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3IZMIRAN, Troitsk, 108840 Moscow Region, Russia5

4The Oskar Klein Centre, Department of Astronomy, Stockholm University, AlbaNova, SE-10691 Stockholm, Sweden6

5McWilliams Center for Cosmology & Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, USA7

6School of Natural Sciences and Medicine, Ilia State University, 3-5 Cholokashvili Avenue, 0194 Tbilisi, Georgia8

ABSTRACT9

Kinetic helicity is a fundamental characteristics of astrophysical turbulent flows. It is not only10

responsible for the generation of large-scale magnetic fields in the Sun, stars, and spiral galaxies,11

but it also affects turbulent diffusion resulting in the dissipation of large-scale magnetic fields. Using12

the path integral approach for random helical velocity fields with a finite correlation time and large13

Reynolds numbers, we show that turbulent magnetic diffusion is reduced by the kinetic helicity, while14

the turbulent diffusivity of a passive scalar is enhanced by the helicity. The latter can explain the15

results of recent numerical simulations for forced helical turbulence. One of the crucial reasons for16

the difference between the kinetic helicity effect on magnetic and scalar fields is related to the helicity17

dependence of the correlation time of a turbulent velocity field.18
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1. INTRODUCTION20

The evolution of solar and Galactic large-scale mag-21

netic fields can be understood in terms of mean-field22

dynamo theory applying various analytical methods23

(see, e.g., Moffatt 1978; Parker 1979; Krause & Rädler24

1980; Zeldovich et al. 1983; Ruzmaikin et al.25

1988; Rüdiger et al. 2013; Moffatt & Dormy 2019;26

Rogachevskii 2021; Shukurov & Subramanian 2022).27

Helical motions emerge in inhomogeneous or density28

stratified turbulence, give rise to an α effect, and pro-29

duce large-scale dynamo action in combination with30

a nonuniform (differential) rotation, while turbulent31

magnetic diffusion limits the growth rate of the field.32

It has recently been shown using direct nu-33

merical simulations (DNS) (Brandenburg et al. 2017;34

Brandenburg et al. 2025) that helical turbulent motions35

of the plasma affect not only the α effect, but also36

the turbulent magnetic diffusion. In particular, the ki-37

netic helicity HK = 〈u · ω〉 was found to lower the tur-38

bulent magnetic diffusion coefficient η
t
, where u and39
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ω are fluctuations of velocity and vorticity, and angu-40

lar brackets denote ensemble averaging. On the other41

hand, DNS showed that the kinetic helicity increases42

the turbulent diffusion coefficient for passive scalars43

(Brandenburg et al. 2025).44

Using the renormalization group approach in the limit45

of low magnetic Reynolds numbers, it has been re-46

cently shown by Mizerski (2023) that the decrease of47

the turbulent magnetic diffusion coefficient in compar-48

ison with that for a nonhelical random flow is of the49

order of Rm2(HKτc)
2/〈u2〉, where Rm = τc 〈u2〉/η is50

the magnetic Reynolds number, η is the magnetic diffu-51

sion caused by an electrical conductivity of the plasma,52

and τc is the turbulent correlation time. Early theo-53

retical predictions by Nicklaus & Stix (1988) based on54

the cumulant expansion method demonstrated the oppo-55

site effect where the turbulent magnetic diffusion coeffi-56

cient increases with kinetic helicity—in contradiction to57

the subsequent numerical results of Brandenburg et al.58

(2017).59

By means of the Feynman diagram technique, it has60

been found that kinetic helicity increases the turbu-61

lent diffusion of a passive scalar (Dolginov & Silant’ev62

1987). Later, the increase of passive scalar diffusion63
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of up to 50% by kinetic helicity has been confirmed64

