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Abstract

The process of converting electromagnetic energy into magnetohydrodynamic energy is

crucial during the reheating phase in the early universe, occurring at the end of inflation

and before the radiation-dominated era emerges. Our objective is to look at some toy

model about how energies are converted from electromagnetic energy into magnetohy-

drodynamic energy when the universe goes from low conductivity to a high conductivity

medium. The findings from our study reveal that the primary source of conversion into

kinetic and thermal energies is the dissipation of electric energy, with magnetic energy

playing a secondary role in this transformation. This implies that, since electric energy

is dominant over magnetic energy during inflation and reheating, substantial amounts

of electric energy can be efficiently converted into magnetohydrodynamic energy when

conductivity becomes significant before the corresponding length scales enter the horizon

and stabilize.
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1 Introduction

In our present universe, magnetic fields undergo a constant process of regeneration through

dynamo mechanisms, operating at scales ranging from individual galaxies to large galaxy clus-

ters. This magnetic field rejuvenation primarily draws its energy from gravitational forces,

which manifest through processes like accretion or direct collapse. It is worth noting that mag-

netic fields may also extend to even larger spatial scales. However, according to Durrer and

Neronov 2013 and Subramanian 2016, when we venture into the spaces between galaxy clusters,

often referred to as cosmic voids, the conventional wisdom suggests that generating magnetic

fields through contemporary dynamo action becomes exceedingly challenging. Nevertheless,

we have indirect evidence pointing to the existence of magnetic fields in these cosmic voids.

Specifically, we have lower limits on magnetic field strength derived from observations of halos

surrounding blazars, which are active galactic nuclei emitting TeV photons. These high-energy

photons interact with the extragalactic background light via inverse Compton scattering, pro-

ducing GeV photons as a result. Interestingly, we don’t observe these secondary GeV photons.

One plausible explanation is the presence of an intervening magnetic field, estimated to be

around 10−16 Gauss, spread over a megaparsec scale (Neronov and Vovk 2010 and Taylor,

Vovk, and Neronov 2011). It is also worth noting that there could be other factors contributing

to the non-observation of GeV photons, such as plasma instabilities, which may interfere with

the electron-positron beam (Broderick, Chang, and Pfrommer 2012 and Broderick, Tiede, et al.

2018). However, even in such scenarios, a portion of the disruption in the plasma beam might

still be attributed to the presence of magnetic fields (Sironi and Giannios 2014). This could po-

tentially provide an explanation for the GeV halos seen around at least some blazars (Batista,

Saveliev, and Gouveia Dal Pino 2019). If indeed magnetic fields exist on truly cosmic scales,

they might have originated in the primordial phases of the universe. This implies that they

could have been created during or prior to the radiation-dominated era of the universe, perhaps

during one of the cosmological phase transitions or even during the inflationary period. Notably,

inflation is a phase where the conversion from electromagnetic fields to magnetohydrodynamic

fields played a significant role, which is our topic of interest.

The end of reheating in the early universe refers to a crucial period after cosmic inflation,

a hypothetical rapid expansion that occurred shortly after the Big Bang. According to the

theory of inflation, the universe experienced exponential growth, stretching out its fabric and

smoothing out irregularities.

According to the theory of inflation, the universe was dominated by an inflaton field—a

scalar field responsible for driving inflation. As inflation ended, the inflaton field began to

oscillate around the minimum of its potential energy. During these oscillations, the energy of

the inflaton field is gradually converted into other particles, a process known as reheating.

Reheating is a significant phase in the early universe because it marks the transition from

the inflationary phase to a radiation-dominated phase, setting the stage for the subsequent

evolution of the universe. The energy transfer during reheating leads to the production of

particles, such as photons, electrons, quarks, and other elementary particles, which eventually
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form the building blocks of matter.

The precise details of the reheating process depend on the specific particle physics model

that describes the inflaton field and its interactions. In some models, reheating is primarily

driven by the decay of the inflaton field into other particles Kofman, Linde, and Starobinsky

1994. The inflaton field’s decay can be a rapid or gradual process, leading to different reheating

scenarios (Ahmed, Grzadkowski, and Socha 2022).

The end of reheating occurs when the energy transfer from the inflaton field to other par-

ticles is complete, and the universe becomes radiation-dominated. At this point, the energy

density of the universe is dominated by the thermal radiation produced during reheating. The

temperature of the universe is determined by the energy of these thermalized particles and sets

the starting conditions for subsequent cosmological epochs, such as Big Bang nucleosynthesis

and the formation of the cosmic microwave background radiation.

