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ABSTRACT8

Using numerical simulations of helical inflationary magnetogenesis in a low reheating temperature9

scenario, we show that the magnetic energy spectrum is strongly peaked at a particular wavenumber10

that depends on the reheating temperature. Gravitational waves (GWs) are produced at frequencies11

between 3 nHz and 50mHz for reheating temperatures between 150MeV and 3×105 GeV, respectively.12

At and below the peak frequency, the stress spectrum is always found to be that of white noise. This13

implies a linear increase of GW energy per logarithmic wavenumber interval, instead of a cubic one.14

Both in the helical and nonhelical cases, the GW spectrum is followed by a sharp drop for frequencies15

above the respective peak frequency. In this magnetogenesis scenario, the presence of a helical term16

extends the peak of the GW spectrum and therefore also the position of the aforementioned drop17

toward larger frequencies compared to the case without helicity. This might make a difference in it being18

detectable with space interferometers. The efficiency of GW production is found to be almost the same19

as in the nonhelical case, and independent of the reheating temperature, provided the electromagnetic20

energy at the end of reheating is fixed to be a certain fraction of the radiation energy density. Also,21

contrary to the case without helicity, the electric energy is now less than the magnetic energy during22

reheating. The fractional circular polarization is found to be nearly hundred per cent in a certain range23

below the peak frequency range.24
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1. INTRODUCTION26

There has been significant interest in the produc-27

tion of helical magnetic fields and circularly polarized28

gravitational waves (GWs) from the early Universe29

(Garretson et al. 1992; Cornwall 1997; Vachaspati 2001;30

Kahniashvili et al. 2005, 2021; Anber & Sorbo 2006;31

Campanelli 2009; Durrer et al. 2011; Durrer & Neronov32

2013; Caprini & Sorbo 2014; Subramanian 2016;33

Adshead et al. 2016, 2018). Owing to magnetic helicity34

conservation, such fields would have had a better chance35

to survive until the present time (Christensson et al.36

2001; Banerjee & Jedamzik 2004; Kahniashvili et al.37

2016; Brandenburg et al. 2017). The associated elec-38
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tromagnetic (EM) stress also drives circularly polarized39

GWs (Kahniashvili et al. 2005, 2021; Ellis et al. 2020;40

Roper Pol et al. 2021). If the sign and spectral shape41

of the circular polarization can in future be detected, it42

would provide important information about the under-43

lying mechanisms responsible for the generation.44

Inflationary magnetogenesis scenarios are particularly45

attractive, because they have the advantage of pro-46

ducing large-scale magnetic fields. They tend to am-47

plify magnetic fields from quantum fluctuations by the48

breaking of conformal invariance through a function49

f such that the Lagrangian density has a term that50

takes the form f2FµνF
µν , where Fµν is the Faraday51

tensor (Turner & Widrow 1988; Ratra 1992). How-52

ever, those mechanisms can only be viable if they53

avoid some well-known problems discussed in detail54

in the literature (Demozzi et al. 2009; Ferreira et al.55

2013; Kobayashi & Afshordi 2014; Kobayashi & Sloth56
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2019). These problems are avoided by requiring the57