by Chkhetiani et al. (2006) applying the renormaliza-65

tion group approach. On the other hand, applying the66

renormalization-group theory it has been demonstrated67

that there are no effect of helicity on the effective eddy68

viscosity (Zhou 1990). Various helicity effects on dif-69

ferent characteristics of turbulence are discussed in the70

recent review by Pouquet & Yokoi (2022).71

In the present study, we apply the path-integral ap-72

proach (see, e.g., Dittrich et al. 1984; Kleeorin et al.73

2002; Elperin et al. 2000, 2001) for a random helical74

velocity field with a finite correlation time for large75

fluid and magnetic Reynolds numbers. We derive equa-76

tions for the mean magnetic field and the mean scalar77

field (e.g., the mean particle number density). We have78

shown that the turbulent magnetic diffusion coefficient79

decreases because of the kinetic helicity. On the other80

hand, the kinetic helicity increases turbulent diffusion81

coefficient of the scalar field. Both effects are of the82

order of (HKτc)
2/〈u2〉.83

To derive the mean-field equations for the magnetic84

and scalar fields, we use an exact solution of the gov-85

erning equations (i.e., the induction equation for the86

magnetic field and the convection–diffusion equation for87

the scalar field) in the form of a functional integral for88

an arbitrary velocity field. The microscopic diffusion89

can be described by a Wiener random process, and the90

functional integral implies an averaging over the Wiener91

random process. The used form of the exact solution92

of the governing equations allows us to separate the93

averaging over the Wiener random process and a ran-94

dom velocity field. The derived mean-field equations95

for the magnetic and scalar fields are generally integro-96

differential equations. However, when the characteristic97

scale of variation of the mean fields is much larger than98

the correlation length of a random velocity field, second-99

order equations (in spatial variables) are recovered for100

the mean fields.101

For the derivation of the mean-field equations, we con-102

sider a random helical velocity field with a small yet103

finite constant renewal time. Thus, we apply a model104

with two random processes: the Wiener random process105

which describes the microscopic diffusion and the ran-106

dom velocity field between the renewals. This model107

reproduces important features of some real turbulent108

flows. For instance, the interstellar turbulence which109

is driven by supernovae explosions, loses memory in the110

instants of explosions (see, e.g., Zeldovich et al. 1990;111

Lamburt et al. 2000). Between the renewals, the veloc-112

ity field can be random with its intrinsic statistics. To113

obtain a statistically stationary random velocity field,114

we assume that the velocity fields between renewals have115

the same statistics.116

This paper is organized as follows. In Section 2 we117

outline the governing equations and the procedure of118

the derivation of the equation for the mean magnetic119

field. In Section 3 we derive the equation for the turbu-120

lent magnetic diffusion coefficient. For comparison with121

the magnetic case, we derive the mean-field equation122

for the particle number density in Section 4 and obtain123

an expression for the turbulent diffusion coefficient. In124

Section 5 we compare the theoretical predictions with125

the results of the direct numerical simulations. Finally,126

we draw conclusions in Section 6.127

128

2. GOVERNING EQUATIONS129

The magnetic field B(t, r) is determined by the in-130

duction equation131

∂B

∂t
+ (u ·∇)B = (B ·∇)u+ η∆B, (1)132

where u is a random velocity field. For simplicity, we133

consider an incompressible velocity field. Below we de-134

rive the equation for the mean magnetic field in a ran-135

dom helical velocity field with a finite correlation time136

for large fluid and magnetic Reynolds numbers.137

Following a previously developed method138

(Dittrich et al. 1984; Kleeorin et al. 2002), we use an139

exact solution of Equation (1) with an initial condition140

B(t = s,x) = B(s,x) in the form of the Feynman-Kac141

formula:142

Bi(t,x) =
〈

Gij(t, s, ξ(t, s))Bj(s, ξ(t, s))
〉

ξ
, (2)143

where the function Gij(t, s, ξ) is determined by144

dGij(t, s, ξ)

ds
= Nik Gkj(t, s, ξ), (3)145

Nij = ∇jui is the velocity gradient matrix, ξ̃ = ξ − x,146

and 〈...〉ξ denotes averaging over the Wiener paths147

ξ(t, s) = x−
∫ t−s

0

u[t− µ, ξ(t, µ)] dµ+
√

2ηw(t− s).148

(4)149

Here w(t) is a Wiener random process defined by the150

properties 〈w(t)〉w = 0, and 〈wi(t+ τ)wj(t)〉w = τδij ,151

and 〈. . .〉w denotes averaging over the statistics of the152

Wiener process. We use the Fourier transform defined153

as154

B(t, ξ) =

∫

exp(iξ · q)B(s, q) dq. (5)155
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Substituting Equation (5) into Equation (2), we obtain156

Bi(s,x)=

∫

〈

Gij(t, s, ξ(t, s)) exp[iξ̃ · q]Bj(s, q)
〉

ξ
157

× exp(iq · x) dq . (6)158

In Equation (6) we expand the function exp[iξ̃ · q] in a159

Taylor series at q = 0, i.e., exp[iξ̃ · q] = ∑

∞

k=0
(1/k!)(iξ̃ ·160

q)k. Using the identity (iq)k exp[ix · q] = ∇
k exp[ix · q]161

and Equation (6), we arrive at the expression162

Bi(t,x)=

〈

Gij(t, s, ξ)

[ ∞
∑

k=0

(ξ̃ ·∇)k

k!

