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Theory of the kinetic helicity effect on turbulent diffusion of magnetic and scalar fields
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ABSTRACT

Kinetic helicity is a fundamental characteristics of astrophysical turbulent flows.

It is not only

responsible for the generation of large-scale magnetic fields in the Sun, stars, and spiral galaxies,
but it also affects turbulent diffusion resulting in the dissipation of large-scale magnetic fields. Using
the path integral approach for random helical velocity fields with a finite correlation time and large
Reynolds numbers, we show that turbulent magnetic diffusion is reduced by the kinetic helicity, while
the turbulent diffusivity of a passive scalar is enhanced by the helicity. The latter can explain the
results of recent numerical simulations for forced helical turbulence. One of the crucial reasons for
the difference between the kinetic helicity effect on magnetic and scalar fields is related to the helicity
dependence of the correlation time of a turbulent velocity field.

Keywords: Astrophysical magnetism (102) — Magnetic fields (994)

1. INTRODUCTION

The evolution of solar and Galactic large-scale mag-
netic fields can be understood in terms of mean-field
dynamo theory applying various analytical methods
(see, e.g., Moffatt 1978; Parker 1979; Krause & Rédler
1980; Zeldovich et al. 1983; Ruzmaikin et al.
1988; Riidiger et al. 2013; Moffatt & Dormy 2019;
Rogachevskii 2021; Shukurov & Subramanian 2022).
Helical motions emerge in inhomogeneous or density
stratified turbulence, give rise to an « effect, and pro-
duce large-scale dynamo action in combination with
a nonuniform (differential) rotation, while turbulent
magnetic diffusion limits the growth rate of the field.

It has recently been shown wusing direct nu-
merical simulations (DNS) (Brandenburg et al. 2017;
Brandenburg et al. 2025) that helical turbulent motions
of the plasma affect not only the « effect, but also
the turbulent magnetic diffusion. In particular, the ki-
netic helicity Hx = {u - w) was found to lower the tur-
bulent magnetic diffusion coefficient 7n,, where u and

brandenb@nordita.org

w0 w are fluctuations of velocity and vorticity, and angu-
a1 lar brackets denote ensemble averaging. On the other
22 hand, DNS showed that the kinetic helicity increases
s the turbulent diffusion coefficient for passive scalars
s (Brandenburg et al. 2025).

ss  Using the renormalization group approach in the limit
s of low magnetic Reynolds numbers, it has been re-
w cently shown by Mizerski (2023) that the decrease of
s the turbulent magnetic diffusion coefficient in compar-
s ison with that for a nonhelical random flow is of the
order of Rm?*(Hyr.)?/(u?), where Rm = 7. (u?)/n is
si the magnetic Reynolds number, 7 is the magnetic diffu-
52 sion caused by an electrical conductivity of the plasma,
53 and 7. is the turbulent correlation time. Early theo-
ss retical predictions by Nicklaus & Stix (1988) based on
ss the cumulant expansion method demonstrated the oppo-
ss site effect where the turbulent magnetic diffusion coeffi-
s7 clent increases with kinetic helicity—in contradiction to
ss the subsequent numerical results of Brandenburg et al.
so (2017).

o By means of the Feynman diagram technique, it has
&1 been found that kinetic helicity increases the turbu-
s2 lent diffusion of a passive scalar (Dolginov & Silant’ev
63 1987). Later, the increase of passive scalar diffusion
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of up to 50% by kinetic helicity has been confirmed
by Chkhetiani et al. (2006) applying the renormaliza-
tion group approach. On the other hand, applying the
renormalization-group theory it has been demonstrated
that there are no effect of helicity on the effective eddy
viscosity (Zhou 1990). Various helicity effects on dif-
ferent characteristics of turbulence are discussed in the
recent review by Pouquet & Yokoi (2022).

In the present study, we apply the path-integral ap-
proach (see, e.g., Dittrich et al. 1984; Kleeorin et al.
2002; Elperin et al. 2000, 2001) for a random helical
velocity field with a finite correlation time for large
fluid and magnetic Reynolds numbers. We derive equa-
tions for the mean magnetic field and the mean scalar
field (e.g., the mean particle number density). We have
shown that the turbulent magnetic diffusion coefficient
decreases because of the kinetic helicity. On the other
hand, the kinetic helicity increases turbulent diffusion
coefficient of the scalar field. Both effects are of the
order of (Hg7.)?/{u?).

