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Turbulence is typically not in equilibrium, i.e. mean quantities such as the mean
energy and helicity are typically time-dependent. The effect of non-stationarity on the
turbulent hydromagnetic dynamo process is studied here with the use of the two-scale
direct-interaction approximation, which allows one to explicitly relate the mean turbulent
Reynolds and Maxwell stresses and the mean electromotive force to the spectral
characteristics of turbulence, such as the mean energy, as well as kinetic and cross-helicity.
It is demonstrated that the non-equilibrium effects can enhance the dynamo process
when the magnetohydrodynamic turbulence is both helical and cross-helical. This effect
is based on the turbulent infinitesimal-impulse cross-response functions, which do not
affect turbulent flows in equilibrium. The evolution and sources of the cross-helicity in
magnetohydrodynamic turbulence are also discussed.
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1. Introduction

The effect of hydromagnetic dynamo action is ubiquitous in astrophysical plasmas, e.g.
in stellar and planetary interiors, accretion discs or the interstellar medium (Roberts &
Soward 1972; Balbus & Hawley 1991a,b; Brandenburg & Subramanian 2005; Dormy
& Soward 2007; Roberts & King 2013). This is particularly important in view of the
recent advancement of tokamak devices, reaching very high plasma temperatures, thus
giving hope for the production of thermonuclear fusion power (Li, Ni & Lu 2019; Gibney
2022). The investigation of the large-scale dynamo mechanisms in magnetohydrodynamic
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(MHD) turbulence, that is, those that lead to generation of large-scale magnetic fields, is
mainly limited to equilibrium, i.e. statistically stationary turbulence.

One of the widely known and often invoked dynamo mechanisms is the so-called
α-effect, which requires chirality (lack of reflectional symmetry) in turbulent flow, and this
requires some mechanism that breaks the ‘up–down’ symmetry of the system (Krause &
Rädler 1980; Dormy & Soward 2007; Moffatt & Dormy 2019). A large-scale electromotive
force (EMF) is then generated and this leads to the amplification of magnetic energy.
The lack of reflectional symmetry is typically introduced by stratification and background
rotation and a useful measure of the flow chirality is the kinetic helicity. Another
pseudoscalar quantity of importance in dynamo theory is the cross-helicity (e.g. Hamba
& Tsuchiya 2010; Yokoi 2013; see Yokoi (2023b) for a review).

The aim of this paper can be shortly stated as a demonstration of the influence of
non-equilibrium effects in MHD turbulence on the α-effect and thereby on large-scale
dynamos. This issue has already been investigated in a series of papers by Mizerski
(2018a,b, 2020, 2021a, 2022), which, however, assumed that the turbulence was stirred
by a Gaussian and helical forcing; the physical properties of the forcing were then present
in the expressions for the α coefficient. It has been shown that the α-effect can be induced
by interactions between waves with distinct but close frequencies (thus the term ‘beating’
waves, which induce non-stationarity), leading to a finite magnetic field amplification
rate independent of the magnetic diffusivity η, that is, operating even in the limit of
vanishing fluid resistivity. Such an α-effect is proportional to the energy production rate
in non-stationary turbulence and the non-equilibrium effects play a more significant role
when the magnetic diffusivity is weak, η � ν. Furthermore, in Mizerski (2021a) the effect
of non-stationarity was shown to induce an out-of-phase slow temporal evolution of the
turbulent coefficient α and the turbulent diffusivity β, implying the existence of periods of
enhanced and suppressed turbulent dynamo processes. In particular, the enhancement of
diffusion sometimes coincides with the suppression of the α-effect, leading to magnetic
field decay, i.e. a field excursion. In Mizerski (2022) the non-equilibrium effects in the
interstellar medium driven by supernova ejections and the difference between the ejection
rates for type I and type II supernovae, based on a simple theoretical model, have been
argued to provide a significant contribution to the mean EMF. The non-equilibrium
dynamo mechanisms may shed some light on the issue of large-scale magnetic field
generation in highly conducting plasmas. It is of interest to mention that in the recent
numerical simulations of Zhou & Blackman (2023), an η-independent large-scale dynamo
regime was identified in the setting of a (2π)3-periodic box, confirming that at high
magnetic Reynolds numbers large-scale dynamo mechanisms still persist.

Here, on the other hand, we apply the two-scale direct-interaction approximation
(TSDIA), which allows us to remove the stirring force, but instead we need to assume
some statistical properties of the background turbulence. Nevertheless, this approach
allows one to explicitly relate the mean EMF to kinetic helicity and cross-helicity, through
consideration of Green’s response functions, which describe the responses of the turbulent
flow and magnetic field to infinitesimal perturbations (see e.g. Yoshizawa 1985, 1990,
1998; Yokoi 2013, 2018). We show that the infinitesimal-impulse cross-responses affect
the mean EMF through non-equilibrium effects in MHD turbulence, and the α-effect
is potentially enhanced, provided that the kinetic helicity and cross-helicity are both
non-zero. We also discuss the evolution equation of the cross-helicity, its sources and
sinks in MHD turbulence, and hence the possibility of a coexistence of the kinetic helicity
and cross-helicity; this issue is also investigated numerically.
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Non-equilibrium α-effect from cross-helicity 3

2. Mathematical formulation

To study the MHD turbulence in an incompressible conducting fluid we consider the
following dynamical equations describing the evolution of the velocity field of the fluid
flow U(x, t) and the magnetic field B(x, t):

∂U
∂t

+ (U · ∇) U = −∇Π − 2Ω × U + (B · ∇) B + ν∇2U, (2.1a)

∂B
∂t

+ (U · ∇) B = (B · ∇) U + η∇2B, (2.1b)

∇ · U = 0 ∇ · B = 0, (2.1c)

where

Π = p
ρ

+ B2

2
− 1

2
(Ω × x)2 (2.2)

is the total pressure, ρ is the density, Ω is the angular velocity, ν is the viscosity and η
is the magnetic diffusivity. For the purpose of simplicity we rescaled the magnetic field
in the following way: B/

√
μ0ρ → B, where μ0 is the vacuum permeability (so that the

prefactor 1/μ0ρ in the Lorentz force term in the Navier–Stokes equation is lost); in the
following we also rescale the currents,

√
μ0/ρJ → J , so that J = ∇ × B. Next, denoting

by angular brackets the ensemble mean,

〈·〉 − ensemble mean, (2.3)

we put forward the standard decomposition

U = 〈U〉 + u′, B = 〈B〉 + b′, p = 〈p〉 + p′, (2.4a–c)

and write down separately the equations for the mean fields 〈U〉 and 〈B〉 and the turbulent
fluctuations u′ and b′; this yields

∂ 〈U〉
∂t

+ (〈U〉 · ∇) 〈U〉 = −∇ 〈Π〉 − 2Ω × 〈U〉 + (〈B〉 · ∇) 〈B〉 + ν∇2 〈U〉
− ∇ · (〈u′u′〉− 〈

b′b′〉) , (2.5a)

∂ 〈B〉
∂t

= ∇ × (〈U〉 × 〈B〉) + ∇ × 〈
u′ × b′〉+ η∇2 〈B〉 , (2.5b)

∇ · 〈B〉 = 0, ∇ · 〈U〉 = 0, (2.5c)

where
E = 〈

u′ × b′〉 (2.6)

is the large-scale EMF and

∂u′

∂t
− ν∇2u′ + 2Ω × u′ + (〈U〉 · ∇) u′ + (

u′ · ∇) 〈U〉 − (〈B〉 · ∇) b′ − (
b′ · ∇) 〈B〉

+ ∇Π ′ = −∇ · (u′u′ − b′b′)+ ∇ · (〈u′u′〉− 〈
b′b′〉) , (2.7a)

∂b′

∂t
− η∇2b′ + (〈U〉 · ∇) b′ − (〈B〉 · ∇) u′ + (

u′ · ∇) 〈B〉 − (
b′ · ∇) 〈U〉

= ∇ × (
u′ × b′ − 〈

u′ × b′〉) , (2.7b)
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∇ · b′ = 0, ∇ · u′ = 0. (2.7c)

3. Non-equilibrium effects in dynamo theory

The non-equilibrium effect in turbulent transport is ubiquitously seen in systems
with inhomogeneous boundaries such as a temperature difference, chemical-potential
difference, velocity shear, etc. In such non-equilibrium systems, fluxes of energy and
matter are sustained by inhomogeneous boundaries or external forcing. If the transport
coefficients themselves nonlinearly depend on the inhomogeneous boundaries of the
system, the deviation from the equilibrium state can be enhanced. The non-equilibrium
properties of turbulence are sometimes represented by a memory effect on the transport
coefficient (Hubbard & Brandenburg 2009). The memory effect based on the response
function or time integral kernel gives further information on the turbulent transport beyond
the simple argument based on the moments of correlation functions.