]〉

ξ
163

×
∫

Bj(s, q) exp(iq · x) dq. (7)164

The inverse Fourier transform implies that Bj(s,x) =165

∫

Bj(s, q) exp(iq · x) dq, so that Equation (7) can be166

rewritten as167

Bi(t,x) =
〈

Gij(t, ξ) exp(ξ̃ ·∇)
〉

ξ
Bj(s,x). (8)168

Equation (5) can be formally regarded as an inverse169

Fourier transform of the function Bi(t, ξ). However, ξ170

is the Wiener path which is not a standard spatial vari-171

able. On the other hand, Equation (8) was also derived172

in Appendix A of Kleeorin et al. (2002) applying a more173

rigorous method; see also Dittrich et al. (1984). In this174

derivation the Cameron-Martin-Girsanov theorem was175

used.176

3. MEAN-FIELD EQUATIONS FOR THE177

MAGNETIC FIELD178

In this section we derive mean-field equation for a179

magnetic field using a random helical velocity field with180

a small yet finite constant renewal time. These re-181

sults can be also generalized for a random renewal182

time (see, e.g., Lamburt et al. 2000; Kleeorin et al. 2002;183

Elperin et al. 2001). Assume that in the intervals184

. . . (−τ, 0]; (0, τ ]; (τ, 2τ ]; . . . the velocity fields are statis-185

tically independent and have the same statistics. This186

implies that the velocity field looses memory at the pre-187

scribed instants t = kτ , where k = 0,±1,±2, . . . . This188

velocity field cannot be considered as a stationary (in189

statistical sense) field for small times ∼ τ , however, it190

behaves like a stationary field for t ≫ τ .191

The velocity fields before and after renewal are as-192

sumed to be statistically independent. We use this as-193

sumption to decouple averaging into averaging over two194

time intervals. In particular, the function Gij(t, ξ) in195

Equation (8) is determined by the velocity field after196

the renewal, while the magnetic field Bj(s,x) is deter-197

mined by the velocity field before renewal.198

In Equation (8) we specify instants t = (m+ 1)τ and199

s = mτ , and average it over random velocity field, which200

yield the equation for the mean magnetic field B as201

Bi[(m+ 1)τ,x] = Pij(τ,x, i∇)Bj(mτ,x), (9)202

whereBi[(m+1)τ,x] = 〈Bi((m+1)τ,x)〉u, Bj(mτ,x) =203

〈Bj(mτ,x)〉u, and204

Pij(τ,x, i∇) = 〈〈Gij(τ, ξ) exp[ξ̃ ·∇]〉ξ〉u. (10)205

Here the time s = mτ is the last renewal time before206

t = (m+ 1)τ and t− s = τ . Averaging of the functions207

Gij(τ, ξ) exp[ξ̃(τ) · ∇] and Bj(mτ,x) over random ve-208

locity field 〈...〉u can be decoupled into the product of209

averages since Bj(mτ,x) and Gij(τ, ξ) exp[ξ̃(τ) ·∇] are210

statistically independent. Indeed, the field Bj(mτ,x) is211

determined in the time interval (−∞,mτ ], whereas the212

function Gij(τ, ξ) exp[ξ̃(τ) ·∇] is defined on the interval213

(mτ, (m+1)τ ]. Due to a renewal, the velocity field as well214

as its functionals Bj(mτ,x) and Gij(τ, ξ) exp[ξ̃(τ) ·∇]215

in these two time intervals are statistically independent216

(see Dittrich et al. 1984; Kleeorin et al. 2002, for de-217

tails).218

Considering a very small renewal time and expanding219

into Taylor series the functions Gij(µ, ξ) and exp[ξ̃(µ) ·220

∇] entering in Pij(µ,x, i∇) (see Equation (10)), we ob-221

tain222

Pij(µ,x, i∇) =
〈〈(

δij + µNij +
µ2

4
NikNkj + ...

)

223

×
(

1 + ξ̃m∇m +
1

2
ξ̃mξ̃n∇m∇n + ...

