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Hydrodynamic and magnetohydrodynamic turbulence in the early Universe can drive gravitational
waves (GWs) and imprint their spectrum onto that of GWs, which might still be observable today. We
study the production of the GW background from freely decaying magnetohydrodynamic turbulence
from helical and nonhelical initial magnetic fields. To understand the produced GW spectra, we develop a
simple model on the basis of the evolution of the magnetic stress tensor. We find that the GW spectra
obtained in this model reproduce those obtained in numerical simulations if we consider the detailed time
evolution of the low frequency tail of the stress spectrum from numerical simulations. We also show that
the shapes of the produced GW frequency spectra are different for helical and nonhelical cases for
the same initial magnetic energy spectra. Such differences can help distinguish helical and nonhelical
initial magnetic fields from a polarized background of GWs—especially when the expected circular
polarization cannot be detected directly.
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I. INTRODUCTION

Magnetohydrodynamic (MHD) turbulence in the early
Universe can be a powerful source of gravitational waves
(GWs) that could be observable as a stochastic background
today [1–5]. The frequency spectrum of these waves is
related to the spectrum of the underlying turbulence. Such
turbulence could be induced during the various epochs1

in the early Universe [8–11] or the possible presence of
primordial magnetic fields [12–19]. These GWs produced
by turbulence at an epoch of the electroweak phase
transition lie in the sensitivity range of the proposed
Laser Interferometer Space Antenna and pulsar timing
arrays for the turbulence induced around an epoch of
the quantum chromodynamics (QCD) phase transition.
Recently, various pulsar timing arrays [20–23] have
reported evidence for the presence of a common spectrum
process across analyzed pulsars in the search of the
presence of an isotropic stochastic GW background.
This evidence has been used to constrain the strength

and correlation length of magnetic fields generated at the
QCD epoch [24–26]. However, the presence of a quad-
rupolar spatial correlation [27], a characteristics of a GW
background, is yet to be claimed.
Numerical simulations have confirmed that there is

indeed a direct connection between the slopes of the
turbulence and GW spectra [28], except that at low
frequencies, below the peak of the spectrum, the GW
spectrum was found to be shallower in the simulations than
what was previously expected from analytical calculations.
We call this part the low frequency tail of the GW spectrum.
However, there is the worry that this shallow tail could be
caused by unknown numerical artifacts such as the finite
size of the computational domain and the way the turbu-
lence is initiated in the simulations.
To understand the origin of the low frequency tail, the

authors of Ref. [26] have recently compared numerical
MHD simulations with an analytic model, where the
stress is assumed constant for a certain interval of time.
Their model predicts a flat spectrum whose extent depends
on the duration over which the stress is held constant. In
this way, it was possible to determine an effective duration
for a given numerical simulation. This duration was found
to be different for different simulations. Their model is
therefore descriptive rather than predictive. Furthermore, in
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1The electroweak and QCD epochs are accompanied by cross-

overs in the standard model [6,7]. However, many extensions of the
standard model can lead to a first order phase transition.
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the numerical solutions the stress was not actually constant
for any duration of time.
In another recent approach, the authors of Ref. [29] have

focused on the importance of unequal time correlation
functions of the Fourier components of the velocity field
for purely hydrodynamic turbulence. While the authors
acknowledge the potential importance of the initial growth
phase of the turbulence, they also have no inverse cascade
in their simulations. This is different from MHD turbu-
lence, which can display inverse cascading even in the
absence of net magnetic helicity [30,31]. This will be
crucial to the approach discussed in the present paper.
To address the problem of a limited computational

domain, it is important to use large enough computational
domains so that its minimum wave number is as small as
possible. In this paper, we discuss two MHD simulations
where the wave number corresponding to the peak of the
GW spectrum and the wave numbers below that corre-
sponding to the horizon size at the initial time are well
resolved. Since the stress appears explicitly in the linear-
ized GW equation, we also analyze for these simulations
the evolution of the stress spectrum along with the magnetic
and GW spectra. Such a detailed comparison between the
simulated stress and resulting GWs is an important new
aspect of the present work. Second, we develop a simple
model, motivated by the stress evolution seen in the present
simulations, to explain the GW spectrum obtained. In this
model, our main focus is to understand the nature of the
GW spectrum below the wave number corresponding to the
peak of the spectrum. Our simulations are similar to those
of Ref. [26], but our interpretation and corresponding
modeling of the stress is not. There is no time interval
during which the stress is constant. Our results are therefore
not characterized by the duration of such a time interval.
In addition, we determine and analyze spectral differences
between runs with and without magnetic helicity, which
were not noticed previously. We also emphasize that the
Hubble horizon wave number poses an ultimate cutoff for
the flat spectrum toward low wave numbers.
This paper is organized as follows. In Sec. II, we discuss