In the TSDIA formulation, we express the turbulent fluxes with the aid of a derivative
expansion and the response functions as well as the correlation functions of the turbulence
fields. The response functions provide information as to how much the state of the
past and remote points affects the present state. In this sense, the TSDIA provides a
straightforward framework for investigating the non-equilibrium effect coupling with
large-scale inhomogeneities and external fields in turbulence transport. In order to
completely investigate a complicatedly coupled system of field equations, we have to
consider the cross-interaction responses among the coupled field quantities as well as
the self-interaction responses. In the compressible hydrodynamic turbulence analysis,
the cross-interaction responses among the density, momentum and internal energy or
temperature fields should be taken into account. In a similar way, in the solenoidal MHD
case, the cross-interaction responses between the velocity and magnetic field fluctuations
should be considered.

Depending on the level of the non-equilibrium properties of turbulence, which is
determined by the inhomogeneous boundaries and external force to the system, the
magnitude of the cross-interaction response diversely changes. By assuming some
symmetry or anti-symmetry of the correlation functions, response functions and external
forcing, we delve into the conditions for and properties of the non-equilibrium effect on
the dynamo-related transports.

3.1. Implementation of the TSDIA
Previous results of Mizerski (2018a,b, 2020, 2021a, 2022), obtained in the absence of
the Coriolis force but with chiral stochastic forcing, in the context of the geodynamo and
galactic dynamos, suggest that the non-stationary α-effect is proportional to the energy
production rate resulting from the presence of the forcing (e.g. stochastic buoyancy)
and is oscillatory on time scales induced by the forcing, which could be long (see
also Mizerski, Bajer & Moffatt (2012) for non-stationary dynamo in the context of
the elliptical instability). Here we utilise the TSDIA in order to extract the effect of
non-stirred, non-equilibrium turbulence on the large-scale hydromagnetic dynamo. In
other words, the new approach allows us to study non-stationary MHD turbulence and
the turbulent dynamo effect in the absence of external stochastic forcing although with
assumed statistical properties of the background turbulence. We demonstrate that in
non-equilibrium turbulence the quantity 〈u′ · j′〉 plays a significant role in the generation
of the large-scale EMF through the α-effect and the effect of 〈u′ · j′〉 vanishes in stationary
turbulence.

The validity of the TSDIA formulation can be examined by comparing the theoretical
results for turbulent fluxes with experimental or observational measurements and
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numerical results. For example, in hydrodynamic turbulence with mean shear flow, the
eddy-viscosity representation of the Reynolds stress has been established for several flow
geometries. With the TSDIA formulation, we can obtain the eddy-viscosity representation
and its departures with a proper evaluation of the model constant (Yoshizawa 1984).
In more complex configurations with rotation and/or a magnetic field, we obtain some
additional terms arising from the rotation, mean vorticity and magnetic field. For instance,
one of the additional terms related to the rotation and mean vorticity, which are coupled
with the inhomogeneous turbulent helicity, provides a good agreement with the spatial
distribution of the Reynolds stress obtained by the direct numerical simulations of rotating
turbulence with an imposed non-uniform distribution of the turbulent helicity by a forcing
(Yokoi & Brandenburg 2016). Good agreement is also obtained for the turbulent EMF
expression in the Kolmogorov flow configuration with an imposed magnetic field in the
dynamo context (Yokoi & Balarac 2011).

3.2. Application of the TSDIA method
Let us introduce a small parameter δ and define slow and fast spatial and temporal
variables:

ξ = x, X = δx, τ = t, T = δt. (3.1a–d)

The smallness of δ ensures the presence of scale separation. The large-scale fields depend
only on the slow variables 〈U〉(X , T) and the fluctuations depend on both, u′(ξ , X ; τ, T).
We also define the Fourier transform, involving Galilean transformation to the frame
moving with velocity 〈U〉:

u′
i(ξ , X ; τ, T) =

∫
d3k û′

i(k, X ; τ, T) exp(−ik · (ξ − 〈U〉τ)), (3.2)

but the explicit dependence on the slow variables X and T will be typically suppressed
in notation for clarity. The details of the TSDIA approach are provided in Appendix
A (see also § 9.6 of Yoshizawa 1998 and Yoshizawa 1985, 1990; Yokoi 2023b) and
here we present the major results. The method involves introduction of the concept of
background turbulence with given statistical properties, uninfluenced by the large-scale
field and rotation, hence isotropic; this background turbulence is defined by the following
correlation functions:〈

f̂i(k; τ)ĝj(k1; τ1)
〉
=
[

Pij(k)Qfg (k; τ, τ1) + 1
2

iεijk
kk

k2
Hfg (k; τ, τ1)

]
δ(k + k1), (3.3)

〈
G′

fgij(k; τ, τ1)
〉 = Pij(k)Gfg (k; τ, τ1) , (3.4)

where f and g represent one of the variables u′
00 and b′

00 and G′
fgij(k; τ, τ1) denote the

Green’s functions describing the system’s response to infinitesimal disturbances; Pij(k) is
a projection operator on the plane perpendicular to the wavevector k. It is useful at this
stage to write down explicitly the following quantity:

〈
u′

00(x, τ ) · j′00(x, τ1)
〉 = −iεijk

∫
dk
∫

dk′ k′
j

〈
û′

00i(k; τ)b̂′
00k(k

′; τ1)
〉

exp(−i(k + k′) · x)

=
∫

dk Hub (k; τ, τ1) =
∫

dk Hbu (k; τ1, τ ) , (3.5)

since this quantity will play an important role in the theory of the non-equilibrium α-effect,
developed below.
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The derivation of the formula for the EMF presented in Appendix A leads to

E = α 〈B〉 − (β + ζ ) 〈J 〉 − ∇ζ × 〈B〉 + γ (〈W 〉 + 2Ω) , (3.6)

where J = ∇ × B = 〈J 〉 + j′ and W = ∇ × U = 〈W 〉 + w′ denote electric currents and
the vorticity respectively. The statistically stationary case has been studied in detail in
Yoshizawa (1998) and Yokoi (2013, 2018). When δ is not small, higher-order derivatives
in space and time may play important roles in (3.6). See § 7.2 of Brandenburg & Chen
(2020) for an example. See also Appendix A.4 of Yokoi (2013) regarding the assumptions
and limitations of the TSDIA.

In previous papers on the non-equilibrium dynamo effect, such as Mizerski
(2021a, 2022), turbulence is driven by a Gaussian forcing with correlations varying
slowly in time. Mizerski (2018a) considered the effect of beating waves, leading to
weak non-stationarity, which effectively is very similar to the forcing formulation.
Since the total turbulence fields treated in the TSDIA formulation are not at all
homogeneous isotropic turbulence but inhomogeneous and anisotropic, this method
suits treating non-stationarity (inhomogeneity in time). Examples of investigations of
the non-stationarity or non-equilibrium properties of turbulence within the TSDIA
can be seen, for example, in Yoshizawa & Nisizima (1993) for homogeneous shear
flow turbulence and Yokoi, Masada & Takiwaki (2022) and Yokoi (2023a) for the
non-equilibrium effect associated with plume motions in stellar convection.

We now concentrate on the α-effect, which can be decomposed into two contributions,

α = αS + αX, (3.7)

the standard one, related to the so-called residual helicity

αS = 1
3

∫
d3k

∫ τ

−∞
dτ1 [Guu (k, X ; τ, τ1, T) Hbb (k, X ; τ, τ1, T)

−Gbb (k, X ; τ, τ1, T) Huu (k, X ; τ1, τ, T)] , (3.8)

and a less obvious one, related to the cross-helicity and the quantity 〈u′ · j′〉 which takes
the form

αX = −1
3

∫
d3k

∫ τ

−∞
dτ1 Gbu (k, X ; τ, τ1, T) Hub (k, X ; τ, τ1, T)

+ 1
3

∫
d3k

∫ τ

−∞
dτ1 Gub (k, X ; τ, τ1, T) Hbu (k, X ; τ, τ1, T) . (3.9)

Since the helical functions of the background turbulence satisfy

Hbu (τ, τ1) = Hub (τ1, τ ) , (3.10)

we obtain

αX = −1
3

∫
d3k

∫ τ

−∞
dτ1 Gbu (k, X ; τ, τ1, T) Hub (k, X ; τ, τ1, T)

+ 1
3

∫
d3k

∫ τ

−∞
dτ1 Gub (k, X ; τ, τ1, T) Hub (k, X ; τ1, τ, T) . (3.11)
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We now introduce the following symmetric and anti-symmetric parts of Hub with respect
to exchange of time variables:

H(s)
ub (τ, τ1) = 1

2 (Hub (τ, τ1) + Hub (τ1, τ )) , (3.12a)

H(a)

ub (τ, τ1) = 1
2 (Hub (τ, τ1) − Hub (τ1, τ )) , (3.12b)

which allows us to further separate the αX term into two contributions:

αX = −1
3

∫
d3k

∫ τ

−∞
dτ1 [Gub (k, X ; τ, τ1, T) + Gbu (k, X ; τ, τ1, T)] H(a)

ub (k, X ; τ, τ1, T)

+ 1
3

∫
d3k

∫ τ

−∞
dτ1 [Gub (k, X ; τ, τ1, T) − Gbu (k, X ; τ, τ1, T)] H(s)

ub (k, X ; τ1, τ, T) .