function f to obey certain constraints that have been58

discussed in detail by Sharma et al. (2017). For some59

scenarios, these magnetic fields can lead to the pro-60

duction of GWs which lie in the sensitivity range of61

space interferometers such as LISA and Taiji, as stud-62

ied analytically in Sharma et al. (2020). This magne-63

togenesis model was also extended to the helical case64

(Sharma et al. 2018, hereafter referred to as SSS). A65

similar model of helical magnetogenesis was consid-66

ered by Fujita & Durrer (2019) and Okano & Fujita67

(2021). Numerical simulations have recently been per-68

formed for the nonhelical case (Brandenburg & Sharma69

2021, hereafter BS). The goal of the present paper is70

to apply numerical simulations now to helical mag-71

netogenesis. These models continue to amplify EM72

fields during the post-inflationary matter-dominated73

era after inflation, but require relatively low reheat-74

ing temperatures, Tr. Values of Tr in the range of75

the electroweak and quantum chromodynamics (QCD)76

epochs are often discussed, but do not have to coin-77

cide with them. Here we consider values of Tr in the78

range from 150MeV to 3 × 105 GeV, which correspond79

to peak frequencies of GWs in the ranges accessible80

to pulsar timing arrays (Detweiler 1979; Hobbs et al.81

2010; Arzoumanian et al. 2020) and space interferom-82

eters (Caprini et al. 2016; Amaro-Seoane et al. 2017;83

Taiji Scientific Collaboration et al. 2021).84

As in Sharma et al. (2017) and SSS, we assume that f85

is a function of the scale factor a with f(a) ∝ aα during86

inflation, and f(a) ∝ a−β during the post-inflationary87

matter-dominated era, where α = 2 was fixed and β is88

an exponent whose value depends on Tr. The magnetic89

field becomes unstable and is rapidly amplified at large90

length scales, provided the second derivative of f with91

respect to conformal time is positive. This can be the92

case both for positive and negative exponents, i.e., both93

during and after inflation, but no longer in the radiation94

dominated era, where f = 1 must be obeyed for stan-95

dard (conformally invariant) electromagnetism to hold.96

In contrast to BS, we now consider an additional97

term γf2Fµν F̃
µν in the Lagrangian density, where98

γ is a constant and F̃µν is the dual of the Fara-99

day tensor. The product is proportional to E · B,100

where E and B are the electric and magnetic fields,101

respectively. The term E · B is proportional to the102

rate of magnetic helicity production. The presence103

of such a term is common to many scenarios of heli-104

cal magnetogenesis, including the chiral magnetic ef-105

fect (CME; see Vilenkin 1980; Joyce & Shaposhnikov106

1997; Boyarsky et al. 2012, 2015) and axion infla-107

tion (Barnaby et al. 2011; Turner & Widrow 1988;108

Fujita et al. 2015; Ng et al. 2015; Adshead et al.109

2016; Cheng et al. 2016; Domcke & Mukaida 2018;110

Domcke et al. 2020). In the case of magnetogenesis via111

axion inflation (Garretson et al. 1992; Adshead et al.112

2016), the helical term takes the form f−1
m φFµν F̃

µν ,113

where φ represents the axion field and fm is a mass114

scale associated with the axion field. In our model, f(a)115

is constructed such that the model avoids the aforemen-116

tioned difficulties discussed in detail by Sharma et al.117

(2017) and SSS.118

As in BS, we employ the Pencil Code119

(Pencil Code Collaboration et al. 2021) and apply it120

in two separate steps. In step I, we solve the Maxwell121

and GW equations near the end of the post-inflationary122

matter-dominated phase when the medium is still elec-123

trically nonconducting and no fluid motions can be124

driven by the Lorentz force. Just like the (linearized)125

GW equation, the Maxwell equations are linear and are126

advanced analytically between two subsequent times127

steps; see Appendix C of BS for details. In step II,128

when the conductivity has become large, we solve the129

standard magnetohydrodynamic (MHD) equations. The130

GW energy is always small compared with the radia-131

tion energy density and the EM energy density, which132

justifies the use of the linearized GW equation and the133

neglect of feedback onto the EM field.134

The presence of the helical term proportional to γ135

leads to a difference in the growth rates between pos-136

itively and negatively polarized fields. Magnetic fields137

with one of the two signs of helicities will therefore grow138

much faster than the other. Since there is enough time139

for the magnetic field to grow over many orders of mag-140

nitude, it suffices to consider in step I only fields of one141

helicity. This simplifies the computation somewhat. In142

step II, however, no such simplification is made.143

In this paper, we work with conformal time η, which144

is related to physical time t through η =
∫

dt/a(t).145

By adopting appropriately scaled variables, we arrive146

at MHD equations that are similar to those of standard147

MHD for a non-expanding Universe (Brandenburg et al.148

1996). In step I, during the post-inflationary matter-149

dominated era, the effective equation of state is such150

that the scale factor increases quadratically with con-151

formal time (and like t2/3 with physical time). Con-152

formal time is normalized such that it is unity at the153

beginning of the subsequent radiation-dominated era.154

Furthermore, the scale factor increases linearly with155

η in the radiation-dominated era. We assume a spa-156

tially flat Universe and adopt the normalization of157

Roper Pol et al. (2020a,b), where a(η) = 1 at η = 1158

and the mean radiative energy density is then also set159

to unity.160
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In Section 2, we present the basic equations applied161

in steps I and II. Those for step II are identical to the162

corresponding ones used in BS, but the equations for163

step I are different owing to the presence of the mag-164

netic helicity producing term proportional to γ. We165

then present the results in Section 3 and conclude in166

Section 4. We adopt the Heaviside-Lorentz unit system167

and set the speed of light equal to unity.168

2. THE MODEL169

2.1. Polarization basis and governing equations170

Any vector field can be decomposed into an irrota-171

tional and two vortical parts that are eigenfunctions of172

the curl operator with positive and negative eigenvalues.173

Here we employ the vector potential A in the Coulomb174

gauge, ∇ ·A = 0, so the irrotational part vanishes. We175

then consider Ã(η,k) =
∫

A(η,x) e−ik·xd3x in Fourier176

space, indicated by tildae, as a function of conformal177

time η and the wavevector k, and write it as178

Ã(η,k) = Ã+(η,k) ẽ+(k) + Ã−(η,k) ẽ−(k), (1)179

where180

ẽ±(k) = [ẽ1(k)± iẽ2(k)]/
√
2 i (2)181

is the polarization basis with ik × ẽ± = ±kẽ±, k = |k|182

is the wavenumber and ẽ1(k), ẽ2(k) represent units vec-183

tors orthogonal to k and orthogonal to each other. We184

assume an additional helical term in the EM Lagrangian185

density, f2Fµν(F
µν + γF̃µν). As in BS, we assume186

f(a) = a−β with a = (η + 1)2/4 (3)187

being the scale factor during the post-inflationary188

matter-dominated era with −1 < η ≤ 1. The evolu-189

tion of the scaled vector potential, Ã± ≡ fÃ±, is then190

governed by the equation (SSS; Okano & Fujita 2021)191

Ã′′

± +

(

k2 ± 2γk
f ′

f
− f ′′

f

)

Ã± = 0, (4)192

where primes denote η derivatives, and193

f ′

f
= − 2β

η + 1
,

f ′′

f
=

2β(2β + 1)

(η + 1)2
. (5)194

There are growing modes for k < k∗(η), given by195

k∗(η) = 2β
(

γ +
√

1 + γ2 + 1/2β
)

/(η + 1), (6)196

where we have considered the upper sign in Equa-197

tion (4). Equation (6) reduces to the expression given198

in Equation (7) of BS for γ = 0. For γ = 1, we have199

k∗(1) = β (1 +
√

2 + 1/2β). For β = 7.3, a particular200

case considered by BS, we have k∗(1) ≈ 18 in the heli-201

cal case when γ = 1, which is more than twice the value202

k∗(1) ≈ 7.5 for γ = 0 used by BS for the nonhelical case.203

This shows that helicity broadens the range of unstable204

wavenumbers. For γ = −1, we would have k∗(1) ≈ 3.2,205

but this is not relevant in practice because the fastest206

growing mode would then have opposite magnetic helic-207

ity, and the results for γ = 1 apply analogously. Con-208

trary to the case of nonhelical magnetogenesis (γ = 0),209

where the growth is fastest for k = 0, it is now fastest210

for finite values of k. In fact, as a function of k, the211

expression in round brackets in Equation (4) has an ex-212

tremum for k = 2βγ/(η + 1), and would instead be at213

k = 0 for γ = 0.214

As in BS, we also solve the linearized GW equations215

h̃′′

+/× +

(

k2 − a′′

a

)

h̃+/× =
6

a
T̃+/× (7)216

for the two polarization modes of the Fourier-217

transformed strain h̃+/×. As in Roper Pol et al.218

(2020a,b), we have made use of the fact that the critical219

energy density at η = 1 is unity. The GWs are driven by220

the + and × modes of the traceless-transverse projected221

EM stress,222

Tij = f2 (BiBj + EiEj), (8)223

where E = −∂A/∂η and B = ∇ × A are the elec-224

tric and magnetic fields in real space. We then com-225

pute T̃ij(η,k) =
∫

Tij(η,x) e
−ik·xd3x in Fourier space,226

project out the transverse-traceless part, and decompose227

the result into T̃+ and T̃×, which then enter in Equa-228

tion (7); see Roper Pol et al. (2020a,b) for details.229

As already explained in BS, and alluded to in the in-230

troduction, we solve Equations (4) and (7) analytically231

between subsequent time steps. Since these equations232

are second order in time, the solutions to both equations233

are at each moment characterized by a pair of variables234

(Ã±, Ã′
±) and (h̃+/×, h̃

′

+/×), respectively. This implies235

that both the electric field and the time derivative of the236

strain field are readily available for computing electric237

and GW energies and energy spectra.238

In step II, we solve the standard MHD equations with239

the usual modifications for a radiation-dominated ul-240

trarelativistic gas; see also BS. The bulk motions with241

velocity u are nonrelativistic, but include second or-242

der terms in the Lorentz factor (see Brandenburg et al.243

1996, 2017, for details). As stated before, the mean ra-244

diation energy density is set to unity at η = 1. The245

new parameters in this step are the electric conductiv-246

ity σ and the kinematic viscosity ν. As in BS, we always247

assume the magnetic Prandtl number to be unity, i.e.,248

νσ = 1.249

2.2. Diagnostics and initial conditions250
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Important output diagnostics are energy spectra,251

Eλ(η, k), where λ = E, M, K, and GW, for electric,252

magnetic, kinetic, and GW energy spectra. The sym-253

bols for the spectra are only used with these four sub-254

scripts and are not to be confused with the components255

of the electric field vector E. The corresponding energy256

densities are given by the k integrals over these spectra,257

i.e., Eλ(η) =
∫

Eλ(η, k) dk. The spectra are normalized258

such that EE = 〈E2〉/2, EM = 〈B2〉/2, EK = 〈u2〉/2,259

EGW = 〈h′2
+ + h′2

×〉/6.260

We emphasize that EGW(k) denotes the GW energy261

density per linear wavenumber interval, normalized to262

the radiation energy density at η = 1. To obtain the263

GW energy density per logarithmic wavenumber inter-264

val, normalized to the critical energy density today,265

one has to multiply kEGW(k) by the dilution factor266

(ar/a0)
4(Hr/H0)