the evolution of the magnetic field, stress, and GW
spectrum in our new runs. In this section, we also discuss
how the stress spectrum evolves when inverse transfer and
inverse cascade of the turbulence correspond to the evo-
lution for nonhelical and helical magnetic fields in the early
Universe. In Sec. III, we discuss the model to explain the
low frequency tail of the GW spectrum. Further, in Sec. IV,
we compare the GW spectrum obtained from our numerical
simulations and our model. We conclude in Sec. V.

II. NONHELICAL AND HELICAL CASCADES

Various phenomena such as primordial magnetic fields
and phase transitions can lead to the generation of turbu-
lence in the early Universe. The stress associated with
magnetic fields and turbulence lead to the production of

GWs. This has been studied in the literature both analyti-
cally [4,32–37] and numerically [26,28,29,38–40]. In the
present paper, we perform new simulations of decaying
MHD turbulence, where we resolve the scales which are
smaller than the Hubble horizon size at the initial time.
Before explaining the simulations in detail, let us begin by
summarizing the basic equations.

A. GWs from MHD turbulence

We follow here the formalism of Refs. [28,41], where
conformal time is normalized to unity at the initial time.
One could associate this with the electroweak phase
transition, for example. The velocity u is normalized to
the speed of light. The magnetic field B ¼ ∇ ×A is
written in terms of the magnetic vector potential A,
and the current density is written as J ¼ ∇ ×B.
Following Ref. [42], the energy density ρ includes the
restmass density, so its evolution equation obeys a con-
tinuity equation that also includes magnetic energy terms.
As in [41], ρ is normalized to the critical energy density
for a flat Universe. We solve for the Fourier transformed
plus and cross polarizations of the gravitational strain, h̃þ
and h̃×, which are driven by the corresponding projections
of the stress, which, in turn, is composed of kinetic and
magnetic contributions,

Tij ¼
4

3
γ2Lorρuiuj − BiBj þ � � � ; ð1Þ

where γLor ¼ ð1 − u2Þ−1=2 is the Lorentz factor, and the
ellipsis denotes terms proportional to δij, which do not
contribute to the projected source T̃þ=×.
Assuming the Universe to be conformally flat, its

expansion can be scaled out by working with conformal
time t and comoving variables [42]. We use the fact that, in
the radiation-dominated era, the scale factor grows linearly
with conformal time. The only explicit occurrence of
conformal time is then in the GW equation, where a 6=t
factor occurs in the source term [41]. The full set of
equations is therefore

∂B
∂t

¼ ∇ × ðu × B − η∇ ×BÞ; ð2Þ

Du
Dt

¼ 1

ρ
∇ · ð2ρνSÞ − 1

4
∇ ln ρþ u

3
ð∇ · uþ u · ∇ ln ρÞ

−
u
ρ
½u · ðJ ×BÞ þ ηJ2� þ 3

4ρ
J × B; ð3Þ

∂ ln ρ
∂t

¼ −
4

3
ð∇ · uþ u · ∇ ln ρÞ þ 1

ρ
½u · ðJ × BÞ þ ηJ2�;

∂
2

∂t2
h̃þ=×ðk; tÞ þ k2h̃þ=×ðk; tÞ ¼

6

t
T̃þ=×ðk; tÞ; ð4Þ
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where D=Dt≡ ∂=∂tþ u · ∇ is the advective derivative,
η is the magnetic diffusivity, ν is the kinematic viscosity,
Sij ¼ 1

2
ðui;j þ uj;iÞ − 1

3
δij∇ · u are the components of the

rate-of-strain tensor S with commas denoting partial
derivatives. Fourier transformation in space is denoted
by a tilde. In all cases studied in this paper, the initial
conditions are such that B consists of a weak Gaussian-
distributed seed magnetic field, u ¼ 0, ρ ¼ 1.
We work with spectra that are defined as integrals over

concentric shells in wave number space k with k ¼ jkj.
They are normalized such that their integrals over k give
the mean square of the corresponding quantity, i.e.,R
SpðBÞdk ¼ hB2i, where SpðBÞ ¼ SpðBxÞ þ SpðByÞ þ

SpðBzÞ. Similarly, SpðhÞ ¼ SpðhþÞ þ Spðh×Þ is defined
as the sum over the two polarization modes. Of particular
interest will also be the stress spectrum SpðTÞ, which is
defined analogously through SpðTÞ ¼ SpðTþÞ þ SpðT×Þ.
To study the evolution of the stress at selected Fourier
modes, we compute jT̃ðk; tÞj≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SpðTÞ=4πk2
p

, which
scales the same way as jT̃þðk; tÞj and jT̃×ðk; tÞj.