(3.13)

The first term in (3.13), i.e.

αneq = −1
3

∫
d3k

∫ τ

−∞
dτ1 [Gub (k, X ; τ, τ1, T)

+ Gbu (k, X ; τ, τ1, T)] H(a)

ub (k, X ; τ, τ1, T) , (3.14)

clearly constitutes a contribution from non-stationarity of the turbulence, as the
anti-symmetric part H(a)

ub is clearly a non-equilibrium effect.

3.3. Physics of the non-equilibrium αneq-effect
The αneq-effect originates from the cross-interaction responses between the velocity and
magnetic field fluctuations. The importance of the cross-interaction response effects in
turbulent transport depends on how and how much the relevant statistical quantities
are present in turbulence. There are certain conditions for the αneq-effect to work. The
first one is the coupling of the velocity response to the magnetic disturbance, and the
counterpart of the magnetic field to the velocity disturbance. This is related to the
cross-correlation between the velocity and magnetic field fluctuations: the presence of
turbulent cross-helicity (〈u′ · b′〉 
= 0). Another is the presence of the torsional correlation
represented by the correlation between the velocity fluctuation u′ and the electric
current density fluctuation j′ (〈u′ · j′〉 
= 0). Since the torsional correlation 〈u′ · j′〉 can be
considered as some combination of 〈u′ · b′〉 and 〈b′ · j′〉 or 〈u′ · w′〉, the coexistence of
the cross-helicity and the kinetic helicity is an indispensable condition. In addition, the
non-equilibrium property of turbulence represented by the difference between Hub(τ, τ1)
and Hub(τ1, τ ) in (3.12b) is an essential ingredient for this effect. These points are further
discussed in the rest of this subsection.

If we further assume that the function

G (τ, τ1) = Gub (τ, τ1) + Gbu (τ, τ1) (3.15)

is independent of k, the non-equilibrium α-effect can be expressed as follows:

αneq = −1
3

∫ τ

−∞
dτ1 G (τ, τ1) 〈u′

00 · j′00〉(a) (x, τ, τ1) , (3.16)

where

〈u′
00 · j′00〉(a) (x, τ, τ1) = 1

2

[〈u′
00 (x, τ ) · j′00 (x, τ1)〉 − 〈u′

00 (x, τ1) · j′00 (x, τ )〉] . (3.17)
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Here, the memory effect, expressed by the time integral in (3.16), is clearly crucial,
as 〈u′

00 · j′00〉(a)(x, τ, τ ) = 0. Next, inspection of the evolution equations for the Green’s
functions leads to the conclusion that Gub must be an odd function of b′

00. This is expected,
since the αX contribution to the α-effect results from the action of the Lorentz force, and
since Hub is associated with the quantity 〈u′

00 · j′00〉, i.e. Hub is linear in b′
00, it follows

that Gub must be an odd function of the latter. Moreover, since 〈u′
00 · j′00〉 is a pure scalar

quantity (which does not change sign under reflection), Gub must be a pseudoscalar.
The only dynamical quantity that is a pseudoscalar and odd in b′

00 is the cross-helicity,
〈u′

00 · b′
00〉; hence we expect that Gub ∝ Qub. Having in mind that the response function

G(τ, τ1) is non-dimensional we can now provide the following rough estimate of the
non-equilibrium αneq-effect:

αneq ≈ −2
3

∫ τ

−∞
dτ1 Υ (s) (x, τ, τ1) 〈u′

00 · j′00〉(a) (x, τ, τ1) , (3.18)

where

Υ (x, τ, τ1) = 〈u′
00 (x, τ ) · b′

00 (x, τ1)〉√
〈u′2

00〉 (x, τ ) 〈b′2
00〉 (x, τ1)

, (3.19)

Υ (s) (x, τ, τ1) = 1
2

[Υ (x, τ, τ1) + Υ (x, τ1, τ )] , (3.20)

and the cross-helicity has been normalised by the geometric mean of the kinetic
and magnetic fluctuational energies (see Yokoi (2011) for a discussion of different
cross-helicity normalisations). The latter equation expresses an effect which results from
the lack of equilibrium in the turbulent state.

The second term in (3.13) is likely to be small because of the factor Gub(τ, τ1) −
Gbu(τ, τ1). For example in the case when ν = η the two response functions Gub and Gbu
are equal and αX = αneq (see discussion at the end of § A.4 in Appendix A). This still holds
approximately true when the diffusivities are unequal but weak (the difference between ν
and η is much smaller than their sum):

Gub ≈ Gbu, and αX ≈ αneq. (3.21a,b)

The same symmetry arguments as in the case of αneq can also be applied to the second
term in (3.13) which is proportional to the non-dimensional cross-helicity Υ = Υ (x, τ, τ )

and the quantity 〈u′
00 · j′00〉 = 〈u′

00(x, τ ) · j′00(x, τ )〉, i.e. αX − αneq ≈ τtΥ 〈u′
00 · j′00〉, where

τt is the turnover time of the most energetic turbulent eddies. However, as remarked above,
this effect should be weak when the diffusion is weak or the magnetic Prandtl number
PrM = ν/η ≈ 1.

Finally, we also expect the 〈u′
00 · j′00〉 correlations in fully turbulent flows to be

proportional to the kinetic helicity 〈u′
00 · w′

00〉, since typically the velocities and magnetic
fields tend to align in such flows. Again, the prefactor must be a pseudoscalar and odd in
b′

00; therefore we propose

〈u′
00 · j′00〉 ≈ Υ 〈u′

00 · w′
00〉 = 〈u′

00 · b′
00〉〈u′

00 · w′
00〉√〈

u′2
00

〉 〈
b′2

00

〉 . (3.22)

We note that the fact of proportionality between 〈u′
00 · j′00〉 and the cross-helicity is also

confirmed by the first-order-smoothing calculation in Appendix B. Introducing the latter
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relation into (3.18) leads to

αneq ≈ −2
3

∫ τ

−∞
dτ1

(
Υ (s) (x, τ, τ1)

)2 〈u′
00 · w′

00〉(a) (x, τ, τ1) , (3.23)

which shows that the non-equilibrium αneq-effect relies on coexistence of the kinetic
helicity and cross-helicity and their history in MHD turbulence (more precisely, in
the case of kinetic helicity, only the anti-symmetric part of the temporal correlations
〈u′

00 · w′
00〉(a)(x, τ, τ1) contributes to the new effect).

3.4. Calculation of the αneq-effect
We now investigate this dynamo mechanism in some more detail. In order to calculate
the effect of non-equilibrium turbulence, we adopt a similar approach to that in Yoshizawa
(1984) (see his equations (B2)–(B4); see also chapter 6 of Yoshizawa (1998)). In stationary
turbulence the functions Hfg(k, X ; τ, τ1, T) and Gf (k, X ; τ, τ1, T) depend only on |τ −
τ1|. Hence to study the non-equilibrium effects we postulate formulae for these functions
similar to those of Yoshizawa (1984), but modified in order to introduce simple explicit
and distinct dependencies on τ and τ1:

Hub (k, X ; τ, τ1, T) = σ (k, X , T) exp(−� (k, X , T) |τ − τ1|)H (τ )H1 (τ1) , (3.24)

Gub (k, X ; τ, τ1, T) = θ (τ − τ1) ς (k, X , T) exp(−� (k, X , T) |τ − τ1|)G (τ )G1 (τ1) ,
(3.25)

for some functions H(τ ), H1(τ1), G(τ ) and G1(τ1). Here, σ(k, X , T) is the spectral
function of the torsional correlation 〈u′ · j′〉, ς(k, X , T) is the counterpart of the
cross-interaction response Gub and θ(t) is the Heaviside unit step function that is θ = 1
and θ = 0 for t > 0 and t < 0, respectively. This in fact follows a standard type of ansatz
used in turbulence modelling starting with Taylor (1921) and Tennekes (1979), which has
been utilised in conjunction with the TSDIA approach by Yoshizawa (1984). Here this
model is used to show explicitly how non-stationarity generates the αneq-correction and to
emphasise the role of the dynamical history of the helicities.