)〉

ξ

〉

u

. (11)224

Here we take into account that the solution of Equa-225

tion (3) can be written as226

Gij(µ) = δij +

∫ µ

0

Nij(µ
′) dµ′

227

+
1

2

∫ µ

0

Nik(µ
′) dµ′

∫ µ′

0

Nkj(µ
′′) dµ′′ + ... (12)228

We consider a random incompressible velocity field229

with a Gaussian statistics. We also consider a ho-230

mogeneous turbulence with the large fluid and mag-231

netic Reynolds numbers. Therefore, the operator232

Pij(µ,x, i∇) is given by233

Pij(µ,x, i∇) = δij + µ〈〈ξ̃mNij〉ξ〉u∇m234

+

{

1

2
δij〈〈ξ̃mξ̃n〉ξ〉u +

µ2

8

[

〈〈ξ̃mNik〉ξ〉u〈〈ξ̃nNkj〉ξ〉u235

+〈〈ξ̃mNkj〉ξ〉u 〈〈ξ̃nNik〉ξ〉u
]

}

∇m∇n + ..., (13)236

where we keep only nonzero correlation functions. Now237

we determine the correlation function 〈〈ξ̃mξ̃n〉ξ〉u for238
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small µ as239

〈〈ξ̃mξ̃n〉ξ〉u = µ2〈umun〉+
µ4

4

[

〈us∇pun〉 〈up∇sum〉240

+〈usup〉 〈(∇pun) (∇sum)〉
]

+ 2η〈wmwn〉w , (14)241

where we neglected terms ∼ O(µ5) and hereafter we242

denote 〈...〉 as the averaging over statistics of random243

velocity field.244

To determine the correlation function 〈ui∇puj〉, we245

use a model for the second moment 〈ui(k)uj(−k)〉 of246

homogeneous incompressible and helical turbulence in247

Fourier space in the following form:248

〈ui(k)uj(−k)〉= Eu(k)

8πk2

[

(

δij −
ki kj
k2

)

〈u2〉249

− i

k2
εijp kp 〈u · ω〉

]

, (15)250

where ω = ∇×u is the vorticity, δij is the Kro-251

necker fully symmetric unit tensor, εijp is the Levy-252

Civita fully antisymmetric unit tensor, 〈u · ω〉 is the253

kinetic helicity, the energy spectrum function is Eu(k) =254

(2/3) k−1

0
(k/k0)

−5/3 in the inertial range of turbulence255

k0 ≤ k ≤ kν , the wave number k0 = 1/ℓ0, the length256

ℓ0 is the integral scale of turbulence, the wave number257

kν = ℓ−1
ν , the length ℓν = ℓ0Re

−3/4 is the Kolmogorov258

(viscous) scale. After integration in the Fourier space we259

obtain that the correlation function 〈uiuj〉 in the phys-260

ical space is 〈uiuj〉 = 〈u2〉 δij/3. Using Equation (15),261

after integration in the Fourier space, we arrive at the262

following expression:263

〈ui∇puj〉 = −1

6
εijp 〈u · ω〉. (16)264

Using Equations (14) and (16), we obtain that the cor-265

relation function 〈〈ξ̃mξ̃n〉ξ〉u is given by266

〈〈ξ̃mξ̃n〉ξ〉u = µδmn

{

2η +
µ

3

[

〈u2〉 − µ2

24
〈u · ω〉2

]}

.267

(17)268

Here we have neglected a small contribution (∼ µ4)269

caused by non-helical part of turbulence. In a similar270

way, we obtain that the correlation function 〈〈ξ̃iNjp〉ξ〉u271

is given by272

〈〈ξ̃iNjp〉ξ〉u = −µ〈ui∇puj〉 =
µ

6
εijp 〈u · ω〉. (18)273

Since ∂B/∂t = lim
µ→0

[Bi((m + 1)µ,x) − Bi(mµ,x)]/µ,274

Equations (13)–(14) and (16)–(18) yield the mean-field275

equation:276

∂B(t,x)

∂t
= α∇×B + (η + ηt)∆B, (19)277

where the turbulent magnetic diffusion coefficient is278

given by279

ηt =
τc
3

[

〈u2〉 − τ2c
3

〈u · ω〉2
]