B. Evolution of the stress and strain spectra

To put our results into perspective and compare with
earlier work, we study cases of suddenly initiated
turbulence. We perform simulations similar to those of
Ref. [28] by using as initial condition for the magnetic
field a random Gaussian-distributed magnetic field with a
k4 spectrum for k < kp and a k−5=3 spectrum for k > kp.
For details of such a magnetic field, see Ref. [43]. As the
initial condition for the GW field, we assume that h and _h
vanish. The strength of the GW field is then strongly
determined by the sudden initialization of a fully devel-
oped turbulence spectrum. The details of the simulations
are given in Table I. In this table, the first column
represents the name of the runs (HEL and NHEL),
Ei
EM is the initial value of the magnetic energy density

compared to the background energy density, kp is the
wave number at which the magnetic energy spectrum
peaks and it is normalized by the wave number corre-
sponding to the Hubble horizon size at the initial time,
Esat
GW is the value of the GWenergy density after saturation

compared to the background energy density, and Ωsat
GW is

the density parameter of GWs, representing the ratio of
the GW energy density compared to the critical energy
density at present. Ωsat

GW has been calculated considering
the production of GWs around the electroweak phase
transition.

We consider two runs where the initial magnetic field
is either fully helical (HEL) or nonhelical (NHEL). In
Figs. 1 and 2, we show for HEL and NHEL, respectively,
the time evolution of the spectra of the magnetic field, the
TT-projected stress, the strain derivative, and the strain.
Inverse cascading is seen in the magnetic energy spectra,
which leads to the expected increase of the spectral stress
at small k; see Figs. 1(a) and 1(b) for the HEL run. By
contrast, in NHEL, the stress spectrum always decreases
at small k. We also see in Fig. 1(c) that the GW energy
spectrum has a maximum at k ≈ 20, which is not present in
NHEL, cf. Fig. 2(c). Their spectra fall off toward smaller k
proportional to k and k1.5 for HEL and NHEL, respectively.
In Figs. 3 and 4, we show the time evolution of the

modulus and phase of stress and strain derivative for HEL
and NHEL for wave vectors k ¼ ðk; 0; 0Þ and five different
values of k, which are all below kp. The purpose of this is to
see how representative these individual wave vectors are
compared to the collective effect of all others of similar
length, and whether there is any important effect resulting
from the phases of the stress.
Broadly speaking, the time evolution of the modulus

of the stress jT̃j for any of the five wave vectors does not
seems to reflect the expectation from the evolution of the
shell-integrated stress spectrum, which is increasing for
HEL and decreasing for NHEL, as was see in Figs. 1 and 2.
This is an important observation and may be due to the fact
that in Figs. 3 and 4, we have shown stress and strain
derivatives only for particular values of k.
From Figs. 3 and 4, it is evident that argðT̃Þ remains

constant for some time and starts evolving more rapidly
after that. It is also interesting to note that the amplitude of

j _̃hj increases up to the time until which argð _̃hÞ is roughly
constant. After this time, j _̃hj enters an oscillatory regime
and its amplitude does not change much. Other wave
vectors of the same length show a similar behavior of

argðT̃Þ and argð _̃hÞ, as is shown in the figures of the
Supplemental Material provided along with the data in
Ref. [44]. This conclusion applies for both runs shown in
Figs. 3 and 4 and it leads us to develop a simple model to
understand the GW spectrum in these cases. In this model
we replace T̃ by its wave vector-averaged magnitude, jT̃j,
as discussed in Sec. III.
Further, to understand the role of the phases of the

stress tensor in the production of GWs, we run two new
simulations analogous to runs HEL and NHEL, where we
replace T̃ðk; tÞ by its modulus at each time step. The final
GW spectrum in these modified runs turns out to be
virtually the same as in the original HEL and NHEL runs;
see Fig. 5. The comparisons of HEL and NHEL are shown
in panels (a) and (b) of this figure, respectively. Dashed red
and gray curves at times t ¼ 1.5 and t ¼ 37, respectively,
are for the cases when T̃ðk; tÞ has been replaced by its
modulus. It is evident from the figure that there is hardly

TABLE I. Summary of simulation parameters.