To derive the mean-field equations for the magnetic
and scalar fields, we use an exact solution of the gov-
erning equations (i.e., the induction equation for the
magnetic field and the convection—diffusion equation for
the scalar field) in the form of a functional integral for
an arbitrary velocity field. The microscopic diffusion
can be described by a Wiener random process, and the
functional integral implies an averaging over the Wiener
random process. The used form of the exact solution
of the governing equations allows us to separate the
averaging over the Wiener random process and a ran-
dom velocity field. The derived mean-field equations
for the magnetic and scalar fields are generally integro-
differential equations. However, when the characteristic
scale of variation of the mean fields is much larger than
the correlation length of a random velocity field, second-
order equations (in spatial variables) are recovered for
the mean fields.

For the derivation of the mean-field equations, we con-
sider a random helical velocity field with a small yet
finite constant renewal time. Thus, we apply a model
with two random processes: the Wiener random process
which describes the microscopic diffusion and the ran-
dom velocity field between the renewals. This model
reproduces important features of some real turbulent
flows. For instance, the interstellar turbulence which
is driven by supernovae explosions, loses memory in the
instants of explosions (see, e.g., Zeldovich et al. 1990;
Lamburt et al. 2000). Between the renewals, the veloc-
ity field can be random with its intrinsic statistics. To
obtain a statistically stationary random velocity field,
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we assume that the velocity fields between renewals have
the same statistics.

This paper is organized as follows. In Section 2 we
outline the governing equations and the procedure of
the derivation of the equation for the mean magnetic
field. In Section 3 we derive the equation for the turbu-
lent magnetic diffusion coefficient. For comparison with
the magnetic case, we derive the mean-field equation
for the particle number density in Section 4 and obtain
an expression for the turbulent diffusion coefficient. In
Section 5 we compare the theoretical predictions with
the results of the direct numerical simulations. Finally,
we draw conclusions in Section 6.

2. GOVERNING EQUATIONS

The magnetic field B(¢,r) is determined by the in-
duction equation
0B

— +(u-V)B= (B -V)u+nAB,

o (1)

where u is a random velocity field. For simplicity, we
consider an incompressible velocity field. Below we de-
rive the equation for the mean magnetic field in a ran-
dom helical velocity field with a finite correlation time
for large fluid and magnetic Reynolds numbers.

Following a  previously  developed  method
(Dittrich et al. 1984; Kleeorin et al. 2002), we use an
exact solution of Equation (1) with an initial condition
B(t = s,x) = B(s,x) in the form of the Feynman-Kac
formula:

Bi(t,@) = (Giy(t.s.£(t,5) Bi(5.6(1:9)) ). (2)

67
where the function G;;(t, s, ) is determined by

dGz] (t7 S, 5)

:Nz j\tr9,8 )
Is kK Grj(t, s,6)

®3)
N;; = V,u; is the velocity gradient matrix, é =€ —x,
and (...) ¢ denotes averaging over the Wiener paths

€)= [ ult €] dut VErwle o)
(4)

Here w(t) is a Wiener random process defined by the
properties (w(t))y = 0, and (w;(t + 7)w;(t))w = T0ij,
and (...)y, denotes averaging over the statistics of the
Wiener process. We use the Fourier transform defined
as

B(t.§) = /exp(ié -q)B(s,q)dq. (5)
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Substituting Equation (5) into Equation (2), we obtain

Bils.) = [ (Gilt.5,6(t,5)) expli€ - a] By(s.)

x exp(iq - x)dq .

3
(6)

In Equation (6) we expand the function expli€ - q] in a
Taylor series at ¢ = 0, i.e., exp[i€ - q] = Y00, (1/k!) (i€ -
q)". Using the identity (iq)* expliz - q] = V* expliz - q]
and Equation (6), we arrive at the expression

Bi(t,z)= <Gij(t’ 5,€) {i (Ek'V)k} >§

k=0

X/Bj(37Q) exp(iq - @) dg. (7)

The inverse Fourier transform implies that B;(s, x) =
[ Bj(s,q)exp(iq - x)dgq, so that Equation (7) can be
rewritten as

Bi(t,x) = <Gij(t, €) exp(€ - V)> B;(s,x).

¢ (3)
Equation (5) can be formally regarded as an inverse
Fourier transform of the function B;(¢,£). However, &
is the Wiener path which is not a standard spatial vari-
able. On the other hand, Equation (8) was also derived
in Appendix A of Kleeorin et al. (2002) applying a more
rigorous method; see also Dittrich et al. (1984). In this
derivation the Cameron-Martin-Girsanov theorem was
used.