2, where the subscripts ‘r’ and ‘0’ refer267

to the scale factor a and the Hubble parameter H at the268

end of reheating and today; see Roper Pol et al. (2020b)269

for details regarding the normalization. This leads to270

the quantity h2
0ΩGW(k) = 1.6×10−5 (gr/100) kEGW(k),271

where gr is the number of relativistic degrees of freedom272

at the beginning of the radiation dominated era.273

The simulations usually start at the initial time ηini =274

−0.9, which implies a(ηini) = 2.5× 10−3. In some cases275

(Runs C and D below), we used ηini = −0.99, so that276

a(ηini) = 2.5 × 10−5. As discussed in BS, the initial277

magnetic field usually has a spectrum EM(k) ∝ k3 for278

k < k∗(ηini). The value of k∗(ηini) lies then between279

the smallest and largest wavenumbers in the computa-280

tional domain, k1 and kNy, respectively, where kNy =281

k1nmesh/2 is the Nyquist wavenumber and nmesh is the282

number of mesh points in the domain of size 2π/k1. In283

this paper, we use nmesh = 512 and we treat k1 as an284

input parameter that is usually chosen to be unity, but285

sometimes we also consider smaller and larger values be-286

tween 0.2 and 10, respectively.287

The transition from step I to step II is discontinuous,288

as was already discussed in BS. This may be permissi-289

ble when the change from zero conductivity to a finite290

and large value occurs rapidly; see Appendix D of BS.291

In addition, while in step II we have f = 1, and there-292

fore f ′ = f ′′ = 0, the values of f ′/f and f ′′/f at the293

end of step I are small, but finite, which can cause ar-294

tifacts. BS noted the occurrence of oscillations shortly295

after transitioning to step II, but the results presented296

for our GW spectra are always averaged over the statis-297

tically steady state and are therefore independent of the298

oscillations caused by the discontinuities of these two ra-299

tios. In the present case of helical magnetogenesis, there300

is also another effect on the spectral slope of the GW301

energy density that will be addressed below.302

Let us emphasize at this point that in step II, when303

σ is large, magnetic helicity, 〈A ·B〉, is well conserved.304

This is not the case in step I, which is the reason why305

a helical magnetic field can be produced. Indeed, the306

magnetic helicity then grows at the same rate as the307

magnetic energy.308

2.3. Parameters of the magnetogenesis model309

To avoid back-reaction and strong coupling problems310

of magnetogenesis during inflation, SSS assumed the311

function f to grow in a particular fashion. In the begin-312

ning, it grows as aα, starting from the value unity. To313

recover the standard EM theory at the end of reheating,314

f is further assumed to continue evolving as f ∝ a−β in315

the post-inflationary era, which is assumed to be mat-316

ter dominated. The procedure to obtain the value of β317

for a particular value of the reheating temperature Tr is318

the same as explained in Appendix A of BS. The only319

difference lies in Equation (A1) of BS, which is obtained320

by demanding that the total EM energy density is a cer-321

tain fraction EEM of the background energy density at322

the end of the post-inflationary matter-dominated era.323

Details are given in Appendix A.324

In the model of SSS, α = 2 was chosen to have a325

scale-invariant magnetic energy spectrum during infla-326

tion. However, in the post-inflationary era, when f de-327

creases, the part that provides a scale-invariant spec-328

trum during inflation decays and the next order term329

becomes dominant, giving an EM ∝ k3 spectrum in the330

superhorizon limit. In this case, when α = 2, the maxi-331

mum possible value of the reheating temperature is ap-332

proximately 50GeV. This value is different from the333

value given by SSS, which was 4000GeV. This difference334

is due to the fact that in SSS, the extra amplification due335

to the presence of the helical term was not considered336

in the post-inflationary matter-dominated era.337

In BS, we focussed on two sets of runs—one for a re-338

heating temperature of around 100GeV and another for339

150MeV. The corresponding values of β where then 7.3340

and 2.7, respectively. We begin with similar choices of β341

here, too. It turns out that for 150MeV, the appropri-342

ate value is now β = 2.9, but for the standard scenario343

with α = 2, for the reasons explained above, models344

for 100GeV would not be allowed in the helical case,345

because they would lead to strong backreaction, which346

forces us to choose ≈ 10GeV instead. In that case, the347

appropriate value would be β = 7.7; see Table 1 for a348

summary of parameter combinations and Appendix A349

for further details. To facilitate comparison with BS,350

we have reduced the value of Tr to 8GeV, which then351

corresponds to β = 7.3.352
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Figure 1. Evolution of (a) Brms and (b) EGW for Runs B (with helicity, red lines) and Bn (without helicity, blue lines), both
with β = 7.3, compared with two versions of Run B1 of BHKRS with CME and different initial field strengths. The two orange
lines denote Run B1 of BHKRS with the original and a 1012 times weaker initial field. Note that for the helical growth, the
slopes change with a(η), which is a consequence of the helical term.

Table 1. β for different values of Tr, α, and γ.

Tr [GeV] EEM α β γ EM(ηini, k)