Run Ei
M kp Esat

GW Ωsat
GW

HEL 5.4 × 10−3 10 3.7 × 10−7 5.9 × 10−12

NHEL 5.5 × 10−3 10 3.5 × 10−7 5.6 × 10−12
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(a)

(c) (d)

(b)

FIG. 2. Same as Fig. 1, but for the nonhelical case.

(a)

(c) (d)

(b)

FIG. 1. Spectra of the magnetic field, the TT-projected stress, the strain derivative, and the strain for suddenly initiated turbulence with
magnetic helicity.
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FIG. 3. Modulus and phase of T̃ðk; tÞ and _̃hðk; tÞ for the helical case for k ¼ ðk; 0; 0Þ with k ¼ 0.3 (orange), 0.4 (red), 0.5 (green),
0.6 (blue), and 0.7 (black). The inset shows the phase with a linear abscissa.

FIG. 4. Same as Fig. 3, but for the nonhelical case.
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any difference in the actual Spð _hÞ after replacing the stress
with its modulus. On the basis of this observation, we
develop a model to obtain the GW spectrum from the time
evolution of the spectrum of the stress tensor.
A striking difference between HEL and NHEL is the more

pronounced peak in the spectral GWenergy in the former. As
we show in the Appendix this is due to the fact that the stress
spectrum for NHEL is different from that of HEL due to the
presence of additional helical contributions to the two-point
correlation of the magnetic field vectors. This difference is
shown in Fig. 6 and the details are explained next.

C. Overall behavior of the stress

At the most minimalistic level, we can say that the
magnetic field shows an approximately self-similar evolu-
tion at late times, where for HEL, the peak value of EMðk; tÞ
is unchanged, but the position of the peak kp goes to
progressively smaller values as kp ∼ t−2=3.

To understand the consequences for the evolution of
the stress, let us now consider an idealized model, where
EMðkÞ≡ SpðBÞ=2 has a k4 subinertial range, where k < kp,
with kpðtÞ being the peak wave number, and a k−5=3 inertial
range spectrum for k > kp. The spectrum of the transverse
traceless part of the stress, SpðTÞ=2, can be computed
analytically using the expressions given in the Appendix
(see Refs. [37,45] for details) and is shown in Figs. 7 and 8
for the helical and nonhelical cases, respectively. In these
figures, we take three instances where the magnetic peaks are
at wave numbers kp ¼ 1, 0.3, and 0.1.
For HEL, the position of the peak of EMðkÞ is

unchanged. We see that, in agreement with earlier work
[28], the positions of the peak of SpðTÞ are always at 2kp.
However, even though the peak values of EMðkÞ are
unchanged, except for the factor of 2, those of SpðTÞ
are not and decay. Nevertheless, at small k, SpðTÞ still
increases proportional to k−1p . If kp ∝ t−2=3, as expected for
helical turbulence [46–48], then we find that SpðTÞ ∝ t2=3

for small k.
For NHEL, as shown in Ref. [48], the peak of the

spectrum decreases with decreasing values of kp propor-

tional to kβp, where β is an exponent that can be between one
and four. In Fig. 8, we present the case with β ¼ 1 and find
that now SpðTÞðkÞ ∝ kp for small k and ∝ k14=3p for large k.
If kp ∝ t−1=2, as expected for the nonhelical case for β ¼ 1,
SpðTÞ ∝ t−1=2 for small k. We have summarized the
behavior of SpðTÞ with time in Table II for helical and
nonhelical cases.
Recently, it has been found that the Hosking integral [49],

a Saffman-like helicity integral, is well conserved in non-
helical magnetically dominated decaying turbulence [50,51],
which implies β ¼ 1.5. For the general case, we write
SpðTÞ ∝ k2β−1p (for k < kp), which implies SpðTÞ ∝ t−8=9

for β ¼ 1.5 and kp ∝ t−4=9.

(a) (b)

FIG. 5. Spð _hÞðk; tÞ vs k. (a) The solid black and blue curves represent Spð _hÞðk; tÞ at times t ¼ 1.5 and t ¼ 37 for run HEL. The dashed
red and gray curves show Spð _hÞðk; tÞ for the case when the stress spectrum has been replaced by its modulus in the GW evolution
equation. The black curve coincides with the dashed red curve and solid blue curve coincides with dashed gray curve. (b) Same as (a),
but for run NHEL.