We can decompose these functions, H, H1, G and G1, into Fourier modes, which allows
us to adopt the following, simpler, generic model:

Hub (τ, τ1) = σ exp(−� |τ − τ1|) sin (�h0τ) sin (�h1τ1) , (3.26a)

Gub (τ, τ1) = θ (τ − τ1) ς exp(−� |τ − τ1|) sin
(
�g0τ

)
sin
(
�g1τ1

)
, (3.26b)

where the dependence on the slow variables and the wavenumber k was suppressed in
notation for clarity; moreover � > 0 and to fix ideas we also assume �h0 > 0, �g0 > 0,
�h1 > 0 and �g1 > 0. For the sake of simplicity we also assume

Gub ≈ Gbu. (3.27)

The following calculation:∫ τ

−∞
dτ1 Gub (τ, τ1) Hub (τ, τ1)

= σς

4
(cos Δ0τ − cos Σ0τ)

[
1

4� 2 + Δ2
1
(2� cos Δ1τ + Δ1 sin Δ1τ)

− 1
4� 2 + Σ2

1
(2� cos Σ1τ + Σ1 sin Σ1τ)

]
, (3.28)
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where
Δi = �hi − �gi, Σi = �hi + �gi, (3.29a,b)

shows that in non-equilibrium turbulence both contributions to the α-effect, the ‘standard’
αS and that associated with cross-helicity αX , are enhanced by non-stationarity. Since the
frequencies correspond to the fast oscillations of turbulent fluctuations in most of the cases
the cosines and sines do not contribute to large time scales (their time average vanishes).
Under the time average over long time scales δ−1t the non-zero contribution comes from
the cases �hi = �gi (or �hi ≈ �gi). Therefore we pick (�,�h,�g) modes such that the
following relations are satisfied:

Δi � � � �hi,�gi, for i = 0, 1, (3.30)

in which case ∫ τ

−∞
dτ1 Gub (τ, τ1) Hub (τ, τ1) ≈ σς

8�
; (3.31)

for comparison in the stationary case one obtains σsςs/2�s with Hub = σs exp(−�s|τ −
τ1|), Gub = ςs exp(−�s|τ − τ1|). However, the influence of non-stationarity on the
‘standard’ αS contribution has been studied using different methods in Mizerski (2018a,b,
2020, 2021a, 2022); note that the relation (3.30) clearly corresponds to the effect of beating
waves inducing non-stationarity in the turbulent wave field, discussed in those works. Here
we concentrate on the cross-helicity contribution αX ≈ αneq, which is apparent within the
TSDIA approach. Introduction of the formulae (3.26a,b) into (3.14) yields

αneq ≈ −π

6

∫
dk

σςk2

�
. (3.32)

According to our previous observations in the above, we have ς ∝ Υ . We note that a very
similar result is obtained if one assumes a simpler non-stationary form of the Hub and Gub
functions:

Hub (τ, τ1) = σ exp(−� |τ − τ1|) sin [�h (τ − τ1)] , (3.33a)

Gub (τ, τ1) = θ (τ − τ1) ς exp(−� |τ − τ1|) sin
[
�g (τ − τ1)

]
, (3.33b)

which satisfies Hub(τ, τ1) = −Hub(τ1, τ ), and considers the limit (3.30).
In the above calculation we have used some standard models of the statistical properties

of turbulence in order to emphasise the importance of non-stationarity and the history of
evolution of the helicities in the turbulent dynamo process. The αneq-effect, induced by the
simultaneous presence of cross-helicity and kinetic helicity, can be strong and depends
on their magnitude. All the three ingredients are crucial: (i) cross-helicity, (ii) kinetic
helicity and (iii) non-stationarity. In turbulence which possesses the cross-helicity and
kinetic helicity in abundance and which is out of equilibrium, a correction to the standard
α-effect is created, which involves the cross-helicity and memory effects. Such effects can
be most straightforwardly treated by closure theories with response or Green’s function
formulation. The TSDIA formulation provides a framework for such an analysis.

4. Coexistence of the kinetic helicity and cross-helicity in turbulence

We now consider the question of the likelihood of coexistence of the cross-helicity
and kinetic helicity in developed turbulence. Although it is not possible to draw definite
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conclusions in this matter, it is still instructive to study the sources and sinks of the
cross-helicity in turbulent flows in order to develop some intuition about its generation.

In Appendix B we consider stirred turbulence (with homogeneous, isotropic, stationary
and helical Gaussian forcing) and show that under the first-order smoothing approximation
(FOSA) the cross-helicity is proportional to the product 〈B〉 · Ω and hence within the
FOSA approach the coexistence of the kinetic helicity and cross-helicity is dependent on
the existence of the mean field component parallel to the background rotation vector.

A more general calculation is presented in Appendix C, where we derive the general
evolution equation for the cross-helicity (see also Yokoi & Hamba 2007; Yokoi 2011;
Yokoi & Balarac 2011; Yokoi & Hoshino 2011; Yokoi 2013). This equation involves
mean quantities such as the mean EMF E and the mean Reynolds and Maxwell stresses
〈u′

iu
′
j − b′

ib
′
j〉. For the former we utilise the result (3.6) and for the latter we take the

expression obtained also via the TSDIA approach in Yokoi & Hoshino (2011), i.e.

−〈u′
iu

′
j − b′

ib
′
j〉

∂〈B〉i

∂xj
= 7

10
βSijMij − 7

10
γ Tr

(M2)
, (4.1)

where

Sij = ∂〈U〉i

∂xj
+ ∂〈U〉j

∂xi
, Mij = ∂〈B〉i

∂xj
+ ∂〈B〉j

∂xi
. (4.2a,b)

This leads to

D
Dt

〈
u′ · b′〉 = −α (〈B〉 · 〈W 〉 + 2 〈B〉 · Ω) + (β + ζ ) (〈J 〉 · 〈W 〉 + 2 〈J 〉 · Ω)

− γ (〈W 〉 + 2Ω)2 − 7
10

γ Tr
(M2)

+ 7
10

βTr (S · M) + (∇ζ × 〈B〉) · (〈W 〉 + 2Ω)

+ ∇ ·
[〈(

−Π ′ + u′2 + b′2

2

)
b′
〉

+
〈

u′2 + b′2

2

〉
〈B〉 − ν

〈
w′ × b′〉+ η

〈
u′ × j′

〉]

− (ν + η)
〈
w′ · j′

〉
. (4.3)

Of course if the turbulence is stirred with some forcing f there is also another production
term 〈 f · b′〉.

According to (3.23) the magnitude of the non-equilibrium α-effect depends on both the
kinetic helicity and cross-helicity and their history. The total α-effect consists of the two
contributions α = αS + αX , where the standard one can be assumed proportional to the
kinetic helicity, αS ≈ −τt〈u′ · w′〉/3. The final balance between the two contributions αS
and αX determines whether the α coefficient has the same or the opposite sign to the kinetic
helicity. The effect of different terms in (4.3) has been studied in the aforementioned works
of Yokoi & Hamba (2007), Yokoi (2011), Yokoi & Balarac (2011), Yokoi & Hoshino (2011)
and Yokoi (2013) under some simplifying assumptions, in particular under the neglect of
the effects from the Gub and Gbu response functions, responsible for the non-equilibrium
effects studied here. Assuming that α = −τt〈u′ · w′〉/3, they showed that the first term
−α〈B〉 · 〈W 〉 always leads to destruction of the cross-helicity. This is no longer true when
Υ 
= 0 in non-equilibrium turbulence, since depending on the balance between the αS and
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g
c2

s k1

vA0

cs

〈u′ · b′〉√
〈u′2〉〈b′2〉

〈u′ · w′〉√
〈u′2〉〈w′2〉

〈b′ · j′〉√
〈u′2〉〈w′2〉

αneq

α0

αS

α0

urms

cs

vrms
A
cs

C 0.5 0.01 −9.8 × 10−3 −1.6 × 10−2 −2.0 × 10−4 7.8 × 10−4 1.8 × 10−2 0.10 0.03
A 1.0 0.01 −1.7 × 10−2 −3.0 × 10−2 −3.3 × 10−4 1.1 × 10−3 3.5 × 10−2 0.11 0.04
D 2.0 0.01 −2.0 × 10−2 −3.6 × 10−2 −2.8 × 10−4 6.1 × 10−4 4.1 × 10−2 0.16 0.04
E 0.5 0.10 −5.5 × 10−2 −1.9 × 10−2 −6.2 × 10−4 −5.6 × 10−3 1.5 × 10−2 0.08 0.07
B 1.0 0.10 −5.3 × 10−2 −3.2 × 10−2 −1.2 × 10−2 2.3 × 10−3 1.8 × 10−2 0.09 0.12

TABLE 1. Summary of the simulation results for Runs A–E.