10 0.07 2 7.7 1 ∝ k3

8 0.01 2 7.3 1 ∝ k3

0.15 0.01 2 2.9 1 ∝ k3

460 0.01 −3 3 2.5 ∝ k−1

3× 105 0.01 1 1.7 1 ∝ k5

In this paper, we also explore the possibility of a353

smaller value of α. This allows for higher reheating tem-354

perature scales without having any back-reaction prob-355

lem in the post-inflation matter-dominated era. For the356

case α = 1, the value of the reheating temperature is357

3 × 105 GeV when the Hubble parameter during infla-358

tion is Hf = 1014 GeV and the total EM energy density359

is 1% of the background energy density at the end of360

reheating. These large values of Hf and Tr were not361

possible for the case when α = 2. This case is listed in362

the last row of Table 1 along with other relevant param-363

eters.364

We also consider the model of Okano & Fujita (2021),365

where f(a) ∝ a−3 both during inflation and in the post-366

inflationary era, i.e., β = 3 = −α. In their model, the367

product βγ was found to be 7.6 so as to have maximum368

magnetic field strength for the case when the total EM369

energy density is 1% of the background energy density;370

see Equation (2.19) of Okano & Fujita (2021). This cor-371

responds to γ = 2.5. In that case, the initial magnetic372

field had a scale-invariant spectrum proportional to k−1
373

in the superhorizon limit.374

For the magnetogenesis model at energy scales be-375

fore the electroweak era, there may be additional376

constraints from baryogenesis in the presence of he-377

lical magnetic fields around the electroweak phase378

transition (Kamada & Long 2016) and from isocurva-379

ture perturbations in the cosmic background radiation380

Kamada et al. (2021). These constraints would disfavor381

such models and should be revisited in future work.382

Quantum fluctuations alone would not introduce a383

preference of one sign of helicity over the other, so there-384

fore both A+ and A− would grow at the same rate if385

γ = 0. However, if the magnetic field was fully helical to386

begin with, only one of the two signs of helicity would387

grow, i.e., either A+ or A−, so the field might remain388

helical even though γ = 0 and both solutions would still389

be equally unstable. In the following, we allow for such390

a possibility in some of our simulations.391

3. RESULTS392

3.1. Growth of magnetic field and GW energy393

In Figure 1, we show the growth and subsequent de-394

cay of the root-mean square (rms) magnetic field Brms395

during steps I and II, and compare with a simulation of396

nonhelical inflationary magnetic field generation (simi-397

lar to Run B1 of BS). The pair of helical and nonheli-398

cal runs shown here are referred to as Runs B and Bn,399

respectively. They have β = 7.3 and correspond to re-400

heating temperatures of 8GeV in the helical case and401

100GeV in the nonhelical case; see Table 1 for a sum-402

mary of parameter combinations. The growth is still ap-403

proximately algebraic, but, as expected, it is now faster404

than in the nonhelical case. This is caused by the ex-405

tra amplification resulting from the helical term pro-406

portional to γ. This term is reminiscent of the CME,407

which causes, however, exponential magnetic field am-408

plification (Joyce & Shaposhnikov 1997). The CME has409
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Table 2. Summary of simulation parameters and properties.

Run Tr [GeV] B0 β γ k
(1)
∗ ν EM EEM EM/EEM EGW hrms qM qEM

A 0.15 5× 10−10 2.9 1 7.2 1× 10−4 0.012 0.023 0.51 1.2× 10−5 9.1× 10−3 2.1 1.07

B 10 4× 10−24 7.3 1 17 2× 10−4 0.050 0.11 0.48 6.6× 10−5 3.6× 10−3 2.9 1.37

Bn 10 3× 10−18 7.3 0 7.5 2× 10−4 0.007 0.19 0.04 1.0× 10−3 2.4× 10−2 32 1.30

C 460 1× 10−27 3.0 2.5 15 1× 10−4 0.014 0.017 0.80 1.6× 10−6 8.1× 10−4 1.4 1.14

D 3× 105 5× 10−6 1.7 1 4.3 5× 10−4 0.016 0.025 0.64 8.5× 10−5 7.6× 10−3 2.5 1.58

Dn 3× 105 1× 10−3 1.7 0 1.9 2× 10−4 0.016 0.052 0.30 2.8× 10−3 5.7× 10−2 6.6 1.98

been invoked in the study of GW production from the410

resulting magnetic field both analytically (Anand et al.411

2019) and numerically (Brandenburg et al. 2021c, here-412

after BHKRS). The difference in the temporal growth413

of Brms and EGW between the CME and helical mag-414

netogenesis is demonstrated in Figure 1. Here we have415

also overplotted two versions of Run B1 of BHKRS. (We416

stress that this Run B1 is different from the Run B1 of417

BS.)418

During the subsequent decay phase, Brms is approx-419

imately equally large for both inflationary and CME420

runs. This is just because of our choice of parame-421

ters. However, owing to the smaller length scales on422

which the CME operates, the corresponding GW en-423

ergy is now much smaller than for inflationary mag-424

netogenesis. On the other hand, we also see that the425

growth, being exponential, is much faster for the CME426

runs than for both the helical and nonhelical inflationary427

magnetogenesis models. This implies that the CME can428

reach saturation with an arbitrarily weak initial seed429

magnetic field. The saturation amplitude does, how-430

ever, depend on the assumed initial imbalance of left-431

and right-handed fermions, and may, in reality, be much432

smaller than what has been assumed in the models of433

BHKRS. By contrast, the maximum field strength from434

inflationary magnetogenesis is determined by demand-435

ing that the total EM energy density is some fraction of436

the background energy density at the end of reheating437

so that there is no back-reaction.438

In Table 2, we summarize quantitative aspects of our439

new runs, Runs A–D, as well as two nonhelical ones,440

Runs Bn and Dn, where γ = 0. We list the reheating441

temperature Tr in GeV, the amplitude parameter B0 for442

the initial magnetic field, the aforementioned parame-443

ters β, γ, k
(1)
∗ , and ν, as well as the output parameters444

EM, EEM ≡ EE + EM, the ratio EM/EEM, the values of445

EGW and the rms strain hrms = 〈h2
+ +h2

×〉1/2, as well as446

two different efficiency parameters qM and qEM, defined447

below.448

As in BS, varying the initial magnetic field strength449

B0 always resulted in a purely quadratic change of EM,450

and a quartic change of EGW. It therefore suffices to451

present, for each combination of parameters β and γ,452

only one value of B0, typically such that EEM is roughly453

in the expected range of between 0.01 and 0.1.454

Comparing helical with nonhelical runs for similar val-455

ues of EM, the GW energies and strains are smaller than456

in the earlier cases without helicity (see also Figure 1).457

This may suggest that GW production from helical in-458

flationary magnetogenesis is somewhat less efficient than459

for the nonhelical case. However, while the values of EM460

are the same, the total EM energies, EEM = EE + EM,461

are not. In fact, we see that the ratio EE/EM is typically462

0.3–0.5, i.e., the electric energy contribution is subdomi-463

nant during the post-inflationary matter-dominated era.464

For nonhelical magnetogenesis, by contrast, the electric465

energy is dominant, typically with EE/EM = 10–30 for466

β between 2.7 and 7.3.467

As already noted, for fixed values of β and γ, the dif-468

ferent values of EM, EEM, EGW, and hrms are directly469

related to the initial amplitude parameter B0. To com-470

pare runs with different parameters β and γ, we must471

therefore compute normalized efficiencies. Earlier work472

(Roper Pol et al. 2020b; Brandenburg et al. 2021b) sug-473

gested that EGW = (qMEM/kc)
2, where qM is the effi-474

ciency and kc is a characteristic wavenumber. In analogy475

to their work, we now postulate an analogous relation,476

but with EEM instead of EM, i.e.,477

EGW = (qEMEEM/kc)
2, (9)478

where qEM is a new efficiency parameter, and for kc we479

always take the value kc = k∗(1), just like in BS. We480

recall that in Equation (9), EGW and EEM are in units of481

the radiation energy density at η = 1 and kc is in units482

of Hr/c.483

For nonhelical magnetogenesis, BS found that qM was484

proportional to β. Since k∗(1) was also proportional485

to β, this meant that the effect of dividing by k∗(1)486

was effectively canceled, and that therefore a good scal-487
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Figure 2. EM(k) (red lines), EE(k) (orange lines), and EGW(k) (blue lines) for (a) Run B, (c) Run C, and (e) Run D, together
with the associated collapsed spectra φM(κ) (red lines), φE(κ) (orange lines), and φGW(κ) (blue lines) for (b) Run B, (d) Run C,
and (f) Run D. The spectral GW energy increases at a rate that is independent of k, but the exponent characterizing the growth
of EM(k) does depend on k.