FIG. 6. In this figure, magnetic field energy spectrum, EMðkÞ
(dashed curves) and SpðTÞ (solid curves) for the helical and
nonhelical case. The blue and red curves are for nonhelical and
helical cases, respectively.
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It is also interesting to note that, for a given spectrum of
the magnetic field, SpðTÞ is different for HEL and NHEL;
see the blue and red curves in Fig. 6, respectively. For the
helical case, SpðTÞ has smaller values compared to the
nonhelical case at wave numbers below kp. However, it has
large values for wave numbers around the peak and above.
Such a feature of the stress spectrum also translates to the
GW spectrum and that is why we see a difference in the
final GW spectrum produced from helical and nonhelical
cases discussed in the previous section.

III. PREDICTIONS FROM ALGEBRAICALLY
GROWING STRESS

With the detailed information above, we are now
in a position to compare with the predictions from a
simple time-dependent model. In this section, we com-
pute GW spectra by considering a simple model for
the time evolution of the stress. It is assumed to
increase algebraically as a power law characterized
by a power law index p during the time interval from
t ¼ 1 to te.

A. The model

We model the þ and × polarizations of the Fourier-
transformed stress, T̃ðk; tÞ, as

T̃ðk; tÞ ¼
� jT̃0ðkÞjtp; 1 ≤ t ≤ te
0; t > te

; ð5Þ

FIG. 7. Left: solutions for SpðTÞ (red) for different EMðkÞ (blue) for three values of kp. Right: solutions for SpðTÞ scaled by kp (blue)
and k−8=3p (red), to see its scalings in the subinertial and inertial ranges, respectively.

FIG. 8. Similar to Fig. 7, but for a case with β ¼ 1. On the right, the solutions for SpðTÞ are scaled by kp (blue) and k14=3p (red), to see its
scalings in the subinertial and inertial ranges, respectively. Violet indicates the two overlap for kp ¼ 1.

TABLE II. Time evolution of SpðTÞ and jT̃j from theory.

Helical Nonhelical

SpðTÞ vs kp at small k ∝ 1=kp ∝ kp
kp vs t kp ∝ t−2=3 kp ∝ t−1=2

SpðTÞ vs t SpðTÞ ∝ t2=3 SpðTÞ ∝ t−1=2

jT̃j vs t jT̃j ∝ t1=3 jT̃j ∝ t−1=4
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where jT̃0ðkÞj represents jT̃ðk; tÞj at the initial time and is
obtained for given energy and helicity spectra of the
magnetic field; see the Appendix for details. We note that
the authors of Ref. [26] have developed an analytical model
for the GW spectrum on the basis of the time evolution of
the stress, which they assumed constant during a certain
interval—unlike our case. The authors explain the location
of certain breaks in their GW spectrum as a consequence of
the finite duration over which the stress is constant. This
duration is an empirical input parameter. In our model, by
contrast, the stress evolves as a power law with an index
that is in principle known from MHD theory, although we
can get even better agreement with the simulations when
we take the actual power-law index that is realized in the
simulations.
To obtain the GW spectrum for our model, we first solve

Eq. (4) for a case when the source is active during the

interval 1 < t < te and thus obtain h̃ðk; tÞ and _̃hðk; tÞ. The
solution for t ≥ te is given by

h̃ðk; tÞ ¼
Z

t

1

sin kðt − t0Þ
k

6T̃ðk; t0Þ
t0

dt0; ð6Þ

_̃hðk; tÞ ¼
Z

t

1

cos kðt − t0Þ 6T̃ðk; t
0Þ

t0
dt0: ð7Þ

Using Eq. (7) and our model for T̃ðk; tÞ, we obtain

_̃hðk; tÞ ¼ −3jT̃0ðkÞj
ðkt0Þp

feiðkt−pπ=2Þ½Γðp; ikteÞ − Γðp; ikt0Þ�

þ e−iðkt−pπ=2Þ½Γðp;−ikteÞ − Γðp;−ikt0Þ�g: ð8Þ

In the above expression, t0 ¼ 1 represents the initial time.
In Fig. 9(a), we show Spð _hÞ at different times for this model
with p ¼ −1=4. The red, blue, and black curves represent
Spð _hÞ at t ¼ 2, 4, and 10, respectively. It is evident from

this figure that Spð _hÞ is almost flat for 1≲ k≲ 2kp and

declines as ∝ k−11=3 for k > 2kp. Spð _hÞ is proportional to k2
for k < kH, where kH represents the wave number corre-
sponding to the Hubble horizon size at t ¼ te. Further, as
time increases, Spð _hÞ at low wave numbers (kH < k < 1)
grows and saturates, as is evident from Fig. 9(b).
To understand the role of the power-law index in the