, (20)280

and the α effect is α = −τc〈u ·ω〉/3. In the derivation of281

Equations (19)–(20), we take into account that lim
µ→0

(µ〈u·282

ω〉) = 2τc 〈u · ω〉 and lim
µ→0

(µ〈u2〉) = 2τc 〈u2〉. Here we283

also use that divB = 0 and εijp εmnp = δimδjn−δinδjm.284

The coefficient a∗ < 1 takes into account the fact that285

the correlation time is scale-dependent inside the inertial286

range of turbulence. It also takes into account possible287

anisotropies of turbulence.288

It has been demonstrated by DNS (Brandenburg et al.289

2025), that the correlation time of turbulent velocity290

field depends on the kinetic helicity. It follows from291

Equation (20) that292

ηt(HK)

ηt(0)
=

τc(HK)

τ0

[

1− τ2c (HK)

3

H2

K

〈u2〉

]

, (21)293

whereHK = 〈u·ω〉 is the kinetic helicity density, ηt(0) =294

ηt(HK = 0) is the turbulent magnetic diffusivity at zero295

kinetic helicity, and τ0 = τc(HK = 0) is the correlation296

time.297

We assume that298

τc(HK) = τ0 (1 + Cτ ǫ
ζ
f
), (22)299

where ǫf = 〈u · ω〉ℓ0/〈u2〉 is the normalized kinetic he-300

licity. Equation (22) has recently been supported by301

the direct numerical simulations of forced turbulence302

(Brandenburg et al. 2025), where ζ = 4 and Cτ = 0.5303

for Re ≈ 14. This numerical result has been obtained304

using two independent methods based on the noninstan-305

taneous correlation functions and the rate of energy dis-306

sipation. Equation (22) has also been confirmed for307

Re = 120; see Figure 1, where we show the depen-308

dence of τc on ǫf . Here, the simulations had a forc-309

ing wavenumber kf = 5.1 k1, where k1 is the lowest310

wavenumber in the domain. In this case, the results311

are well approximated by ζ = 4 and Cτ = 0.37, where312

we have assumed ℓ0 = 1/kf .313

Therefore, the turbulent magnetic diffusion coefficient314

is315

ηt = ηt(0)
[

1 + Cτ ǫ
4

f − 1

3

(

1 + Cτ ǫ
4

f

)3
ǫ2
f

]

. (23)316

It follows from Equation (23) that the turbulent mag-317

netic diffusion coefficient is reduced by the kinetic helic-318

ity (see Section 5).319
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Figure 1. Dependence of τc on ǫf and Re ≈ 120. The solid
line gives the fit with ζ = 4 and Cτ = 0.37. In the second
panel, we used τ0urmskf = 9.6.

4. MEAN-FIELD EQUATION FOR PARTICLE320

NUMBER DENSITY321

The evolution of the number density n(t, r) of small322

particles advected by a random incompressible fluid323

flow is determined by the following convection–diffusion324

equation325

∂n

∂t
+ u ·∇n = κ∆n, (24)326

where u is a random velocity field of the particles which327

they acquire in a random fluid velocity field and κ is328

the coefficient of molecular (Brownian) diffusion. Fol-329

lowing to the method described in Sections 2–3 (see330

also Elperin et al. 2000, 2001), we derive the mean-field331

equation for the particle number density. We use an ex-332

act solution of Equation (24) with an initial condition333

n(t = s,x) = n(s,x) in the form of the Feynman-Kac334

formula:335

n(t,x) =
〈

n(s, ξ(t, s))
〉

ξ
, (25)336

where 〈...〉ξ implies the averaging over the Wiener337

paths:338

ξ(t, s) = x−
∫ t−s

0

u[t− µ, ξ(t, µ)] dµ+
√
2κw(t− s).339

(26)340

We assume that341

n(t, ξ) =

∫

exp(iξ · q)n(s, q) dq. (27)342

Substituting Equation (27) into Equation (25), we ob-343

tain344

n(s,x)=

∫

〈

exp[iξ̃ · q]n(s, q)
〉

ξ
exp(iq · x) dq.345

(28)346

In Equation (28) we expand the function exp[iξ̃ · q] in347

Taylor series at q = 0 and use the identity (iq)k exp[ix ·348

q] = ∇
k exp[ix · q], which yields349

n(t,x)=

〈[ ∞
∑

k=0

(ξ̃ ·∇)k

k!