ing was obtained by just plotting EGW versus E2
M, sug-488

gesting that the 1/kc scaling may not have been real.489

However, our new results for helical magnetogenesis now490

show that this is not the case for qEM. In fact, looking491

at Table 2, where we present both qM and qEM, we see492

that qM shows significant variations (1.4 <∼ qM <∼ 32),493

while qEM changes comparatively little (1 <∼ qEM <∼ 2).494

This suggests that the GW energy is indeed governed495

by qEM, and is then only weakly dependent on the value496

of β.497

Among the four runs A–D, Runs A and B have the498

same values of α and γ, their initial spectra are the same499

(see Table 1), and only the values of β are different. For500

Runs C and D, on the other hand, also the values of501

γ and α were different. In the following, therefore, we502

focus on presenting Runs B–D in more detail.503

3.2. Energy spectra504

Next, we compare Runs B, C, and D by looking at505

the GW and magnetic energy spectra for step I during506

−0.9 ≤ η ≤ 1, where we also compare with electric507

energy spectra. As in BS, we try to collapse the spectra508

on top of each other by plotting the functions509

φλ(κ) = (η + 1)−(pλ+1)Eλ(k, η), (10)510
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Figure 3. Visualizations of Bz for Runs B (top), C (middle), and D (bottom) on the periphery of the computational domain for
η = −0.8, −0.5, 0, and 1 during step I. The color scale is symmetric about zero and adjusted with respect to the instantaneous
extrema.

where λ = E, M, or GW for electric, magnetic, and GW511

energies, respectively, pλ are exponents characterizing512

the growth, and513

κ(η) = k/k∗(η) (11)514

is a time-depended wavenumber where the EM energy515

spectra peak. We show the result in Figure 2, where516

we plot both Eλ(k, η) and φλ(κ) for Run B in panels517

(a) and (b), Run C in panels (c) and (d), and Run D518

in panels (e) and (f). The values of pλ are listed in519

Table 3 for Runs A–Dn. We see that the tendency of520

the lines to collapse on top of each other is better for the521

GW spectra than for the electric and magnetic spectra.522

This shows that those latter two are not shape-invariant.523

This is clearly different from the nonhelical case; see the524

corresponding Figure 3 of BS.525

Interestingly, except for the GW spectra, which show526

power law scalings with EGW(k) ∝ k for k < 2k∗(1)527

and EGW(k) ∝ k−46 for k > 2k∗(1) (for Run B), the528

EM spectra deviate from power law scaling and show529

a more peaked spectrum for k < k∗(1). The growth is530

fastest in the model with β = 7.3, as is indicated by531

the spectra spanning about forty orders of magnitude532

and by the large values of pM and pGW; see Table 3 for533

Run B. For Runs C and D, the spectra are progressively534

more shallow.535

For the GW spectrum of Run D, there is a dip at κ ≈536

0.17 (and at decreasing values of k as time increases).537

This coincides with the wavenumber where k2 = a′′/a538

and thus, where the solution to Equation (7) changes539

from oscillatory to temporally growing behavior. This540

feature is now so prominent, because the growth of the541

magnetic field for Run D is much slower than for Runs B542

and C.543

Table 3. Values of β, pM, and pGW for Runs A–Dn.

Run A B Bn C D Dn

β 2.9 7.3 7.3 3 1.7 1.7

pM 12 30 28 16 4.0 3.8

pGW 22 62 53 29 4.9 4.6
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Figure 4. Temporal dependence represented through a(η)
of spectral energies at k = 2 (solid lines) and k = 10 (dashed
lines) for Run C with EM(η, k) (red lines), EE(η, k) (orange
lines), and EGW(η, k) (blue lines).

Visualizations of the magnetic field on the periphery544

of the computational domain are shown in Figure 3 for545

Runs B–D. We see that the typical length scales increase546

with time, but again faster for Runs B and C than for547

Run D.548

To study the temporal growth for specific values of549

k, we show in Figure 4 the dependencies of EE(η, k),550

EM(η, k), and EGW(η, k) separately for k = 2 and 10551

for Run C, where the departure from shape-invariant552

behavior appears to be the strongest. We clearly see553

that the growth of EGW(η, k) is the same for all values554

of k. This is in agreement with the visual impression555

from Figure 2. It is also the same at early and late556

times. This is not the case for the electric and magnetic557

spectra, where we have a growth proportional to a7.5 for558

k = 2 and small values of a, but a faster growth ∝ a16559

for k = 10 and a(η) > 0.1.560

When the mode corresponding to a certain wavenum-561

ber k is well outside the horizon, the f ′′/f term within562

the round brackets of Equation (4) dominates over the563

other two terms, and the amplitude of the mode grows564

in time. Once the mode is about to enter the horizon,565

the second term also comes into the picture and further566

enhances the growth rate for γ = 1. This behavior is567

shown in Figure 4.568

To understand the nearly shape-invariant scaling of569

EGW(η, k), it is important to look at spectra of the570

stress. This is done in Figure 5, where we show spec-571

tra of the stress, decomposed into tensor, vector, and572

scalar modes (Mukhanov et al. 1992). The tensor mode573

is the transverse-traceless contribution to the stress,574

while the vector and scalar modes are composed of575

vortical and irrotational constituents, respectively; see576

Figure 5. Spectra of the total stress at η = −0.2, 0.1, 0.5,
and 1, decomposed into tensor (solid black), vector (dashed
red), and scalar modes (dotted blue) for Run B of Figure 2.

Brandenburg et al. (2021b) for such a decomposition of577

data from earlier GW simulations. We see that at all578

times during step I, the scalar and vector modes are sub-579

dominant. In particular the peak of the stress spectrum580

is, to a large fraction, composed of the tensor mode only.581

As expected from the work of Brandenburg & Boldyrev582

(2020), its spectrum follows a k2 subrange to high pre-583

cision.584

Comparing the different models, we see that for κ ≪ 1,585

we reproduce the initial scalings φM ∝ κ3 for Run B and586

∝ κ5 for Run D, with a shallower scaling by a factor κ2
587

for the electric fields, in particular the φE ∝ κ−3 scaling588

for Run C. For κ ≫ 1, we have a progressively shallower589

decline ∝ κ−46, κ−20, and κ−4 as we go from Run B to590

Runs C and D.591

3.3. Spectra in step II592

In step II, a velocity field emerges, driven by the593

Lorentz force. This causes the magnetic field to de-594

velop small-scale structure, as can be seen from Fig-595

ure 6(a). This leads to a turbulent cascade that has596

here a spectrum proportional to k−3 for large k; see597

Figure 6(b). Contrary to BS, the new GW spectrum598

now shows a flat power law scaling for k < 2k∗(1) with599

EGW(k) ∝ k0, i.e. kEGW(k) ∝ k1. Such a scaling was600

already found by Roper Pol et al. (2020b). The reason601

for this lies in the direct correspondence with the rele-602

vant magnetic stress for the blue-tilted magnetic energy603

spectrum, where EM(k) has an increasing slope with604

an exponent larger than two, which corresponds to a605

white noise spectrum. In that case, this stress itself al-606

ways has a white noise spectrum and cannot be steeper607

than that. This was shown by Brandenburg & Boldyrev608

(2020), who just considered the stress spectrum and ig-609
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Figure 6. Early times in the beginning of the radiation-dominated phase for (a) Run B (η = 1.06, 1.2, 1.4, 1.6, and 2.1), (c)
Run C (η = 1.06, 1.9, 2.7, 3.3, and 4.1), and (e) Run D (η = 1.6, 2.1, 3.6, and 6.1). EM(k), EK(k), and EGW(k) are shown
as dashed red, dotted green, and solid blue lines, respectively. The last times are shown as thick lines. Later times are shown
separately for (b) Run B (η = 2, 6, 16, and 52), (d) Run C (η = 11, 26, and 52), and (f) Run D (η = 11, 26, 51, 101, and 213).
The red and blue vertical dashed-dotted lines goes through k∗(1) and 2k∗(1), respectively. Again, thick lines denote the last
time. The arrow in panel (d) highlights the sense of time, where EGW(k) declines at large values of k.