algebraically growing part of the stress on Spð _hÞ, we
calculate Spð _hÞ for different values of p. Those are shown
in the right-hand panel of Fig. 10. Here, Spð _hÞ is rapidly
oscillating, so we plot in this figure only its envelope. From
this figure, we conclude that Spð _hÞ can be divided into
three regimes. We begin discussing first the high wave
number regime (k > k0, regime I), where k0 represents
the wave number corresponding to the Hubble horizon at
the initial time. Spð _hÞ is flat and changes to k−11=3 for
k > 2kp. For very low wave numbers corresponding to

the superhorizon range (k < kH, regime III) Spð _hÞ is

(a) (b)

FIG. 9. (a) Spð _hðk; tÞ at different times. Here, we assume t ¼ te, EM ¼ cðk=kpÞ4=ð1þ ðk=kpÞ17=3Þ, where kp ¼ 10 and c ¼ 10−4 and
p ¼ −1=4. The red, blue, and black curves are for te ¼ 2, 4, and 10, respectively. The two black vertical lines correspond to k� and 2kp.
(b) Spð _hÞ at times te ¼ 10, 20, and 30.

FIG. 10. Spð _hÞ for different values of p. Here, the left, middle,
and right black vertical lines represent the wave numbers
corresponding to the horizon size at the final time t, the initial
time t0 ¼ 1, and 2kp, respectively.
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proportional to k2. In the intermediate regime [kH ≲ k≲
ð1 − pÞ=t0, regime II], Spð _hÞ changes from a flat spectrum
to a k2 spectrum as the wave number decreases. Note that,
as the wave numbers decrease, the transition from a flat
spectrum to a k2 spectrum is faster for the case when
p ¼ −1=4 than when it is p ¼ 1=3. The wave number at
which this transition occurs depends on the value of p and
can be understood as follows. In the algebraically growing
phase, the typical timescale over which T̃=t decays, is
δtT ∼ t=ð1 − pÞ and the typical time scale for sourcing
GWs at a given wave number k just after t ¼ 1 is
δtGW ∼ 1=k, as can be inferred from the cosine function
in Eq. (7). The value of T̃=t does not change much when
δtGW=δtT ≤ 1. This implies that, for k > ð1 − pÞ=t0, there
will be a finite interval during which T̃=t can be assumed
constant. However, for k < ð1 − pÞ=t0, T̃=t always
changes. The wave number k ∼ ð1 − pÞ=t0 corresponds
to the wave number where Spð _hÞ starts changing from a
flat spectrum.
The nature of Spð _hÞ can also be understood by writing

the expression of _̃hðk; tÞ, given in Eq. (8), for different
limits depending on the values of kt0 and kte. For te ≫ t0,
which is indeed the case, and p < 1, Eq. (8) reduces to

_̃hðk; tÞ
6jT̃0ðkÞj

≈

8>>>>><
>>>>>:

sin kðt−t0Þ
kt0

ðIÞ
Γ½p�
ðkt0Þp cos

�
kt − pπ

2

�
− cos kt

p ðIIÞ
cos kt
p

h�
te
t0

�
p
− 1

i
ðIIIÞ

: ð9Þ

Using this, we calculate the spectrum of _̃h; it is given by

Spð _hÞðk; tÞ
36jT̃0ðkÞj2

≈

8>>>>><
>>>>>:

h
sin kðt−t0Þ

t0

i
2 ðIÞ

k2
h
− cos kt

p þ Γ½p�
ðkt0Þp cos

�
kt − pπ

2

�i
2 ðIIÞ

k2
n
cos kt
p

h�
te
t0

�
p
− 1

io
2 ðIIIÞ

:

ð10Þ

From the above expression, we conclude that the break
points for the different slopes of Spð _hÞ is decided by
jT̃0ðkÞj2 for k > t−10 . Here, jT̃0ðkÞj2 is flat for k < 2kp and
proportional to k−11=3 for k > 2kp. For the superhorizon

modes, i.e., k < 1=te, Spð _hÞ is proportional to k2, and for
wave numbers t−10 < k < t−1e , Spð _hÞ changes from a flat
spectrum to k2, as shown as the blue curves in Fig. 10.
In this model, we take the same algebraic evolution with

a constant power-law index for all wave numbers. In
general, however, the time evolution of T̃ðk; tÞ is different
for wave numbers below and above the peak of SpðTÞðk; tÞ.
For the case of helical magnetic fields discussed in Fig. 7,