3. MEAN-FIELD EQUATIONS FOR THE
MAGNETIC FIELD

In this section we derive mean-field equation for a
magnetic field using a random helical velocity field with
a small yet finite constant renewal time. These re-
sults can be also generalized for a random renewal
time (see, e.g., Lamburt et al. 2000; Kleeorin et al. 2002;
Elperin et al. 2001). Assume that in the intervals
.. (=7,0]; (0, 7]; (1, 27]; . .. the velocity fields are statis-
tically independent and have the same statistics. This
implies that the velocity field looses memory at the pre-
scribed instants ¢ = k7, where k = 0,41, +2,.... This
velocity field cannot be considered as a stationary (in
statistical sense) field for small times ~ 7, however, it
behaves like a stationary field for ¢ > 7.

The velocity fields before and after renewal are as-
sumed to be statistically independent. We use this as-
sumption to decouple averaging into averaging over two
time intervals. In particular, the function G;;(t,§) in
Equation (8) is determined by the velocity field after
the renewal, while the magnetic field B;(s, x) is deter-
mined by the velocity field before renewal.

199

200

201

202

203

204

205

206

207

20i

&

20!

©

210

21

=

212

21,

@

21

IS

215

216

217

218

219

220

221

222

223

224

22

G

227

228

229

230

23

=

232

23

@

234

235

23

=3

237

238

3

In Equation (8) we specify instants ¢ = (m + 1)7 and
s = mT, and average it over random velocity field, which
yield the equation for the mean magnetic field B as

Bl[(m+1)T, m} :Pij(T7.’B,’I:V)§j(mT,CC), (9)

where B;[(m+1)7, 2] = (B;((m+1)7, &)}y, Bj(mt,x) =
(Bj(mT, ), and

Pyj(1,2,iV) = ((Gij(7,€) expl€ - V])g)u-

Here the time s = m7 is the last renewal time before
t=(m+1)7 and t — s = 7. Averaging of the functions
Gij(1,€) expl€(r) - V] and B;(m7,x) over random ve-
locity field (...),, can be decoupled into the product of
averages since B;(mr,x) and G;;(,€) explé(r) - V] are
statistically independent. Indeed, the field B;(mr,x) is
determined in the time interval (—oco, m7], whereas the
function Gy, (7, &) expl€(7)- V] is defined on the interval
(m7, (m=+1)7]. Due to a renewal, the velocity field as well
as its functionals Bj(m, ) and Gy;(7, &) explé(T) - V]
in these two time intervals are statistically independent
(see Dittrich et al. 1984; Kleeorin et al. 2002, for de-
tails).

Considering a very small renewal time and expanding
into Taylor series the functions G;;(u, &) and expl€(n) -
V] entering in P;;(u, x,1V) (see Equation (10)), we ob-
tain

(10)

Py, 2,1V) = (( (8 + nNig + %ZN“CNM +.)

- 1~ -
x (1 +énVim + 3EménVim Vi + )>£> .y
Here we take into account that the solution of Equa-
tion (3) can be written as

n
Gij(p) = dij +/ Nij(u') dp’
0

1 (K w
o3 [ Nat) il [T N+ (12)

We consider a random incompressible velocity field
with a Gaussian statistics. We also consider a ho-
mogeneous turbulence with the large fluid and mag-
netic Reynolds numbers.  Therefore, the operator
P;;i(p,x,iV) is given by

P (1 2,19) = i + 1 (EmNi) ¢ u Vi

12

{301l ghu + o [(En ) ul(Euit
+<<£mej>€>u <<gnNzk>€>u:| }van + ... (13)

where we keep only nonzero correlation functions. Now
we determine the correlation function ((§,&,) €>u for
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4

small p as
4

({Emba)g)u = 12 {utmten) +

+(ustty) ((Vpttn) (Vstim)) | + 201wty

[(us Vptn) (UpV st )
(14)

where we neglected terms ~ O(u®) and hereafter we
denote (...) as the averaging over statistics of random
velocity field.