nored temporal aspects, i.e., they did not consider solu-610

tions to the GW equation.611

As in BS, the GW spectrum shows a marked drop612

by about six orders of magnitude for Run B, which is613

slightly more than what was found in BS and also in614

Brandenburg et al. (2021a). We return to this in Sec-615

tion 3.4, but we note at this point that for k ≫ 2k∗(1)616

in Runs B and C, the spectral GW energy beyond the617

drop, which is very small already, becomes even smaller618

as time goes on. This is indicated by the arrow in Fig-619

ure 6(d). Eventually, the spectrum settles at a level close620

to the fat blue lines in Figure 6, which marks the last621

time. Furthermore, at late times, Figure 6(b) shows622

clear inverse cascading with the peak of the magnetic623

spectra traveling toward smaller k; see the red dashed624

lines in Figure 6. The height of the peak is expected625

to stay unchanged (Brandenburg & Kahniashvili 2017),626

but our present runs show a small decline with time.627

This is predominantly a consequence of the conductivity628

still not being high enough. Larger conductivity would629
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Figure 7. (a) h2
0ΩGW(fphys) and (b) hc(fphys) for Runs A–D Tr ranging from 150MeV to 3 × 105 GeV. In (a),

dashed lines denote nonhelical runs and dashed-dotted show the result for gr = 62. In (b), the dotted lines denote
1.26× 10−18

√

h2
0ΩGW (1Hz/fphys) (Maggiore 2000), and are labelled as “from ΩGW”.

require larger numerical resolution, which would begin630

to pose computational memory problems.631

In step II, the GW spectrum is now fairly flat, EGW ∝632

k0 for Runs B and C, and with a slight rise ∝ k633

for Run D. Therefore, the GW energy per logarithmic634

wavenumber interval, normalized by the critical energy635

density for a spatially flat universe, is ΩGW ∝ kEGW ∝636

k1 for Run B, and perhaps even slightly shallower for637

Run C, and ∝ k2 for Run D. Thus, as already seen638

in many earlier numerical simulations of turbulence-639

driven GWs (Roper Pol et al. 2020b, BHKRS), this640

is shallower than the previously expected k3 scaling641

(Gogoberidze et al. 2007; Okano & Fujita 2021). In the642

present case, during the onset of MHD turbulence, the643

spectrum has changed from a k1 spectrum to a k0 spec-644

trum. As explained in Appendix F of BS, this is associ-645

ated with the discontinuous behavior of f ′/f and f ′′/f .646

They concluded that the change from a k1 spectrum to647

k0 occurs when the growth of EM energy has stopped.648

This is at the same time when f ′ = f ′′ = 0, but it is not649

a direct consequence of the discontinuity at η = 1 and650

therefore not an artifact.651

We see clear inverse cascading in the magnetic en-652

ergy spectra with the peak of the spectrum mov-653

ing toward smaller k. This has been investi-654

gated in detail in many earlier papers (Hatori 1984;655

Biskamp & Müller 1999; Kahniashvili et al. 2013); see656

Brandenburg & Kahniashvili (2017) for a demonstra-657

tion of the self-similarity of the magnetic energy spec-658

tra. The conservation of mean magnetic helicity density,659
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〈A ·B〉, implies a growth of the correlation length and a660