αX terms the term −α〈B〉 · 〈W 〉 in (4.3) may either amplify or destroy the cross-helicity.
Furthermore, Yokoi & Hoshino (2011) take β + ζ ∝ 〈u′2〉 and γ ∝ 〈u′ · b′〉 which allows
them to identify another two terms that always lead to destruction of the cross-helicity,
namely

− γ (〈W 〉 + 2Ω)2 − 7
10γ Tr

(M2)
. (4.4)

In addition Yokoi & Hoshino (2011) have described various situations when the terms
(β + ζ )〈J 〉 · 〈W 〉, βTr(S · M) and ∇ · [〈u′2 + b′2〉〈B〉] may lead to production of the
cross-helicity in the geometry of tokamak devices. Finally, in the term −2α〈B〉 · Ω we
recover the action of the mean field component parallel to the rotation vector, as in the
FOSA approach.

The action of all the other terms in (4.3) is difficult to predict and, in general, they
can either amplify or destroy the cross-helicity in developed turbulence. The final balance
on the right-hand side of (4.3) depends on many dynamical features of turbulence and
is expected to be time-dependent. Therefore in order to demonstrate the possibility of
coexistence of the cross-helicity and kinetic helicity in magnetised turbulence we have
performed numerical simulations of the compressible version of (2.1a–c) in the presence
of gravity, density stratification and an imposed magnetic field g ‖ ∇ρ ‖ B0 ‖ Ω in a
periodic box with the use of the PENCIL CODE (Pencil Code Collaboration et al. 2021)
with 2563 mesh points; stress-free and perfectly conducting boundary conditions were
imposed at the top and bottom boundaries (see Appendix D). The action of rotation along
the direction of stratification leads to kinetic helicity (see figure 5 of Jabbari et al. (2014)
for simulation results) and the action of a magnetic field along the direction of stratification
leads to cross-helicity (Rüdiger, Kitchatinov & Brandenburg 2011).

The values of the physical parameters are as follows. Working again with the unscaled
magnetic field B = 0.01cs

√
μ0ρ̄ and gravity g = 1c2

s k1 (these are varied in other runs),
where cs is the speed of sound, Ω = 0.5csk1 is kept fixed in all runs, ρ̄ is the mean
density and k1 is the box wavenumber; the remaining parameters, which are constant for
all runs are listed in table 1, where we used the Alfvén speed vA = B/

√
μ0ρ̄ to quantify

the strength of the imposed and root-mean-square magnetic fields through vA0 and vrms
A ,

respectively. The results obtained for two values of the imposed magnetic field which
differ by an order of magnitude at variable gravity strength are depicted in figure 1 and
tables 1 and 2; see also Appendix E for additional figures. The normalised helicities
〈u′ · b′〉/

√
〈u′2〉〈b′2〉 and 〈u′ · w′〉/

√
〈u′2〉〈w′2〉 are plotted against time and they are both

clearly non-zero in all the considered cases; the cross-helicity is plotted in red and the
blue lines correspond to the kinetic helicity whereas their time averages are marked with
white lines. In addition, only for the sake of reference, the figures also show the estimates
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FIGURE 1. Results for Run A of numerical simulations of MHD turbulence in a periodic box
with the use of the PENCIL CODE. The upper panel shows the time evolution of the normalised
cross-helicity 〈u′ · b′〉/

√
〈u′2〉〈b′2〉 (red) and the kinetic helicity 〈u′ · w′〉/

√
〈u′2〉〈w′2〉 (blue);

the time averages are marked with the white continuous lines and the green line depicts the
current helicity 〈b′ · j′〉/

√
〈u′2〉〈w′2〉. The estimates of the coefficients αneq (4.5) and αS (4.6) as

functions of time (normalised with α0 = urms/3) are provided in the bottom panel in red and
orange respectively; the continuous white line marks the time-averaged value of αS/α0 and the
dashed white line the time average of αneq/α0.

of the non-equilibrium effect in the form

αneq ≈ −1
3

〈u′ · b′〉√
〈u′2〉〈b′2〉

∫ τ

−∞
dτ1

[〈u′ (x, τ ) · j′ (x, τ1)〉 − 〈u′ (x, τ1) · j′ (x, τ )〉] , (4.5)

which can be compared with the following standard estimate of the α-effect, associated
with the presence of the kinetic and current helicities:

αS ≈ − 1
3τt
(〈u′ · w′〉 − 〈b′ · j′〉) , (4.6)

where τt = 1/(urmskf ) is the turnover time of the most energetic turbulent eddies, with
urms =

√
〈u′2〉 and kf = 30k1 denoting the wavenumber of the energy-carrying eddies,

which is here the wavenumber of the forcing, and k1 = 2π/L is the lowest wavenumber of
the domain of length L.

Although in the numerically studied cases the statistical non-stationarity of turbulence is
rather weak and the estimate of the αneq coefficient is always at least an order of magnitude
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kf
〈u′ · b′〉√
〈u′2〉〈b′2〉

〈u′ · w′〉√
〈u′2〉〈w′2〉

〈b′ · j′〉√
〈u′2〉〈w′2〉

αneq

α0

αS

α0

urms

cs

vrms
A
cs

A 30 −1.7 × 10−2 −3.0 × 10−2 −3.3 × 10−4 1.1 × 10−3 3.5 × 10−2 0.11 0.04
A2 10 −1.3 × 10−1 −1.2 × 10−1 1.3 × 10−3 −1.7 × 10−2 6.9 × 10−2 0.12 0.12
A3 3 −6.4 × 10−2 −2.1 × 10−1 −3.0 × 10−2 −6.0 × 10−3 5.5 × 10−2 0.19 0.09

TABLE 2. Summary of the simulation results for Runs A, A2 and A3.

weaker than αS, the former is clearly different from zero and its relative importance seems
to correlate with the magnitude of the cross-helicity. The relative enhancement of the
αneq-effect visible for a stronger magnetic field (Run B) and weaker gravity (Run E)
corresponds to the enhancement of the cross-helicity with respect to the kinetic helicity. Of
course in the latter case (see figure 2), although the αneq coefficient has the largest relative
magnitude, it also has a different sign from αS, hence in this case the non-equilibrium
effects tend to suppress the standard dynamo effect. In figure 3 we see that weak magnetic
field and strong gravity have suppressed the non-equilibrium effect to a very small relative
magnitude.

At smaller scale separation, i.e. for smaller values of kf , we expect the turbulence to
be more intermittent and the degree of non-stationarity to be enhanced. To address this
possibility, we have performed additional simulations for smaller values of kf with the
other parameters being the same as for Run A. The results shown in table 2 do show that
αneq is twice as large when kf is reduced from 30 to 10, but an additional decrease of kf
from 10 to 3 does not lead to an additional increase of αneq. To some extent, however, this
is caused by the normalisation by α0, which has increased by about 60 %.

We conclude that in fully developed helical turbulence, that is, in turbulence with strong
kinetic helicity, the cross-helicity is rather likely to be produced as well and at least for
some periods of time the two helicities can coexist. Through direct numerical simulation,
we confirmed that the non-equilibrium effect derived by the TSDIA formulation did
indeed alter the α-effect.

5. Conclusions

We have analysed the hydromagnetic dynamo process in non-equilibrium turbulence. It
was shown that in non-equilibrium MHD turbulence the effect of the infinitesimal-impulse
cross responses u′ ↔ b′ is pronounced, which vanishes in the stationary state. This creates
additional terms in the expression for the large-scale EMF.

The main conclusion is that the non-equilibrium effects in MHD turbulence modify
the α-effect by introducing a correction dependent on the square of the non-dimensional
cross-helicity Υ = 〈u′ · b′〉/

√
〈u′2〉〈b′2〉, the kinetic helicity and their history in the MHD

turbulence, which takes the form provided in (3.23). This requires coexistence of both the
kinetic helicity and cross-helicity in the turbulent flow. The discussion of the production
mechanisms of the cross-helicity, provided in § 4, and the results of numerical simulations
lead to the conclusion that such coexistence is possible and perhaps even ubiquitous in
many natural systems. Simple strong production mechanisms have been identified already
and thoroughly discussed in earlier works (e.g. Yokoi & Hoshino 2011).