]〉

ξ

∫

n(s, q) exp(iq · x) dq.350

(29)351

Applying the inverse Fourier transform n(s,x) =352

∫

n(s, q) exp(iq · x) dq, we obtain353

n(t,x) =
〈

exp(ξ̃ ·∇)
〉

ξ
n(s,x). (30)354

Equation (30) has been also derived applying a more355

rigorous method in Appendix A of Elperin et al. (2000).356

In this derivation the Cameron-Martin-Girsanov theo-357

rem is applied.358

To derive mean-field equation for a particle number359

density, we consider a random velocity field with a fi-360

nite constant renewal time. In Equation (30) we specify361

instants t = (m + 1)τ and s = mτ , and average this362

equation over a random velocity field. This yields the363

mean-field equation for the particle number density as364

n[(m+ 1)τ,x] = P (τ,x, i∇)n(mτ,x), (31)365

where n[(m + 1)τ,x] = 〈n((m + 1)τ,x)〉u, n(mτ,x) =366

〈n(mτ,x)〉u, and367

P (τ,x, i∇) = 〈〈exp[ξ̃ ·∇]〉ξ〉u. (32)368

We consider a random velocity field with a Gaussian369

statistics and with large fluid Reynolds numbers and370

large Peclet numbers. For a small renewal time, ex-371

panding the function exp[ξ̃(τ) ·∇] into Taylor series, we372

obtain373

P (µ,x, i∇) = 1 +
1

2
〈〈ξ̃mξ̃n〉ξ〉u∇m∇n + ..., (33)374

where375

〈〈ξ̃mξ̃n〉ξ〉u = µδmn

{

2κ+
µ

3

[

〈u2〉 − µ2

24
〈u · ω〉2

]}

.376

(34)377



6

Figure 2. Dependencies of α (red solid line), ηt(0)−ηt (blue
solid line) and κt(0)− κt (black solid line) on the fraction ǫf
of the kinetic helicity for Re ≈ 120. The theoretical depen-
dencies for 0 < ǫf < 0.8 [see Equations (23) and (38)] are
shown as dashed lines. The theoretical results for ǫf & 0.8
are shown as dotted lines, because they may not be reliable.

Since ∂n/∂t = lim
µ→0

[n((m+1)µ,x)−n(mµ,x)]/µ, Equa-378

tions (31), (33) and (34) yield the mean-field equation379

for the particle number density n(t,x) as380

∂n(t,x)

∂t
= (κ+ κt)∆n, (35)381

where the turbulent diffusion coefficient is given by382

κt =
τc
3

[

〈u2〉 − τ2c
6

〈u · ω〉2
]

. (36)383

It follows from Equation (36) that384

κt(Hu)

κt(0)
=

τc(HK)

τ0

[

1− τ2c (HK)

6

H2

K

〈u2〉

]

, (37)385

where κt(0) = κt(HK = 0) and τ0 = τc(HK = 0). Since386

τc(HK)/τ0 = 1+Cτ ǫ
4

f
[see Equation (22)], the turbulent387

diffusion coefficient is388

κt = κt(0)
[

1 + Cτ ǫ
4

f − 1

6

(

1 + Cτ ǫ
4

f

)3
ǫ2
f

]