the value of SpðTÞ for a particular k < 2kp at the initial
time, grows as t2=3 until the time for which SpðTÞ peaks at
this particular wave number. After this time, the value of
SpðTÞ for this particular k starts decreasing as t−16=9. This
implies that we would have assumed T̃ðkÞ ∝ t1=3 for k < kp
and T̃ðkÞ ∝ t−8=9 for k > kp. For the nonhelical magnetic
field shown in Fig. 8, SpðTÞ is always decreasing. For
k < 2kp at the initial time, it first decreases as t−1=2 and later

switches to t−7=3. We study Spð _hÞ by incorporating this and
find that there is no difference in the final Spð _hÞ compared
to the one obtained in our model. This is why we did not
consider the aforementioned evolution of the stress to keep
the model simple.

IV. COMPARISON OF THE ANALYTICALMODEL
WITH SIMULATION RESULTS

In the above section, we discussed Spð _hÞ in a model
inspired by the fact that the GW spectrum does not change
if we change the stress tensor by its modulus for decaying
MHD turbulence in the early Universe. In this model, we
approximate the stress tensor by jT̃ðk; tÞj≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SpðTÞ=4πk2
p

and its time evolution is parametrized as a power law
with index p; see Fig. 11. In this section, we provide a
comparison for Spð _hÞ obtained in this model with the
simulation results discussed in Sec. II B. To compare, we
show Spð _hÞ obtained from the model and different simu-
lations together. In Figs. 12(a) and 12(b), we plot the
spectra for the runs shown in Figs. 1 and 2 and discussed in
Sec. II B. For the dotted-dashed black curve, jT̃0ðkÞj is
obtained by using Eq. (A6) of the Appendix, where we take
EM ¼ cðk=kpÞ4=½1þ ðk=kpÞ17=3� and the value of the con-
stant c is determined such that the obtained stress spectrum
matches with that of the simulation at t ¼ 1. For this case,
the stress spectrum evolution is modeled as a single power
law and the value of p is 1=3 and −1=4 for the helical and
nonhelical cases, respectively. The value of p is decided
from the time evolution of the low wave number tail of
SpðTÞ, as discussed in Sec. II C. From this figure, it is
concluded that the spectral nature of Spð _hÞ matches well
with the prediction from the model. However, there is a
difference at small wave numbers, especially for the non-
helical case. This is due to the fact that the modelling of
SpðTÞ by a single power does not provide a better fit to the
evolution obtained in NHEL.
A double power law of the form t−1=3=½1þ ðt − 1Þn�5=7n,

where n regulates the transition, here with n ¼ 10, provides
a better fit to SpðTÞ for the low frequency tail for NHEL,
see Fig. 11. In this figure, we plot T̃ðk; tÞ obtained from the
simulation in solid and dotted blue for the wave numbers
k ¼ 0.3 and 0.5, respectively, and the double power law fit
to the blue curves is in dashed red color. The double power
law, which fits T̃ðk; tÞ for HEL, is 1=½1þ ðt − 0.2Þn�5=24n,
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where n ¼ 20. After considering such a time evolution,
the obtained Spð _hÞ is shown as the dotted red curve in
Fig. 12(b). For the dashed green curve, we consider
jT̃0ðkÞj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SpðTÞ=4πk2

p
and SpðTÞ is obtained from the

simulation at t ¼ 1. These different forms of the time
evolution of T̃ðk; tÞ are given in Table III. The spectra in
Figs. 12(a) and 12(b) are plotted at a time when the value of
the Spð _hÞ for each wave number has reached approximately
a constant value. The actual time for HEL is t ¼ 175.5 and

for NHEL it is t ¼ 99.5. For earlier times, the mean value of
Spð _hÞ is in reasonably good agreement with the values
obtained from the model.
We notice that the nature of the GW spectra in HEL and

NHEL are different. There is large power in HEL compared
to NHEL around the peak of the GW spectrum for the same
strength of the initial magnetic field. This is due to the
presence of an additional term due to the helicity spectrum
in the stress spectrum, see the Appendix.

V. CONCLUSIONS

In this work, we have suggested a simple model to
understand the GW spectrum obtained for decaying MHD
turbulence in the early Universe. The Fourier-transformed
stress is taken to be jT̃ðk; tÞj, i.e., we ignore changes in the
phase, and its time evolution is parametrized by a power
law. Such a time evolution of the stress is motivated by the

(a) (b)

FIG. 11. T̃ðk; tÞ vs t. (a) The solid and dotted blue curves correspond to the time evolution of T̃ðk; tÞ vs t obtained from the simulation
for k ¼ 0.3 and 0.5, respectively, for HEL and the red curve corresponds to a broken power law fit to the blue curves. (b) Same as (a), but
for NHEL.