The non-equilibrium effects in turbulence affect also other components of the mean
EMF in (3.6), that is, the turbulent diffusivity β and the coefficients ζ and γ , in a

https://doi.org/10.1017/S0022377823000545 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377823000545


Non-equilibrium α-effect from cross-helicity 15

non-trivial way, through the effect of the Green’s cross-response functions Gub and Gbu.
This interesting topic should be investigated in more detail in future studies.
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Appendix A. Outline of the TSDIA with self- and cross-interaction response
functions for the velocity and magnetic fields

The TSDIA is a combination of the direct-interaction approximation (DIA) for
strongly nonlinear homogeneous isotropic turbulence and the multiple-scale analysis
with the derivative expansion with respect to the large-scale inhomogeneity. The
TSDIA provides a powerful tool for investigating strongly nonlinear turbulence with
large-scale inhomogeneities. In applying the TSDIA scheme to MHD, the Elsässer
variable formulation has been often adopted. In this formulation, symmetries of the
velocity and magnetic field equations are fully utilised, which reduces the complexities in
treating the original MHD equations. The correspondence between the Elsässer variable
formulation and the usual velocity–magnetic field formulation in the TSDIA has been
discussed in some literature (Yoshizawa 1998; Hamba & Sato 2008; Yokoi 2013). Here,
we present the outline of the TSDIA formulation under the velocity and magnetic field
variables with special reference to the self- and cross-interaction response functions in
MHD turbulence (see also Yokoi 2023b). For the outline of the DIA in the context of the
TSDIA, the reader is referred to textbooks such as Yoshizawa (1998) and Yokoi (2020).
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A.1. Wavenumber space equations
We introduce the Fourier representation concerning the fast space variable ξ as

f ′(ξ , X ; τ, T) =
∫

dk f (k, X ; τ, T) exp[−ik · (ξ − 〈U〉τ)], (A1)

where the Fourier transform of the fast variable is taken in the frame co-moving with the
local mean velocity 〈U〉. Hereafter, for the sake of simplicity of notation, the arguments
of the slow variable for the fluctuation field f (ξ , X ; τ, T) are suppressed and just denoted
as f (ξ ; τ).

The system of two-scale differential equations under the velocity and magnetic field
variables in the wavenumber space is written as

∂ui(k; τ)

∂τ
+ νk2ui(k; τ) + ik j〈B〉 jbi(k; τ)

− iMij�(k)

∫∫
dp dq δ(k − p − q) × [

u j(p; τ)u�(q; τ) − b j(p; τ)b�(q; τ)
]

= δ

[
−Pij(k)

D̂u j(k; τ)

DTI
− Pij(k)um(k; τ)

(
∂〈U〉 j

∂Xm
+ εmj�Ω�

0

)

+〈B〉 j ∂bi(k; τ)

∂X j
I

+ Pij(k)bm(k; τ)
∂〈B〉 j

∂Xm

]
, (A2)

− ikju j(k; τ) + δ
∂u j(k; τ)

∂X j
= 0, (A3)

∂bi(k; τ)

∂τ
+ ηk2bi(k; τ) + ik j〈B〉 jui(k; τ)

+ iNij�(k)

∫∫
dp dq δ(k − p − q) × [

b j(p; τ)u�(q; τ) − u j(p; τ)b�(q; τ)
]

= δ

[
−Pij(k)

D̂b j(k; τ)

DTI
+ Pij(k)bm(k; τ)

(
∂〈U〉 j

∂Xm
+ εmj�Ω�

0

)

+〈B〉 j ∂ui(k; τ)

∂X j
I

− Pij(k)um(k; τ)
∂〈B〉 j

∂Xm

]
, (A4)

− ikjb j(k; τ) + δ
∂b j(k; τ)

∂X j
= 0, (A5)

where D̂/DT is defined below, and(
∇X I,

D
DTI

)
= exp (−ik · Uτ)

(
∇X ,

D
DT

)
exp (ik · Uτ) (A6)

is the differential operators in the interaction representation. Here in (A2) and (A4),

Mijk(k) = 1
2

(
k jPik(k) + kkPij(k)

)
, (A7)
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Non-equilibrium α-effect from cross-helicity 17

with the solenoidal projection operator

Pij(k) = δij − kik j

k2
(A8)

and

Nijk(k) = 1
2

(
k jδik − kkδij

)
. (A9)

The operators M and N are point vertices showing the wavenumber conservation among
the nonlinear mode coupling with δ(k − p − q).

In (A2) and (A4), in order to keep the material derivatives objective (invariant with
respect to transformations between the inertial frame of reference and the frame rotating
with angular velocity Ω), we adopt the co-rotational derivative

D̂u′i

DT
= ∂u′i

∂T
+ 〈U〉 j ∂u′i

∂X j
+ ε jikΩk

0u′ j (A10)

with

Ω0 = Ω/δ (A11)

in place of the Lagrange or advective derivative

Du′i

DT
= ∂u′i

∂t
+ 〈U〉 j ∂u′i

∂x j
, (A12)

which is not objective with respect to rotation.

A.2. Scale-parameter expansion
Utilising (A3) and (A5) in order to split the dynamical fields into components along the
wavevector k and perpendicular to it, we expand the fields f (k; τ) with respect to the scale
parameter δ, and then further each of the expansion terms is expanded with respect to the
weak mean magnetic field as

f i(k; τ) =
∞∑

n=0

δnf i
n(k; τ) −

∞∑
n=0

δn+1i
ki

k2

∂

∂X j
I

f j
n (k; τ)

=
∞∑

n=0

∞∑
m=0

δnf i
nm(k; τ) −

∞∑
n=0

∞∑
m=0

δn+1i
ki

k2

∂

∂X j
I

f j
nm(k; τ), (A13)

where the subscript m corresponds to an expansion in the weak mean field. In this
two-scale formulation, inhomogeneities and anisotropies enter at the order of the scale
parameter δ (with the index n) and the mean field 〈B〉 (with the index m). The lowest-order
fields f00 correspond to homogeneous and isotropic turbulence.
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18 K.A. Mizerski, N. Yokoi and A. Brandenburg

Using the expansion (A13), we write the equations of each order in matrix form. With
the abbreviated form of the spectral integral

∫
Δ

=
∫∫

dp dqδ(k − p − q), (A14)

the f00(k; τ) equations are given as

(
0
0

)
=

⎛
⎜⎝

∂

∂τ
+ νk2 0

0
∂

∂τ
+ ηk2

⎞
⎟⎠
(

ui
00(k; τ)

bi
00(k; τ)

)

+ i

⎛
⎜⎜⎝

−Mij�(k)

∫
Δ

u j
00(p; τ) Mij�(k)

∫
Δ

b j
00(p; τ)

Nij�(k)

∫
Δ

b j
00(p; τ) −Nij�(k)

∫
Δ

u j
00(p; τ)

⎞
⎟⎟⎠
(

u�
00(q; τ)

b�
00(q; τ)

)
, (A15)

the f01(k; τ) equations are given as

⎛
⎜⎝

∂

∂τ
+ νk2 0

0
∂

∂τ
+ ηk2

⎞
⎟⎠
(

ui
01(k; τ)

bi
01(k; τ)

)

+ i

⎛
⎜⎜⎝

−2Mij�(k)

∫
Δ

u j
00(p; τ) 2Mij�(k)

∫
Δ

b j
00(p; τ)

2Nij�(k)

∫
Δ

b j
00(p; τ) −2Nij�(k)

∫
Δ

u j
00(p; τ)

⎞
⎟⎟⎠
(

u�
01(q; τ)

b�
01(q; τ)

)

= −ik j〈B〉 j

(
0 1
1 0

)( ui
00(k; τ)

bi
00(k; τ)

)
≡
(

Fi
01u

Fi
01b

)
(A16)

and the f10(k; τ) equations are

⎛
⎜⎝

∂

∂τ
+ νk2 0

0
∂

∂τ
+ ηk2

⎞
⎟⎠
(

ui
10(k; τ)

bi
10(k; τ)

)

+ i

⎛
⎜⎜⎝

−2Mij�(k)

∫
Δ

u j
00(p; τ) 2Mij�(k)

∫
Δ

b j
00(p; τ)

2Nij�(k)

∫
Δ

b j
00(p; τ) −2Nij�(k)

∫
Δ

u j
00(p; τ)

⎞
⎟⎟⎠
(

u�
10(q; τ)

b�
10(q; τ)

)

= 〈B〉 j ∂

∂X j
I

(
0 1
1 0

)( ui
00(k)

bi
00(k)

)
− Pij(k)

D̂
DTI

(
1 0
0 1

)( u j
00(k)

b j
00(k)

)
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+

⎛
⎜⎜⎝

−Pij(k)

(
∂〈U〉 j

∂X�
+ ε�jnΩn

0

)
Pij(k)

∂〈B〉 j

∂X�

−Pij(k)
∂〈B〉 j

∂X�
Pij(k)

(
∂〈U〉 j

∂X�
+ ε�jnΩn

0

)
⎞
⎟⎟⎠
(

u�
00(k; τ)

b�
00(k; τ)

)

≡
(

Fi
10u

Fi
10b

)
, (A17)

where F01u, F01b, F10u and F10b denote each component of the second right-hand sides
of (A16) and (A17). They can be regarded as the forcing for the evolution equations of
f01(k; τ) and f10(k; τ), respectively.