To determine the correlation function (u;Vpyu;), we
use a model for the second moment (u;(k)u;(—k)) of
homogeneous incompressible and helical turbulence in
Fourier space in the following form:

B, (k) [(% _

8mk?
i
— 72 Siin kp (u- w)} ;

(ui(k)u;(—k)) =
(15)
where w = VX u is the vorticity, d;; is the Kro-
necker fully symmetric unit tensor, e;;, is the Levy-
Civita fully antisymmetric unit tensor, (u - w) is the
kinetic helicity, the energy spectrum function is F,, (k) =
(2/3) ky* (k/ko)~5/3 in the inertial range of turbulence
ko < k: < k,, the wave number ky = 1/y, the length
lo is the integral scale of turbulence, the wave number
k, = ;' the length £, = loRe™3/* is the Kolmogorov
(viscous) scale. After integration in the Fourier space we
obtain that the correlation function (u;u;) in the phys-
ical space is (u;u;) = (u?)d;;/3. Using Equation (15),
after integration in the Fourier space, we arrive at the
following expression:
(uiVpus) = —¢
) and (16), we obtain that the cor-
& ) )u is given by

Eijp (U - W). (16)

Using Equations (14
relation function ((&,,

;o7 H
<<£m£n>£>u = /ff(smn{m? + g |:<’U,2> -
(17)
Here we have neglected a small contribution (~ pu?*)
caused by non-helical part of turbulence. In a similar

way, we obtain that the correlation function ((£;N;,) £>u
is given by

(ENp)ghu = —nusVyu) = Geup (u-w). (18)
Since 9B/0t = lim[Bi((m + V. @) = Bi(mp,@)|/n,

Equations (13)—(14
equation:

) and (16)—(18) yield the mean-field

OB(t,x)

5 — @V x B+ +m)AB,

(19)
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where the turbulent magnetic diffusion coefficient is
given by

2
Te T
=3 (u?) — 3 (u-w)?, (20)
and the « effect is « = —7.(u-w)/3. In the derivation of

Equations (19)—(20), we take into account that linb(u(w
—

w)) = 27 (u - w) and }L%(u<u2>) = 27, (u?). Here we

also use that divB = 0 and €ijp Emnp = OimOjn — 0inOjm.
The coefficient a, < 1 takes into account the fact that
the correlation time is scale-dependent inside the inertial
range of turbulence. It also takes into account possible
anisotropies of turbulence.

It has been demonstrated by DNS (Brandenburg et al.
2025), that the correlation time of turbulent velocity
field depends on the kinetic helicity. It follows from
Equation (20) that
n(Hx) _ 7e(Hx) [ 7E(Hi) Hi

1:(0) 70 3 ()]’

(21)

where Hx = (u-w) is the kinetic helicity density, 7 (0) =
1. (Hg = 0) is the turbulent magnetic diffusivity at zero
kinetic helicity, and 79 = 7.(Hg = 0) is the correlation
time.
We assume that
Te(Hi) = 70 (1 + Cref), (22)
where ¢; = (u - w)ly/(u?) is the normalized kinetic he-
licity. Equation (22) has recently been supported by
the direct numerical simulations of forced turbulence
(Brandenburg et al. 2025), where ( = 4 and C,; = 0.5
for Re ~ 14. This numerical result has been obtained
using two independent methods based on the noninstan-
taneous correlation functions and the rate of energy dis-
sipation. Equation (22) has also been confirmed for
Re = 120; see Figure 1, where we show the depen-
dence of 7. on ¢. Here, the simulations had a forc-
ing wavenumber k¢ = 5.1k;, where ki is the lowest
wavenumber in the domain. In this case, the results
are well approximated by ¢ = 4 and C; = 0.37, where
we have assumed ¢y = 1/k;.
Therefore, the turbulent magnetic diffusion coefficient
is
ne = 1t (0) [1 +Cref — 3 (1+ C’Te?)g e?] . (23)
It follows from Equation (23) that the turbulent mag-
netic diffusion coefficient is reduced by the kinetic helic-
ity (see Section 5).



320

321

322

32

@

32:

X

325

326

327

328

32

©

33

=)

33

=

33;

o

33

@®

334

33!

o

336

337

338

339

12.0F
115
1.0}

urms]cf

105
100
9.5
9.0f

1.00

0.10

(TCATO) urmskf

0.01¢

0.1

1.0

€

Figure 1. Dependence of 7. on ¢ and Re &~ 120. The solid
line gives the fit with ( = 4 and C; = 0.37. In the second
panel, we used TouUrmsks = 9.6.