. (38)389

Using Equation (38) we will show in Section 5 that the390

turbulent diffusion coefficient for the scalar field is en-391

hanced by the kinetic helicity.392

5. COMPARISONS WITH NUMERICAL RESULTS393

As in Brandenburg et al. (2025), we compute a tur-394

bulent velocity field by solving the fully compress-395

ible momentum equation with an isothermal equa-396

tion of state. In Brandenburg et al. (2017), only397

fully helical cases were compared with nonhelical ones.398

Brandenburg et al. (2025) did consider runs with inter-399

mediate helicity of the forcing, but only for Re ≈ 14.400

Here, we also compute such cases with Re ≈ 120. This401

is accomplished by adding a fraction σikpǫijpfj to the402

nonhelical forcing function fi.403

We compute the turbulent transport coefficient α, ηt,404

and κt in Equations (19) and (35) from the turbulent405

velocity field discussed above. We use the test-field406

method (Schrinner et al. 2005, 2007; Brandenburg 2005;407

Brandenburg et al. 2008), where we solve numerically408

the equations for the fluctuating magnetic and passive409

scalar fields. These are nonlinear inhomogeneous equa-410

tions, in which the product of the mean magnetic and411

passive scalar fields act as an inhomogeneous source412

term. Thus, the test-field equations are different from413

the original evolution equations, which are homoge-414

neous. Moreover, the mean magnetic and passive scalar415

fields are not solutions to these equations, but consist of416

a set of mutually orthogonal fields that are called test417

fields. They are constructed such that we can compute418

the desired transport coefficient exactly and not as a fit419

or by some regression method (Brandenburg & Sokoloff420

2002; Simard et al. 2016; Bendre et al. 2024).421

The resulting turbulent transport coefficients depend422

on time and one or two space coordinates (here only423

on z, in addition to t). We are usually interested in424

their averaged values. To determine error bars, we also425

compute averages for any one third of the full time series.426

The results for Re ≈ 14 and ≈ 120 are given in Table 1427

for different values of σ. For σ < 0.7, ǫf = 〈u ·ω〉ℓ0/〈u2〉428

is well approximated by 2σ/(1 + σ2). For larger values,429

ǫf stays somewhat below this estimate. This departure430

contributes to the steep power-law scaling with ζ = 4.431

The values α, ηt, and κt for Re = 120 are plotted in432

Figure 2. As in Brandenburg et al. (2025), we present433

them in normalized form and divide α by A0 = urms/3434

and ηt and κt by D0 = urms/3kf . Note that ηt(0) =435

κt(0) = D0. We see that α increases approximately lin-436

early with ǫf . For ηt and κt, it is convenient to plot the437

differences from the nonhelical values, ηt(0) and κt(0),438

respectively. We see that for both functions, the differ-439

ences are small when ǫf . 0.4, and then depart from440

zero in opposite directions. This is also predicted by the441

theory. For ǫf & 0.8, however, there are major depar-442

tures between our theory and the simulations. Note that443

the simulations (Brandenburg et al. 2025) predict sim-444

ilar results both for passive scalars using the test-field445
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Table 1. Values of κt and ηt normalized by D0 ≡ urms/3kf , as well as α normalized by A0 ≡ urms/3 for Re ≈ 14 and ≈ 120
for different values of σ. The values of Ma, ωrms/urmskf and τcurmskf are also given.