A.3. Introduction of Green’s functions
For the purpose of solving these differential equations, we introduce the Green’s functions
associated with (A15). We consider the response of the turbulence to an infinitesimal
disturbance. Reflecting the structure of the MHD equations and the field expansion (A13),
the left-hand side of the linearised differential equations for the Green’s function is in the
same form as the left-hand sides of (A16) and (A17) or the differential operators to the
f01(k; τ) and f10(k; τ) fields. In order to treat mutual interaction between the velocity and
magnetic field, we consider four Green’s functions: the Green’s function Guu representing
the response of the velocity field u to the velocity perturbation u; Gub, the response of u
to the magnetic perturbation b; Gbu, the response of b to the velocity perturbation u; and
Gbb, the response of magnetic field b to the magnetic perturbation b. From the left-hand
sides of (A16) and (A17) we construct the system of equations representing the responses
to the infinitesimal forcing. It follows that these four Green’s functions should be defined
by their evolution equations as⎛
⎜⎝

∂

∂τ
+ νk2 0

0
∂

∂τ
+ ηk2

⎞
⎟⎠
(

Gij
uu Gij

ub

Gij
bu Gij

bb

)

+ i

⎛
⎜⎜⎝

−2Mikm

∫
Δ

uk
00 2Mikm

∫
Δ

bk
00

2Nikm

∫
Δ

bk
00 −2Nikm

∫
Δ

uk
00

⎞
⎟⎟⎠
(

Gmj
uu Gmj

ub

Gmj
bu Gmj

bb

)
= Pijδ(τ − τ ′)

(
1 0
0 1

)
.

(A18)

Considering that the right-hand sides of (A16) and (A17) are the force terms, we formally
solve f01 and f10 fields with the aid of the Green’s functions. The f01 fields are expressed as(

ui
01

bi
01

)
=
∫ τ

−∞
dτ1

(
Gij

uu Gij
ub

Gij
bu Gij

bb

)(
F j

01u

F j
01b

)
. (A19)

Note that u01 and b01 are expressed by b00 and u00 coupled with the mean magnetic
field 〈B〉, respectively. Consequently, u01 and b01 multiplied by b00 and u00 in an external
product manner will not contribute to the EMF.

On the other hand, the f10 fields are expressed as(
ui

10
bi

10

)
=
∫ τ

−∞
dτ1

(
Gij

uu Gij
ub

Gij
bu Gij

bb

)(
F j

10u

F j
10b

)
. (A20)
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A.4. Statistical assumption on the basic fields
We assume that the basic or lowest-order fields are homogeneous and isotropic:〈

ϑ i
00(k; τ)χ

j
00(k

′; τ ′)
〉

δ(k + k′)
= Pij(k)Qϑχ(k; τ, τ ′) + i

2
k�

k2
ε ij�Hϑχ(k; τ, τ ′), (A21)

where ϑ00 and χ 00 represent one of u00 and b00, and the indices ϑ and χ represent one of
u and b. The Green’s functions are written as

〈Gij
ϑχ(k; τ, τ ′)〉 = Pij(k)Gϑχ(k; τ, τ ′). (A22)

The spectral functions Quu, Qbb, Qub, Huu, Hbb, Hub and Hbu are related to the turbulent
statistical quantities (the turbulent kinetic energy, magnetic energy, cross-helicity, kinetic
helicity, electric current helicity, torsional correlations between velocity and magnetic
field) of the basic or lowest-order fields as∫

dk Quu(k; τ, τ ) = 〈u′
00

2〉/2, (A23)∫
dk Qbb(k; τ, τ ) = 〈b′

00
2〉/2, (A24)∫

dk Qub(k; τ, τ ) = 〈u′
00 · b′

00〉, (A25)∫
dk Huu(k; τ, τ ) = 〈u′

00 · w′
00〉, (A26)∫

dk Hbb(k; τ, τ ) = 〈b′
00 · j′00〉, (A27)∫

dk Hub(k; τ, τ ) = 〈u′
00 · j′00〉, (A28)∫

dk Hbu(k; τ, τ ) = 〈b′
00 · w′

00〉. (A29)

Under the renormalisation procedure briefly described below (equation (A31)) and in
detail in Yoshizawa (1998), the Green’s function can effectively be treated as deterministic:
Gij

bu(k, τ, τ ′) = PijGbu(k, τ, τ ′) and Gij
uu(k, τ, τ ′) = PijGuu(k, τ, τ ′). We note that, when

ν = η, the system possesses only two distinct Green’s functions, because Guu = Gbb
and Gub = Gbu. Under the assumptions (A22) this is clear from (A18). Although the
operator Mijk differs from Nikm, the contributions from the contraction with kmPik vanish
for solutions of (A18).

A.5. Calculation of the EMF
The turbulent EMF is expressed in terms of the wavenumber representation of the velocity
and magnetic field as

Ei
M ≡ ε ijk〈u′ jb′k〉 = ε ijk

∫
dk 〈u j(k; τ)bk(k′; τ)〉/δ(k + k′). (A30)

Using the results of (A19) and (A20), we calculate the velocity–magnetic field correlation
up to the f01g00 and f10g00 orders as

〈u jbk〉 = 〈u j
00bk

00〉 + 〈u j
01bk

00〉 + 〈u j
00bk

01〉 + δ〈u j
10bk

00〉 + δ〈u j
00bk

10〉 + · · · . (A31)
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In the DIA formalism, the lowest-order spectral functions Quu, Qbb, Qub, Huu, Hbb,
Hub and Hbu and the lowest-order Green’s functions Guu, Gbb, Gub and Gbu are replaced
with their exact counterparts, Q̃uu, Q̃bb, . . . and G̃uu, G̃bb, . . ., respectively. Under this
renormalisation procedure on the propagators (spectral and response functions), important
turbulent correlation functions are calculated. For the sake of simplicity, hereafter, the tilde
denoting an exact propagator is omitted as Q̃uu → Quu, G̃uu → Guu, etc.

Here we present the final results of the turbulent EMF as

〈u′ × b′〉 = α〈B〉 − (β + ζ )∇ × 〈B〉 − (∇ζ ) × 〈B〉 + γ (〈W 〉 + 2Ω) , (A32)

where transport coefficients α, β, ζ and γ are given as

α = 1
3 [−I{Gbb, Huu} + I{Guu, Hbb} − I{Gbu, Hub} + I{Gub, Hbu}] , (A33)

β = 1
3 [I{Gbb, Quu} + I{Guu, Qbb} − I{Gbu, Qub} − I{Gub, Qbu}] , (A34)

ζ = 1
3 [I{Gbb, Quu} − I{Guu, Qbb} + I{Gbu, Qub} − I{Gub, Qbu}] , (A35)

γ = 1
3 [I{Gbb, Qub} + I{Guu, Qbu} − I{Gbu, Quu} − I{Gub, Qbb}] (A36)

with the abbreviated form of integral

I{A, B} =
∫

dk
∫ τ

−∞
dτ1 A(k; τ, τ1)B(k; τ, τ1). (A37)

Appendix B. Cross-helicity and 〈u′·j′〉 under the FOSA

In the presence of the Coriolis force and under the FOSA, in Fourier space the linearised
equations take the form(−iω + νk2) ûi(q) + 2Ωεi3jûj(q) = f̂i(q) + ik · 〈B〉 b̂i(q), (B1)(−iω + ηk2) b̂i(q) = ik · 〈B〉 ûi(q), (B2)

where q = (k, ω), the forcing is assumed Gaussian with zero mean, homogeneous,
stationary and isotropic,〈

f̂i(k, ω)f̂j(k′, ω′)
〉
=
[

D0

k3
Pij(k) + i

D1

k5
εijkkk

]
δ(k + k′)δ(ω + ω′), (B3)

and Pij(k) = δij − kikj/k2 is the projection operator on the plane perpendicular to the
wavevector k. Such type of force correlation is commonly used in the literature (see
Landau & Lifshitz 1987) and it was shown by Yakhot & Orszag (1986) and Mizerski
(2021b) to correspond to Kolmogorov-type scalings for the spectral turbulent energy and
helicity. Introducing

γν = −iω + νk2, γη = −iω + ηk2, (B4a,b)

and considering the weak seed field limit defined by

〈B〉2 � 〈U〉2 , hence also
〈
b′2〉 � 〈

u′2〉 , (B5)

the equations reduce to

ûi(q) ≈ Gijf̂ >
j (q), (B6)

b̂i(q) ≈ i
k · 〈B〉

γη

Gijf̂j(q), (B7)
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where

Gij = 1

γ 2
ν + 4Ω2 k2

z

k2

[
γνδij − 2Ωεi3j + 2Ω

kikm

k2
εjm3

]
. (B8)