corresponding decay of the mean magnetic energy den-661

sity such that 〈A · B〉 ≈ ±B2
rmsξM ≈ const for fully662

helical turbulence, where the two signs apply to positive663

and negative magnetically helicities, respectively.664

3.4. Observable spectra665

In Figure 7, we show the final spectra of ΩGW and666

hc versus temporal frequency fphys = kHr/2πa0 for the667

present time. The frequency fphys is not to be con-668

fused with the function f(a), defined in Equation (3),669

which does not carry any subscript. In principle, such670

spectra should have been computed from a temporal671

Fourier transform. The equivalence between spatial and672

temporal Fourier spectra was demonstrated by He et al.673

(2021), who also showed that there are significant dif-674

ferences when the dispersion relation is modified by a675

finite graviton mass. However, temporal spectra tend676

to be more noisy owing to smaller statistics, which is677

why those are not used here. Both the strain and en-678

ergy spectra are scaled for the corresponding values of Tr679

between 150MeV and 3 × 105 GeV. We have indicated680

spectra for the nonhelical case as dashed lines.681

The spectra in Figure 7 show different shapes of the682

ΩGW spectra for helical and nonhelical runs. This may,683

to some extent, be caused by the larger values of k∗(1)684

in these helical runs. The drop beyond the peak is here685

actually weaker than in the nonhelical case. This was686

different from what was found in previous simulations687

(Roper Pol et al. 2020b; Brandenburg et al. 2021a), and688

may be related to the presence of a weaker forward cas-689

cade in favor of a stronger inverse cascade in helical tur-690

bulence (Pouquet et al. 1976). Note also that for Run B691

with the largest value of β, the change from the scaling692

ΩGW ∝ fphys is much sharper in the case with helicity693

than without, where the spectra are much rounder.694

In the model with Tr = 150MeV, we compare the GW695

spectra generated both before and after the QCD phase696

transition, where gr changes by a factor of about four697

from 62 to about 15. This leads to a decrease in fre-698

quency by a factor ∝ g
1/2
r of about two, and an increase699

in GW energy by a factor ∝ g
1/3
r of about 1.6.700

We see that the high Tr model is different from the701

other models with lower Tr in several respects. The drop702

in GW energy above the maximum is now absent and703

the inertial range slope is no longer ∝ fphys, but ∝ f2
phys.704

This is mainly caused by the small value of β, which re-705

sults in a slower growth. At the same time, the spectral706

peak at k∗(η) still moves to smaller values, as before.707

This causes the slope for k > 2k∗(1) to be shallower708

than in the other models with larger values of β. The709

slope is then also inherited in step II, and it is then not710

much affected any more by the emerging turbulence.711

The model of Okano & Fujita (2021) with Tr =712

460GeV corresponds to our Run D. They also studied713

GW production, but they did not include the turbulent714

phase after reheating. Comparing our Figure 7 with Fig-715

ure 5 of Okano & Fujita (2021), we see that the peak716

values are slightly different. Our spectral peak is at717

approximately h2
0ΩGW ≈ 10−11, while their peak value718

without the h2
0 factor is ΩGW ≈ 10−12. Furthermore,719

as we saw already from Figure 6, the slope of EGW(k)720

was slightly negative close to the peak. Therefore, the721

ΩGW(k) ∝ kEGW(k) is now nearly flat. This is quite722

different from Figure 5 of Okano & Fujita (2021), which723

had a clear ΩGW(k) ∝ k3 range below the peak. The724

frequency corresponding to the peak is also slightly dif-725

ferent, but this is to some extent explained by their fre-726

quency lacking a 2π factor.727

3.5. Circular polarization728

In Figure 8(a), we plot the time-averaged frac-729

tional circular polarization spectrum of GWs, PGW(k),730

for Run B. It is defined as (see Equation B.17 of731

Roper Pol et al. 2020a)732

PGW(k) =

∫

2 Im h̃+h̃
∗

× k2dΩk

/
∫

(

|h̃+|2 + h̃×|2
)

k2dΩk.

(12)733

In Figure 8(b), we show the fractional magnetic helicity734

spectrum,735

PM(k) = kHM(k)/2EM(k), (13)736

where HM(k) is the magnetic helicity spectrum, normal-737

ized such that
∫

HM(k) dk = 〈A · B〉. Unlike the GW738

spectrum, which is statistically stationary and we can739

take a long-term average, the magnetic field develops a740

forward cascade and decays at the same time. During741

that time, the kinetic energy density has a maximum,742

which marks the moment when the turbulent cascade743

has developed. We have therefore decided to take a744

short-term average of the magnetic helicity and energy745

spectra around the time when the kinetic energy density746

is within about 70% of its maximum value.747

We also compare with the corresponding spectrum748

from Run B1 of BHKRS with CME (not to be confused749

with Run B1 of BS). Except for a hundredfold shift to-750

ward larger k, the shapes of PGW(k) are similar in that751

both have a plateau with PGW(k) ≈ 1 and a similar752

decline toward smaller values of k.753

Toward larger values of k, we see a drop in PGW(k)754

that is superficially similar to the drop in GW energy—755

at least for the present runs. In the runs driven by the756
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Figure 8. (a) PGW(k) and (b) PM(k) for Run B (with k1 = 1; blue dotted lines) and a corresponding run with k1 = 0.2 (red
solid lines), as well as for Run B1 of BHKRS (orange dashed line). The vertical dashed-dotted lines mark the positions of k∗(1)
in (a) and (b) and of 2k∗(1) in (a).

CME, such a drop is absent. However, the drop in the757

GW energy spectra for large k is probably not related to758

the drop seen in the polarization spectra, where it ap-759

pears for a larger k value of nearly 4k∗(1). Furthermore,760

at about k = k∗(1), we rather see that PGW(k) declines761

toward smaller k values, i.e., for k < 2k∗(1).762

We have confirmed that the decline below k = k∗(1)763

is not related to the finite domain size. We have also764

performed a simulation with a five times larger domain,765

where k1 = 0.2 instead of k1 = 1. By comparing these766

two runs, we recovered essentially the same PGW(k) pro-767

file. This is shown in Figure 8 as the red solid line,768

which agrees with the blue dotted one for not too small769

k values. In particular, we see that there is evidence770

for a linear scaling of the fractional polarization, i.e.,771

PGW(k) ∝ k.772

Comparing with the fractional magnetic helicity spec-773

trum, PM(k), we see that it also declines toward smaller774

k, but this happens more slowly. In fact, for Run B,775

where PGW(k) already declines, PM(k) is just reach-776

ing its maximum. For larger values of k, we see that777

PM(k) already declines for Run B while PGW(k) is still778

at its plateau. However, for the CME runs, no decline779

in PM(k) is seen.780

3.6. Present day values781

The values of EM listed in Table 2 gave the magnetic782

energy fraction of the radiation energy at η = 1. To783

obtain the comoving rms magnetic field in gauss, we784

set B2
rms/8π = EM (π2g0/30) (kBT0)

4/(~c)3, where g0 =785

3.38 and T0 = 2.7K is the present day temperature, kB786

is the Boltzmann constant, and ~ is the reduced Planck787

constant. By using EEM = 0.01 in all cases, we can788

compute EM by taking the EM/EEM ratios from Table 2789

for Runs A–D. Likewise, we use Equation (9) with the790

qEM values listed in that table and compute h2
0ΩGW from791

EGW by multiplying with the appropriate dilution factor.792

At η = 1, the typical magnetic correlation length is793

taken to be ξM = c/Hrk∗(1). To compute the present794

values, we assume turbulent inverse cascading at con-795

stant magnetic helicity until the matter-radiation equal-796

ity using Beq
rms = Br

rmsη
−1/3
eq and ξeqM = ξrMη

2/3
eq , where797

ξrM = (a0/ar) ξM and superscripts ‘r’ and ‘eq’ indi-798

cate comoving values at reheating and matter–radiation799

equality, respectively. The value of ηeq is obtained by800

using g
1/3
eq aeqTeq = g

1/3
r arTr, implied by the adiabatic801

evolution of the Universe and aeq = ηeq, where we take802

Teq = 1eV and geq = 3.94. The results are listed in803

Table 4.804

We emphasize here that, unlike the magnetic field,805

which can have much larger length scales owing to in-806

verse cascading (Pouquet et al. 1976), this is not the807

case for GWs. This is because GWs are governed by the808

imprint from the time when the stress was maximum.809

4. CONCLUSIONS810

The present work has demonstrated that helical infla-811

tionary magnetogenesis modifies the nonhelical case in812

such a way that the electric and magnetic power spectra813

become strongly peaked at a finite wavenumber, corre-814

sponding typically to about a tenth of the horizon scale815

at η = 1. Such a distinct wavenumber does not exist816



14

Table 4. Present day values for Runs A–D using parameters from Table 2 as input, assuming always EEM = 0.01.