(a) (b)

FIG. 12. Spð _hÞ vs k. (a) The solid blue curve represents Spð _hÞ corresponding to the run shown in Fig. 1, respectively. The dotted red
and dashed green curves represent the spectra obtained in the model for the time evolution of T̃ðk; tÞ given in column 2 of Table III. The
dot dashed black curve represents Spð _hÞ for the time evolution of T̃ðk; tÞ given in column 1 of Table III. The red curves are for the case
when jT̃0ðkÞj is obtained using Eq. (A6) of the Appendix. For the green curves, jT̃0ðkÞj is taken from the simulation. (b) Same as (a), but
for nonhelical case.

TABLE III. Time dependence of T̃ðk; tÞ taken in our analysis.

Run From theory From simulation

Hel ð tt0Þ1=3 1
ð1þðt−0.2ÞnÞ5=24n

Nonhel ð tt0Þ−1=4 t−1=6

ð1þðt−1ÞnÞ5=14n
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simulations for the decaying MHD turbulence at low wave
numbers discussed in Sec. II B. We find that the spectral
nature of the GW spectrum is well represented by this
simple model. In this work, we also show that the nature of
the GW spectra in the helical case are different from those
in the nonhelical case. Apart from the polarization of GW,
this spectral difference may also be important in distin-
guishing the helical and nonhelical nature of the primordial
magnetic field.
In this work, we have developed a model to understand

the low frequency tail of the GW spectrum in the cases
where turbulence is initiated suddenly. However, it will
now also be interesting to study cases where the magnetic
field is generated self-consistently, such as through the
chiral magnetic effect in the early Universe [52,53]. It
would be interesting to see if a model such as the one
discussed in this paper can also explain the GW spectra
obtained through the chiral magnetic effect. This, we hope
to report in a future study.
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APPENDIX: SpðTÞ IN TERMS OF
MAGNETIC SPECTRUM

Here, we provide the expressions for the stress spectrum
in terms of the magnetic spectrum for helical and nonhelical
cases; see Refs. [37,45] for the derivation. The two-point
correlation for the nonhelical magnetic field in Fourier
space is given by

hB̃iðkÞB̃�
jðk0Þi ¼ ð2πÞ3δðk − k0Þðδij − k̂ik̂jÞPSMðkÞ:

ðA1Þ

Assuming a Gaussian nature of the magnetic field fluctua-
tions, the stress spectrum is given by

SpðTÞ≡ 4πk2hT̃TT
ij ðkÞT̃TT

�ijðkÞi

¼ 4πk2
Z

d3q½PSMðqÞPSMðjk − qjÞð1þ γ2 þ β2 þ γ2β2Þ�: ðA2Þ

Here, T̃TT
ij ðkÞ ¼ −BiBj þ 1

2
δijBkBk. In terms of the energy spectrum, EMðkÞ≡ 4πk2PSMðkÞ, the above expression

reduces to

SpðTÞ ¼ 1

4π

Z
d3q

k2

q2jk − qj2 ½EMðqÞEMðjk − qjÞð1þ γ2 þ β2 þ γ2β2Þ�: ðA3Þ

In the above expressions γ ¼ k̂ · q̂ and β ¼ k̂ · dk − q. For helical magnetic fields, there is an additional antisymmetric
contribution to the two-point correlation and is given by

hB̃iðkÞB̃�
jðk0Þi ¼ ð2πÞ3δðk − k0Þððδij − k̂ik̂jÞPSMðkÞ þ iϵijmk̂mPAMðkÞÞ: ðA4Þ

The stress spectrum for this case is given by

SpðTÞ ¼ 4πk2
Z

d3q½PSMðqÞPSMðjk − qjÞð1þ γ2 þ β2 þ γ2β2Þ þ 4γβPAMðqÞPAMðjk − qjÞ�: ðA5Þ

In terms of the energy spectrum, EMðkÞ, and the helicity spectrum,HMðkÞ≡ 4πk2PAMðkÞ, the above expression reduces to

SpðTÞ ¼ 1

4π

Z
d3q

k2

q2jk − qj2 ½EMðqÞEMðjk − qjÞð1þ γ2 þ β2 þ γ2β2Þ þ 4γβHMðqÞHMðjk − qjÞ�: ðA6Þ
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