The cross-helicity takes the form

〈hub〉 = 〈
u′

i(x, t)b′
i(x, t)

〉
= i

∫
d4q

∫
d4q′ exp

(
i
[(

k + k′) · x − (
ω + ω′) t

])
× k′ · 〈B〉

γη (q′)
Gij (q)Gik

(
q′) 〈f̂j(q)f̂k(q′)

〉

= −i 〈B〉m

∫
d4q

km

γη (−q)
Gij (q)Gik (−q)

[
D0

k3
Pjk(k) + i

D1

k5
εjksks

]

= −8Ω 〈B〉m

∫ ∞

kf

dk
k

∫ ∞

−∞
dω

∫ 2π

0
dϕ

∫ 1

−1
dX

ω2D1(
ω2 + η2k4

)F(ω, X)

kzkm

k2

= −16π (〈B〉 · Ω)

∫ ∞

kf

dk
k

∫ ∞

−∞
dω

∫ 1

−1
dX

ω2X2D1(
ω2 + η2k4

)F(ω, X)

= −16πD1I
(
ν, η,Ω, kf

)
(〈B〉 · Ω) , (B9)

where

F(ω, X) = (
ω2 + ν2k4)2 − 8Ω2X2 (ω2 − ν2k4)+ 16Ω4X4

= (
ω2 − 4Ω2X2)2 + 2ω2ν2k4 + 8ν2k4Ω2X2 + ν4k8 > 0 (B10)

and

I (ν, η,Ω, kf
) =

∫ ∞

kf

dk
k

∫ ∞

−∞
dω

∫ 1

−1
dX

ω2X2(
ω2 + η2k4

)F(ω, X)
> 0. (B11)

On the other hand, for the scalar quantity 〈suj〉 = 〈u′ · j′〉 this approach yields〈
suj
〉 = 〈

u′
i(x, t)j′i(x, t)

〉
= −εirt 〈B〉m

∫
d4q

∫
d4q′ exp

(
i
[(

k + k′) · x − (
ω + ω′) t

])
× k′

rk
′
m

γη (q′)
Gij (q)Gtk

(
q′) 〈f̂j(q)f̂k(q′)

〉

= −εirt 〈B〉m

∫
d4q

krkm

γη (−q)
Gij (q)Gik (−q)

[
D0

k3
Pjk(k) + i

D1

k5
εjksks

]

= 8Ω 〈B〉m

∫ ∞

kf

kdk
∫ ∞

−∞
dω

∫ 2π

0
dϕ

∫ 1

−1
dX

ω2D0(
ω2 + η2k4

)F(ω, X)

kzkm

k2

= 16π (〈B〉 · Ω)

∫ ∞

kf

kdk
∫ ∞

−∞
dω

∫ 1

−1
dX

ω2X2D0(
ω2 + η2k4

)F(ω, X)

= 16πD0Ĩ
(
ν, η,Ω, kf

)
(〈B〉 · Ω) , (B12)
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where

Ĩ (ν, η,Ω, kf
) =

∫ ∞

kf

kdk
∫ ∞

−∞
dω

∫ 1

−1
dX

ω2X2(
ω2 + η2k4

)F(ω, X)
> 0. (B13)

In the above we have used∫
kj

k
f
(
cos2 θ

)
dΩ = 0,

∫
kikjkk

k3
f
(
cos2 θ

)
dΩ = 0, (B14a,b)

∫
kjkn

k2
f
(
cos2 θ

)
dΩ = π

∫ 1

−1
f (X2)

{
δjn
(
1 − X2)+ δj3δn3

(
3X2 − 1

)}
dX, (B15)

where Ω denotes the solid angle and the spherical coordinates (k, θ, ϕ) have been used
(with a substitution X = cos θ ). We can now utilise the above results to show that

〈
u′ · j′

〉 = −
(
Ĩ (ν, η,Ω, kf

)
I (ν, η,Ω, kf

) D0

D1

) 〈
u′ · b′〉 . (B16)

Appendix C. Evolution equations for 〈u′·b′〉 and 〈u′·j′〉
Utilising the evolution equations

Du′

Dt
= −∇Π ′ − 2Ω × u′ − (

u′ · ∇) 〈U〉 + (〈B〉 · ∇) b′ + (
b′ · ∇) 〈B〉 + ν∇2u′

+ ∇ · (b′b′)+ ∇ · (〈u′u′〉− 〈
b′b′〉) , (C1)

Db′

Dt
= (〈B〉 · ∇) u′ − (

u′ · ∇) 〈B〉 + (
b′ · ∇) 〈U〉 + η∇2b′ + (

b′ · ∇)u′ − ∇ × E,

(C2)
where

D
Dt

= ∂

∂t
+ (〈U〉 + u′) · ∇, (C3)

we arrive at

D
Dt

〈
u′ · b′〉 = −E · (〈W 〉 + 2Ω) − 〈

u′
iu

′
j − b′

ib
′
j

〉
∂j 〈B〉i

+ ∇ ·
[〈(

−Π ′ + u′2 + b′2

2

)
b′
〉
+
〈

u′2 + b′2

2

〉
〈B〉

]

− μ0 (ν + η)
〈
w′ · j′

〉
(C4)

and

D
Dt

〈
u′ · j′

〉 = − 〈u′ × j′
〉 · (〈W 〉 + 2Ω) − 〈

w′
iu

′
j − j′ib

′
j

〉
∂j 〈B〉i − ∂j 〈U〉m

〈
εijku′

i∂mb′
k

〉
+ 〈[(〈B〉 + b′) · ∇] b′ · j′ + [(〈B〉 + b′) · ∇]u′ · w′ − u′

iεijk∂ju′
m∂mb′

k

〉
− ∇ · 〈Π ′j′

〉− (ν − η)
〈
w′ · ∇2b′〉 , (C5)

where in the last equation, apart from no-slip boundary conditions, we have also assumed
vanishing of the helical quantity 〈w′ · j′〉 at the boundaries.
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FIGURE 2. Same as figure 1, but for Runs B and E with a stronger magnetic field,
B = 0.1cs

√
μ0ρ̄, and two values of gravity, g = 1c2

s k1 and g = 0.5c2
s k1.

Appendix D. Basic equations used in the compressible case

In the numerical simulations, instead of (2.1a–c), we solve the following set of equations
for a compressible isothermal gas with constant sound speed cs for U , ρ, and the magnetic
vector potential A:

∂U
∂t

+ (U · ∇) U = −c2
s∇ ln ρ − 2Ω × U + 1

ρ
J × B − νQ + g + f , (D1a)

∂ρ

∂t
= −∇ · (ρU), (D1b)

∂A
∂t

= U × B − ημ0J , (D2)

where

Q = −∇2U − 1
3∇∇ · U − S∇ ln ρ, (D3)

μ0J = −∇2A + ∇∇ · A, (D4)

B = B0 + ∇ × A, (D5)

and
Sij = 1

2(∂iUj + ∂jUi) − 1
3δij∇ · U (D6)

are the components of the traceless rate-of-strain tensor and f is a random forcing function
consisting of plane unpolarised waves with typical wavenumber kf and an amplitude
such that urms/cs ≈ 0.1 (see table 1). Here, Ω = (0, 0,Ω) is the angular velocity, g =
(0, 0,−g) is gravity, B0 = (0, 0, B0) is the imposed magnetic field, η is the magnetic
diffusivity and ν is the kinematic viscosity, whose value is such that urms/νk1 ≈ 1000.
A resolution of N3 = 2563 mesh points is then sufficient. Since we chose kf /k1 = 30, we
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FIGURE 3. Same as figure 1, but for Runs C and D with weaker magnetic field,
B = 0.01cs

√
μ0ρ̄, and two values of gravity, g = 0.5c2

s k1 and g = 2c2
s k1.

have for the Reynolds number Re ≡ urms/νkf ≈ 30. For the magnetic Prandtl number we
chose, as in Jabbari et al. (2014), the value PrM ≡ ν/η = 0.5, so the magnetic Reynolds
number is ReM ≡ urms/ηkf ≈ 15. The equilibrium stratification is given by ln(ρ/ρ0) =
−z/Hρ , where Hρ = c2

s/g is the density scale height.

Appendix E. Results for Runs B–E

In figure 2, we present the results for Runs B and E with a stronger magnetic field,
B = 0.1cs

√
μ0ρ̄, and two values of gravity, g = 1c2

s k1 and g = 0.5c2
s k1. Finally, in figure 3,

we present the results for Runs C and D with weaker magnetic field, B = 0.01cs
√

μ0ρ̄,
and two values of gravity, g = 0.5c2

s k1 and g = 2c2
s k1. In all those cases, we found that

αneq 
= 0; see the red lines in the upper panels of figures 2 and 3.
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