.e., we need the inverse cascades to begin early and need the
initial field to be confined to small scales.

5. Conclusions

Our results demonstrate that it is indeed possible to explain
the production of large-scale magnetic fields through an inverse
cascade. This means that an initial small-scale magnetic field
gets gradually converted into a large-scale one. The efficiency
of this process increases with increasing dynamic range in
space and time, i.e., it becomes more efficient, the smaller the

scale of the initial field (larger ℓmax) and the earlier the inverse
cascade begins (smaller τ1).
Our models for the growth of the magnetic field early on in

the life of the star can explain the low (n 2) braking indices
measured in young pulsars and their observed evolution in the
PP diagram (Espinoza et al. 2017). This is consistent with

numerical results presented in Gourgouliatos & Cumming
(2015), where the low braking indices of Vela and other young
pulsars were interpreted as a by-product of the increase in
large-scale magnetic fields in Hall MHD. However, note that
Gourgouliatos & Cumming (2015) started with initially strong

Figure 1. Evolution of neutron star properties for varying initial conditions (red curves). From left to right, the top panels show the evolution across the PP diagram
and then the evolution with time of the period and the period derivative. The bottom panels show the evolution with time of the observed braking index, the large-scale
magnetic field, and the characteristic age.

Figure 2. Real PP diagram of pulsars obtained from the ATNF catalog, while the middle panel shows a simulated PP diagram with our model for a 1000 different
neutron star initial conditions using τ1 = 102 yr and τ2 = 106 yr, corresponding to ℓ 40max = . The first twopanels include lines for constant magnetic fields and
characteristic ages and the pulsar death line, calculated using the psrqpy software package. The color of the dots in the middle panel indicates the age of the selected
neutron star, with black for neutron stars older than 109 yr, red for neutron stars between 105 and 109 yr, blue for neutron stars between 102 and 105 yr, and green for
neutron stars younger than 102 yr. The last panel shows the histogram of the large-scale magnetic field of the 1000 neutron stars at their selected ages.
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large-scale magnetic fields, while we can reproduce magnetars
with much smaller initial large-scale fields.

The most extreme case studied in this Letter is ℓ 40max =
and τ1= 1 yr. We estimated ℓ 20max = based on the scale
height, but this provided a rough estimate because the
convective eddies during the first minute of the neutron star’s
life can well be smaller than the local scale height as discussed
in Section 2. Somewhat larger values of ℓ 40max = appear
therefore feasible. However, the situation with the value of τ1 is
less obvious. Once the crust has been established, the relevant
timescale is the magnetic diffusion time, which was also used
as the natural time unit in B20 and Brandenburg (2023). In
their Cartesian models, it was defined as d M

2t x h= . Using
η= 4× 10−8 m2 s−1 and R ℓ 700 mM maxx = » with
ℓ 20max = , we have τd= 0.4 Myr. Somewhat smaller values
are expected as we increase ℓ, for example to 100, in which
case we can have ξM= 150 m and therefore τd= 20 kyr. In
addition, the time τ1 when the inverse cascade begins is a
certain fraction of τd. For example τ1/τd= 0.01, corresponds
to the time when a certain characteristic quantity (the Hosking
integral) reached a maximum; see Figure 4 of Brandenburg
(2023). Thus, the smallest conceivable value of τ1 is 200 yr for

a standard crustal composition. It should be noted, however,
that recent calculations of the conductivity in the presence of a
nuclear pasta phase (Pelicer et al. 2023) have yielded
significantly smaller conductivities, which could accommodate
values of τ1≈ 1 yr.
Our results show that low values of τ1 (together with high

values of ℓmax) will create stars in the magnetar range in most of
our models and therefore point toward the presence of a thin,
highly resistive pasta layer at the base of the crust, as suggested
also by Pons et al. (2013), to explain the absence of long-period
isolated X-ray pulsars. We note that all models produce neutron
stars below the death line, but those would not be observable as
pulsars owing to their low luminosity.
Another implication of this model is on the ages of

magnetars. If the magnetic field is confined to small scales at
birth and the initial dipole component is small, then there needs
to be a minimum time such that the field can grow to magnetar
strengths. For the choice of τ1= 10 yr and ℓ 40max = , this is
�500 yr for our simulation, i.e., there should not exist any
neutron stars with Bp 1014 G, younger than ≈500 yr. A
comparison between characteristic age and true age is presented
in Figure 1, where we see that at early times most of our

Figure 3. Simulated PP diagrams for the same initial conditions in all panels and ages but different τ1 and ℓmax. The colors correspond to the ages of the neutron stars,
with the same ranges as described in Figure 2.
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systems are much younger than they appear (we caution,
however, that the systems we produce with large characteristic
ages have very small values of P at birth, which would make
them challenging to observe), while in the range between 103

and 105 yr, a small number of systems, which correspond to the
magnetars, are slightly older than they appear. However, we
note that we do not capture the true diversity of initial
conditions such as spin or considerations of the equation of
state, which could produce magnetar-like field strength earlier
in time. We will explore the full effect of different initial
conditions, equations of state, and compare them directly to
observations in future work.
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