4. MEAN-FIELD EQUATION FOR PARTICLE
NUMBER DENSITY

The evolution of the number density n(¢,r) of small
particles advected by a random incompressible fluid
flow is determined by the following convection—diffusion
equation

0
a—?—i—@rVn:mAn,

where u is a random velocity field of the particles which
they acquire in a random fluid velocity field and & is
the coefficient of molecular (Brownian) diffusion. Fol-
lowing to the method described in Sections 2-3 (see
also Elperin et al. 2000, 2001), we derive the mean-field
equation for the particle number density. We use an ex-
act solution of Equation (24) with an initial condition
n(t = s,x) = n(s,x) in the form of the Feynman-Kac
formula:

(24)

n(t,) = (n(s,£(t:5)) )

implies the averaging over the Wiener

(25)

where (...)
paths:

)= [ ol () du 4 VIR (- s).

5

340 (26)

1 We assume that

302 n(t,§) = /exp(i£ -q)n(s,q)dq. (27)
a3 Substituting Equation (27) into Equation (25), we ob-
34 tain

v nlsw)= [ (epli€-aln(sa))  explia- @) da
s (28)

s In Equation (28) we expand the function exp[ié -q] in
xs Taylor series at ¢ = 0 and use the identity (iq)* expl[iz -
us q] = V¥ expliz - q], which yields

0 n(t7w>=<[i W]>€/n(8’q) exp(iq - =) dq.

k=0
51 (29)

32 Applying the inverse Fourier transform n(s,x) =
53 [ n(s, q)exp(iq - ) dq, we obtain
354 n(t, CC) = <6Xp(é~ V)> (30)

5n(s,a:).
35 Equation (30) has been also derived applying a more
356 rigorous method in Appendix A of Elperin et al. (2000).
ss7 In this derivation the Cameron-Martin-Girsanov theo-
38 rem is applied.

s To derive mean-field equation for a particle number
w0 density, we consider a random velocity field with a fi-
se1 nite constant renewal time. In Equation (30) we specify
instants ¢ = (m + 1)7 and s = m7, and average this
363 equation over a random velocity field. This yields the
s mean-field equation for the particle number density as

36

)

365 al(m+ )71, x] = P(r,2,iV)n(mr, z), (31)

s where n[(m + 1)1, 2] = (n((m + 1)7,@))q, "(mr,x) =
o7 (n(m7,&))q, and

P(r,2,iV) = ((exp[€ - V]) £hu- (32)

w0 We consider a random velocity field with a Gaussian
statistics and with large fluid Reynolds numbers and
an large Peclet numbers. For a small renewal time, ex-

s panding the function exp[€(7) - V] into Taylor series, we
373 obtain

37

=)

o PV =14 S (Enb) bV Vot (33)
35 where

n UEnEghe = b {25+ |02 - 2 o7}
377 (34)
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dencies for 0 < ¢ < 0.8 [see Equations (23) and (38)] are
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~

are shown as dotted lines, because they may not be reliable.

Since On/0t = lim [A((m + 1), ®) =7 (mu, )]/ p, Equa-
p—

tions (31), (33) and (34) yield the mean-field equation
for the particle number density (¢, x) as

on(t, x)

T = (KJ + K}t)Aﬁ,

(35)

where the turbulent diffusion coefficient is given by

Tc

ot -Twewd] e

Ry =

It follows from Equation (36) that

Klt(Hu) - TC(HK) _
Ht(O) o T0 |:1

e (?K) <Z§>] . (37)

where £(0) = k¢ (Hg = 0) and 79 = 7.(Hk = 0). Since
7.(Hk)/m0 = 1+ Cr€} [see Equation (22)], the turbulent
diffusion coefficient is

Kt = ki (0) [1 + Cref — L1+ 07—6;«1)3 6?] . (38)

Using Equation (38) we will show in Section 5 that the
turbulent diffusion coefficient for the scalar field is en-
hanced by the kinetic helicity.

5. COMPARISONS WITH NUMERICAL RESULTS
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As in Brandenburg et al. (2025), we compute a tur-
bulent velocity field by solving the fully compress-
ible momentum equation with an isothermal equa-
tion of state. In Brandenburg et al. (2017), only
fully helical cases were compared with nonhelical ones.
Brandenburg et al. (2025) did consider runs with inter-
mediate helicity of the forcing, but only for Re ~ 14.
Here, we also compute such cases with Re ~ 120. This
is accomplished by adding a fraction oik,e;jp f; to the
nonhelical forcing function f;.