Run Re σ 2σ/(1 + σ2) ǫf κt/D0 ηt/D0 α/A0 Ma ωrms/urmskf τcurmskf

A 13.8 0.10 0.20 0.20 2.40± 0.00 2.00± 0.00 −0.99± 0.01 0.099 6.1 0.107

B 14.0 0.20 0.38 0.38 2.42± 0.00 1.94± 0.01 −1.92± 0.00 0.100 6.0 0.104

C 14.2 0.30 0.55 0.54 2.48± 0.00 1.86± 0.00 −2.74± 0.01 0.101 5.9 0.099

D 14.5 0.40 0.69 0.67 2.53± 0.00 1.73± 0.01 −3.39± 0.00 0.103 5.8 0.093

E 14.8 0.50 0.80 0.76 2.59± 0.00 1.61± 0.01 −3.82± 0.02 0.106 5.7 0.087

F 15.4 0.70 0.94 0.87 2.81± 0.01 1.44± 0.00 −4.28± 0.04 0.110 5.5 0.076

G 15.8 1.00 1.00 0.91 2.88± 0.01 1.37± 0.02 −4.44± 0.05 0.113 5.3 0.071

H 120.6 0.00 0.00 0.01 2.27± 0.01 1.73± 0.05 0.05± 0.09 0.123 13.0 0.054

I 121.1 0.05 0.10 0.08 2.27± 0.01 1.75± 0.05 −0.35± 0.07 0.124 12.9 0.053

J 121.5 0.20 0.38 0.33 2.30± 0.01 1.75± 0.03 −1.35± 0.06 0.124 12.8 0.052

K 121.5 0.30 0.55 0.45 2.33± 0.02 1.67± 0.03 −1.90± 0.08 0.124 12.7 0.051

L 124.0 0.50 0.80 0.66 2.42± 0.02 1.49± 0.05 −2.81± 0.11 0.126 12.5 0.049

M 127.6 1.00 1.00 0.81 2.48± 0.06 1.32± 0.02 −3.45± 0.07 0.130 12.2 0.045

method and for active scalars based on the decay of an446

initial entropy perturbation.447

The strong dependence of the theoretical results from448

Equations (23) and (38) involving high powers of ǫf is449

related to the following reasons. The main contributions450

to the difference in turbulent diffusion coefficients for451

helical and nonhelical turbulence come from the fourth-452

order moments of a random velocity field. The second453

reason for the high powers of ǫf in turbulent diffusion454

coefficients is related to the strong dependence of the455

correlation time of a random velocity field on ǫf found456

in simulations.457

The difference between the theoretical predictions and458

the simulations for 0.8 < ǫf ≤ 1 is related to the the-459

ory being based on the following assumptions: (i) the460

contributions of higher than fourth-order moments of a461

random velocity field are neglected; (ii) it is assumed462

that the velocity field has Gaussian statistics; and (iii)463

we use a model of a random velocity field with renova-464

tions.465

A recent theoretical study by Kishore & Singh (2025),466

where a method based on the Furutsu-Novikov theorem467

(Furutsu 1963; Novikov 1965) has been applied, shows468

that the turbulent diffusivities of both the mean mag-469

netic and passive scalar fields are suppressed by kinetic470

helicity. In that paper, however, the kinetic helicity de-471

pendence of the correlation time has not been taken into472

account (Kishore & Singh 2025). This may explain the473

discrepancy with the numerical results related to the474

helicity effect on turbulent diffusion of the scalar field475

(Brandenburg et al. 2025).476

6. DISCUSSION477

One of the main effects of astrophysical turbulent478

flows is a strong increase of the diffusion of the large-479

scale magnetic and scalar fields, which can be charac-480

terized in terms of the effective (turbulent) diffusion co-481

efficients. The latter effect decreases the growth rates of482

the mean-field dynamo instability and various clustering483

instabilities related to scalar fields.484

In the present study, we have developed a theory485

which qualitatively explains the nontrivial behavior of486

turbulent diffusion coefficients of the large-scale mag-487

netic and scalar fields as functions of the kinetic he-488

licity. These effects have been recently discovered by489

direct numerical simulations (Brandenburg et al. 2017;490

Brandenburg et al. 2025), which show that turbulent491

magnetic diffusion decreases with increasing kinetic he-492

licity while turbulent diffusion of passive scalars in-493

creases with the helicity.494

The main contribution to these effects comes from495

the fourth-order correlation function of the turbulent496

velocity field. This is the reason why widely used497

methods like the quasi-linear approach [the first-order498

smoothing approximation (FOSA) or the second-order499

correlation approximation (SOCA)] as well as the var-500

ious τ approaches and the direct interaction approxi-501

mation (DIA) cannot describe these effects. For in-502

stance, Gruzinov & Diamond (1995) use the quasi-linear503

approach to determine the turbulent transport coeffi-504

cients (the α effect and turbulent magnetic diffusivity).505

The main assumption of the quasi-linear approach is506

that fluctuations are much smaller than the mean fields,507

so the fourth-order moments have been neglected by508

Gruzinov & Diamond (1995). All studies of the kinetic509

helicity effect on turbulent diffusivity discussed here ap-510

ply various perturbation approaches which take into ac-511
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count the fourth-order moments of random Gaussian ve-512

locity fields with small yet finite correlation time.513

The main goal of the present paper is to explain the re-514

sults of the numerical simulations by Brandenburg et al.515

(2017) and Brandenburg et al. (2025), where we also516

take into account the kinetic helicity dependence of517

the correlation time of the random velocity field that518

has been found in DNS. We have applied the path-519

integral approach for random flows with a finite corre-520

lation time and for large Reynolds and Péclet numbers.521

We have assumed that the velocity field has Gaussian522

statistics, which allows us to represent the fourth-order523

moments of the turbulent velocity field as a product524

of second-order moments. A crucial role in the under-525

standing of these effects is played by the kinetic helic-526

ity effect on the turbulent correlation time, which in-527

creases with increasing helicity. The results of the the-528

ory developed here are in a qualitative agreement with529

the numerical results of Brandenburg et al. (2017) and530

Brandenburg et al. (2025).531
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Rüdiger, G., Kitchatinov, L. L., & Hollerbach, R. 2013,607

Magnetic Processes in Astrophysics: Theory, Simulations,608

Experiments (John Wiley and Sons, Weinheim),609

doi: 10.1002/9783527648924610

Ruzmaikin, A., Shukurov, A., & Sokoloff, D. 1988,611

Magnetic Fields of Galaxies (Dordrecht: Kluwer)612
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