Run Tr [GeV] ηeq ξrM [Mpc] ξeqM [Mpc] Br
rms [G] Beq

rms [G] EGW h2
0ΩGW

A 0.15 3.8× 108 5.8× 10−8 3.0× 10−2 3.0× 10−7 4.2× 10−10 2.2× 10−6 4.3× 10−11

B 10 2.8× 1010 3.2× 10−10 2.9× 10−3 2.9× 10−7 9.6× 10−11 5.3× 10−7 9.2× 10−12

C 460 1.4× 1012 8.0× 10−12 9.9× 10−4 3.8× 10−7 3.4× 10−11 5.3× 10−7 8.5× 10−12

D 3× 105 9.0× 1014 4.5× 10−14 4.2× 10−4 3.4× 10−7 3.5× 10−12 1.4× 10−5 2.2× 10−10

in the nonhelical case. Except for the scale-invariant817

scaling in Run C at superhorizon scales, this leads to818

extremely blue spectra of electric and magnetic fields.819

Nevertheless, the total stress has still always a purely820

white noise spectrum and therefore also the GW field821

has a white noise spectrum below its peak value. Fur-822

thermore, for runs with large values of β, the onset of the823

drop toward larger frequencies is much sharper in runs824

with helicity than without. These aspects can have ob-825

servational consequences. In particular, there would be826

more power at small wavenumbers and frequencies. On827

the other hand, for a certain magnetic energy, helical828

magnetogenesis produces somewhat weaker GWs than829

nonhelical magnetogenesis. However, as we have shown830

here, the appropriate scaling is not with EM, but with831

EEM, and therefore this conclusion is reversed. In fact,832

the fractional contribution of electric fields to the stress833

is much weaker in the helical case than without.834

When studying GW generation from the CME, it835

was anticipated that some general features or behav-836

iors would carry over to other magnetogenesis scenarios.837

In magnetogenesis from the CME, the GW energy was838

well described by a relation EGW = (qMEM/kc)
2, where839

the efficiency qM depended on the value of the conduc-840

tivity and it also depended on which of the two possible841

regimes one is in. The possibility of two different regimes842

seems to be a special property of the CME that has not843

yet been encountered in other magnetogenesis scenarios.844

Also the presence of a conservation law of total chirality845

in the CME has no obvious counterpart in inflationary846

magnetogenesis, where magnetic helicity conservation is847

not obeyed during magnetogenesis in step I.848

On the other hand, both the CME and helical infla-849

tionary magnetogenesis can produce circularly polarized850

GWs. However, the CME operates only on very small851

length scales that are in practice much smaller than852

what is shown in Figure 8, where an unphysically large853

chiral chemical potential was applied, just to see what854

GW strengths would then be possible. This naturally855

raises the question whether some combination of CME856

and inflationary magnetogenesis could produce either857

stronger or larger scale magnetic fields. A problem lies858

in the fact that the CME requires electric conductivity.859

It could therefore only be an effect that operates after860

inflationary magnetogenesis and during the radiation-861

dominated era. It could then enhance the magnetic field,862

but the resulting additional magnetic field would then863

only be of short length scales. Nevertheless, the preced-864

ing inflationary stage could lead to somewhat stronger865

fields and could thereby also produce stronger GWs.866

Another interesting effect could be the intermediate pro-867

duction of an imbalance of fermions from the magnetic868

field produced by inflationary magnetogenesis. This as-869

pect has recently been explored by Hirono et al. (2015)870

and, in particular, by Schober et al. (2020) who showed871

that this effect is indeed only an intermediate one, be-872

cause at late times, the chiral imbalance always gets873

converted back into magnetic fields.874

When comparing a plot of EGW versus EM from in-875

flationary magnetogenesis, the work of BS has shown876

that a scaling of the form EGW ∝ E2
M was obtained.877

Our new results for helical inflationary magnetogene-878

sis explicitly confirm a 1/kc dependence, but here with879

EGW = (qEMEEM/kc)
2, where qEM shows only a very880

weak dependence on β. Here, kc = k∗(1) has been used881

(as in BS), and qEM = 1–2 has been found as a fit pa-882

rameter. Note, however, that the formula for EGW in883

terms of EEM is entirely empirical. It would be impor-884

tant to produce some more robust analytic justification885

or refinements to this expectation.886

Of observational interest may also be the profile and887

slope with which PGW(k) increases at low k. Interest-888

ingly, the fractional polarization continues to be nearly889

100% for a range of wavenumbers around the GW peak890

at 2k∗(1), but shows a decline for small k.891
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Table 5. Model parameters for different values of Tr.

Tr α γ EEM Hf [GeV] Nr N β gr EM(ηini, k)

10GeV 2 1 0.07 2.3× 10−11 8.1 31.1 7.7 86 ∝ k3

8GeV 2 1 0.01 2.8× 10−11 8.6 31.1 7.3 86 ∝ k3

120MeV 2 1 0.01 1.2× 10−3 26.5 35.5 2.7 20 ∝ k3

150MeV 2 1 0.006 2.7× 10−4 24.5 35.1 2.9 61.75 ∝ k3

460GeV −3 2.5 0.01 1.7× 10−8 7.3 32.9 3 106.75 ∝ k−1

3× 105 GeV 1 1 0.01 1014 32.1 53.4 1.7 106.75 ∝ k5

Software and Data Availability. The source code903

used for the simulations of this study, the Pencil Code904

(Pencil Code Collaboration et al. 2021), is freely avail-905

able on https://github.com/pencil-code/. The DOI906

of the code is https://doi.org/10.5281/zenodo.2315093907

v2018.12.16 (Brandenburg 2018). The simula-908

tion setup and the corresponding data are freely909

available on doi:10.5281/zenodo.5137202; see also910

https://www.nordita.org/∼brandenb/projects/HelicalMagnetoGenesisGW/911

for easier access of the same material as on the Zenodo912

site.913

APPENDIX914

A. RELATION BETWEEN β AND THE915

REHEATING TEMPERATURE916

We discussed in Section 2.3 various combinations of917

model parameters β and γ for a chosen value of Tr. For918

the nonhelical case with γ = 0, details were already919

given in Appendix A of BS. The expression correspond-920

ing to Equation (A1) of BS is obtained as follows.921

Details of the helical magnetogenesis model are ex-922

plained in SSS. The expressions below their Equa-923

tions (23) and (29) represent the solution for the scaled924

vector potential Ah during inflation and the matter-925

dominated era, respectively, and are given by926

A1h(η) =
e−hπα/2

√
2k

Wiαh,α+ 1

2

(2ikη), (A1)927

A2h(ζ) = d1M2iβh,−(2β+ 1

2
)(2ikζ) + d2M2iβh,2β+ 1

2

(2ikζ).

(A2)

928

929

Here h = ±1, ζ is a time variable during the matter-930

dominated era defined in SSS as ζ ≡ η − 3ηf , where ηf931

is the value of conformal time at the end of inflation,932

and W and M represent the Whittaker functions of the933

first and second kind. The coefficients d1 and d2 are934

obtained by the matching Ah ≡ Ah/f and its deriva-935

tives at the end of inflation. In SSS, only the Ah in936

the superhorizon limit during the matter-dominated era937

was considered. Since this solution does not incorporate938

the extra growth of the modes when they start entering939

the horizon (as evident from Figure 2), we consider the940

full solution given in Equation (A2) in the present pa-941

per. By considering the full solution, we obtain d1 and942

d2 and, further using Equation (29) in Equations (17)943

and (18) of SSS, we obtain the magnetic and electric944

energy densities during the matter-dominated era. De-945

manding that the total EM energy be smaller than the946

background energy density at the end of inflation, we947

calculate the value of the Hubble parameter during in-948

flation, Hf , for given values of Tr, α, and EEM. Further,949

using these values, we estimate the value of β ≡ 2N/Nr,950

where N and Nr are the number of e-folds during in-951

flation and the post-inflationary matter-dominated era,952

respectively. We provide these values in Table 5 along953

with the initial magnetic field spectrum in the super-954

horizon limit during the matter-dominated era and the955

value of the relativistic degrees of freedom at the begin-956

ning of the radiation-dominated era, gr.957
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