We compute the turbulent transport coefficient «, 7,
and ¢ in Equations (19) and (35) from the turbulent
velocity field discussed above. We use the test-field
method (Schrinner et al. 2005, 2007; Brandenburg 2005;
Brandenburg et al. 2008), where we solve numerically
the equations for the fluctuating magnetic and passive
scalar fields. These are nonlinear inhomogeneous equa-
tions, in which the product of the mean magnetic and
passive scalar fields act as an inhomogeneous source
term. Thus, the test-field equations are different from
the original evolution equations, which are homoge-
neous. Moreover, the mean magnetic and passive scalar
fields are not solutions to these equations, but consist of
a set of mutually orthogonal fields that are called test
fields. They are constructed such that we can compute
the desired transport coefficient exactly and not as a fit
or by some regression method (Brandenburg & Sokoloff
2002; Simard et al. 2016; Bendre et al. 2024).

The resulting turbulent transport coefficients depend
on time and one or two space coordinates (here only
on z, in addition to t). We are usually interested in
their averaged values. To determine error bars, we also
compute averages for any one third of the full time series.
The results for Re &~ 14 and = 120 are given in Table 1
for different values of 0. For o < 0.7, ¢ = (u-w)ly/(u?)
is well approximated by 20/(1 + o2). For larger values,
€r stays somewhat below this estimate. This departure
contributes to the steep power-law scaling with ¢ = 4.

The values «, 1y, and k¢ for Re = 120 are plotted in
Figure 2. As in Brandenburg et al. (2025), we present
them in normalized form and divide o by Ag = Urms/3
and n and k¢ by Dy = urms/3ke. Note that 7,(0) =
kt(0) = Dgy. We see that « increases approximately lin-
early with e;. For 7y and k¢, it is convenient to plot the
differences from the nonhelical values, 7:(0) and #(0),
respectively. We see that for both functions, the differ-
ences are small when ¢ < 0.4, and then depart from
zero in opposite directions. This is also predicted by the
theory. For ¢ 2 0.8, however, there are major depar-
tures between our theory and the simulations. Note that
the simulations (Brandenburg et al. 2025) predict sim-
ilar results both for passive scalars using the test-field
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Table 1. Values of k¢ and 7x normalized by Do = urms/3ks, as well as o normalized by Ao = trms/3 for Re ~ 14 and =~ 120

for different values of o. The values of Ma, wrms/Urmsks and Tcurmsks are also given.
Run Re o 20/(1+0%) & Kt/ Do 1t/ Do a/Ag Ma  wrms/Urmskr  TcUrmsks
A 13.8 0.10 0.20 0.20 2.40+0.00 2.00£0.00 —0.99+0.01 0.099 6.1 0.107
B 14.0 0.20 0.38 0.38 242+0.00 1.94+0.01 -1.92+0.00 0.100 6.0 0.104
C 14.2  0.30 0.55 0.54 248+0.00 1.86+0.00 —2.74+0.01 0.101 5.9 0.099
D 14.5 0.40 0.69 0.67 2.53+0.00 1.73+£0.01 —-3.39+0.00 0.103 5.8 0.093
E 14.8 0.50 0.80 0.76 2.59+0.00 1.61+£0.01 -—-3.82+0.02 0.106 5.7 0.087
F 15.4  0.70 0.94 0.87 2.81+0.01 1444000 —4.28+0.04 0.110 5.5 0.076
G 15.8 1.00 1.00 0.91 288+0.01 1.37£0.02 —4.44+0.05 0.113 5.3 0.071
H 120.6 0.00 0.00 0.01 2.27+0.01 1.73£0.05 0.05+0.09 0.123 13.0 0.054
I 121.1 0.05 0.10 0.08 2.27+0.01 1.75£0.05 —-0.35+0.07 0.124 12.9 0.053
J 121.5 0.20 0.38 0.33 2.30+0.01 1.75£0.03 —-1.35+0.06 0.124 12.8 0.052
K 121.5 0.30 0.55 0.45 2.33+0.02 1.67+0.03 —1.90+0.08 0.124 12.7 0.051
L 124.0 0.50 0.80 0.66 2.42+0.02 149+0.05 —-2.81+0.11 0.126 12.5 0.049
M 127.6  1.00 1.00 0.81 248+0.06 1.32+0.02 —-3.45+0.07 0.130 12.2 0.045

wxs method and for active scalars based on the decay of an
w7 initial entropy perturbation.

as  The strong dependence of the theoretical results from
uo Equations (23) and (38) involving high powers of € is
related to the following reasons. The main contributions
ss1 to the difference in turbulent diffusion coefficients for
ss2 helical and nonhelical turbulence come from the fourth-
53 order moments of a random velocity field. The second
s reason for the high powers of e in turbulent diffusion
a5 coefficients is related to the strong dependence of the
a6 correlation time of a random velocity field on e found
57 in simulations.

s The difference between the theoretical predictions and
w0 the simulations for 0.8 < ¢ < 1 is related to the the-
wo ory being based on the following assumptions: (i) the
w1 contributions of higher than fourth-order moments of a
w2 random velocity field are neglected; (ii) it is assumed
w3 that the velocity field has Gaussian statistics; and (iii)
w6¢ we use a model of a random velocity field with renova-
465 tions.

ws A recent theoretical study by Kishore & Singh (2025),
w7 where a method based on the Furutsu-Novikov theorem
s (Furutsu 1963; Novikov 1965) has been applied, shows
w0 that the turbulent diffusivities of both the mean mag-
a0 netic and passive scalar fields are suppressed by kinetic
helicity. In that paper, however, the kinetic helicity de-
a2 pendence of the correlation time has not been taken into
a3 account (Kishore & Singh 2025). This may explain the
an discrepancy with the numerical results related to the
a5 helicity effect on turbulent diffusion of the scalar field
ws (Brandenburg et al. 2025).

45

=

=

2

o

47

oy

477 6. DISCUSSION

s One of the main effects of astrophysical turbulent
a9 flows is a strong increase of the diffusion of the large-
w0 scale magnetic and scalar fields, which can be charac-
s terized in terms of the effective (turbulent) diffusion co-
w2 efficients. The latter effect decreases the growth rates of
a3 the mean-field dynamo instability and various clustering
sss instabilities related to scalar fields.

s In the present study, we have developed a theory
s which qualitatively explains the nontrivial behavior of
w7 turbulent diffusion coefficients of the large-scale mag-
a8 netic and scalar fields as functions of the kinetic he-
w9 licity. These effects have been recently discovered by
a0 direct numerical simulations (Brandenburg et al. 2017;
s Brandenburg et al. 2025), which show that turbulent
w2 magnetic diffusion decreases with increasing kinetic he-
s03 licity while turbulent diffusion of passive scalars in-
a4 creases with the helicity.

w5  The main contribution to these effects comes from
w6 the fourth-order correlation function of the turbulent
a7 velocity field. This is the reason why widely used
sws methods like the quasi-linear approach [the first-order
a0 smoothing approximation (FOSA) or the second-order
so0 correlation approximation (SOCA)] as well as the var-
s ious 7 approaches and the direct interaction approxi-
so mation (DIA) cannot describe these effects. For in-
so3 stance, Gruzinov & Diamond (1995) use the quasi-linear
soe approach to determine the turbulent transport coeffi-
so5 clents (the « effect and turbulent magnetic diffusivity).
soo ' The main assumption of the quasi-linear approach is
sor that fluctuations are much smaller than the mean fields,
sos SO the fourth-order moments have been neglected by
so0 Gruzinov & Diamond (1995). All studies of the kinetic
s helicity effect on turbulent diffusivity discussed here ap-
su ply various perturbation approaches which take into ac-
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si2 count the fourth-order moments of random Gaussian ve-
s13 locity fields with small yet finite correlation time.

su. The main goal of the present paper is to explain the re-
sis sults of the numerical simulations by Brandenburg et al.
s16 (2017) and Brandenburg et al. (2025), where we also
si7 take into account the kinetic helicity dependence of
sis the correlation time of the random velocity field that
si9 has been found in DNS. We have applied the path-
s20 integral approach for random flows with a finite corre-
lation time and for large Reynolds and Péclet numbers.
s22 We have assumed that the velocity field has Gaussian
s23 statistics, which allows us to represent the fourth-order
s2« moments of the turbulent velocity field as a product
ss of second-order moments. A crucial role in the under-
s26 standing of these effects is played by the kinetic helic-
s7 ity effect on the turbulent correlation time, which in-
s2s creases with increasing helicity. The results of the the-
s20 ory developed here are in a qualitative agreement with
s% the numerical results of Brandenburg et al. (2017) and
Brandenburg et al. (2025).
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