Understanding the end of reheating is crucial for cosmology as it connects the physics of

inflation, particle physics, and the early universe. The precise mechanisms and timescales of

reheating are still subjects of active research and depend on the details of the underlying particle

physics model. The study of reheating provides insights into the fundamental processes that

shaped the early universe and its subsequent evolution.
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2 Theory

2.1 Magnetogenesis: Inflation and reheating

Magnetogenesis is a fascinating and complex field within cosmology that seeks to explain the

generation of magnetic fields in the early Universe. These magnetic fields are thought to have

played a crucial role in the evolution of cosmic structures, galaxies, and even in the formation

of our Milky Way galaxy. One of the intriguing aspects of magnetogenesis is its connection to

inflation and reheating, which are pivotal processes in the early Universe’s evolution.

Inflation is a theoretical concept proposed to explain the remarkable uniformity and flatness

of the observable Universe. It posits that a rapid and exponential expansion of the Universe

occurred in its early moments, smoothing out irregularities and setting the stage for the large-

scale structure we observe today.

During this inflationary epoch, as discussed by Mukhanov, Feldman, and Brandenberger

1992, quantum fluctuations in the inflaton field are believed to have given rise to primordial

perturbations, including density fluctuations and gravitational waves.

Reheating is the subsequent process following inflation when the Universe transitions from

this inflationary phase to a radiation-dominated era. It involves the conversion of the energy

stored in the inflaton field into other particles, such as radiation and matter, and marks the

end of inflation.

Magnetogenesis during inflation and reheating is a theory that suggests that magnetic fields

can be generated during these early cosmic epochs. One mechanism for this generation involves

the coupling of the electromagnetic field to the inflaton field. Quantum fluctuations in the

inflaton field can then induce fluctuations in the electromagnetic field, leading to the generation

of primordial magnetic fields.

According to Brandenburg and Sharma 2021 there is a connection between inflation, mag-

netogenesis, and gravitational waves. Gravitational waves are ripples in spacetime predicted

by Einstein’s theory of General Relativity. They can be produced by various astrophysical

processes, including the rapid expansion of the Universe during inflation. Their paper inves-

tigates how magnetogenesis during inflation could leave an imprint on the cosmic microwave

background (CMB) and potentially generate relic gravitational waves. Detecting such gravita-

tional waves would provide valuable insights into the early Universe’s conditions, including the

presence and strength of primordial magnetic fields.

It is important to note that magnetogenesis is a topic of ongoing research, and while it

presents an intriguing connection between inflation, reheating, and the generation of magnetic

fields, there is still much to be understood and confirmed in this field. Researchers continue to

explore various mechanisms and conduct experiments, including observations of the CMB and

gravitational waves, to test and refine our understanding of magnetogenesis and its role in the

cosmic evolution.

In models of inflationary magnetogenesis, it is assumed that conformal invariance is broken

through a coupling to a scalar field, often exemplified by the inflaton. It is worth noting that
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an alternative coupling exists through an axion field, resulting in helical magnetogenesis, but

we will not delve into that aspect here. The dynamics of the scalar field in this context are

intriguing and can be found in Adshead, Jr., et al. 2015, Adshead, Giblin, Scully, et al. 2016 and

Adshead, Giblin, Pieroni, et al. 2020. To simplify the model, it is common practice to replace

this coupling with a prefactor denoted as f 2,’ where f depends on the universe’s scale factor.

This f 2 factor plays a crucial role in the electromagnetic energy contribution to the Lagrangian

density, expressed as f 2F µνFµν with Fµν representing the Faraday tensor, as explained by Ratra

1992. Early approaches to inflationary magnetogenesis faced specific challenges, including the

issues of strong coupling, backreaction problems as described by Demozzi, Mukhanov, and

Rubinstein 2009, and constraints related to the Schwinger effect. The Schwinger effect can lead

to an untimely surge in electric conductivity, short-circuiting the electric field and hindering

further growth of the magnetic field (Kobayashi and Afshordi 2014). This concern is especially

pertinent for models that address the backreaction problem by opting for low-energy scale

inflation (Ferreira, Jain, and Sloth 2013). However, it could be mitigated if charged particles

acquire sufficiently high masses through mechanisms in the early universe (Kobayashi and Sloth

2019). These three issues can be circumvented by imposing certain constraints on the function

f , as described by Sharma, Jagannathan, et al. 2017 and Sharma, Subramanian, and Seshadri

2018. For the specific purpose of discussing the conversion of electromagnetic energy, which is

our primary focus, these models serve as a useful choice.

Three-dimensional simulations of inflationary magnetogenesis have been conducted by as-

suming a sudden transition from an electromagnetic regime devoid of currents to a magnetohy-

drodynamic regime where the displacement current is already disregarded (Brandenburg and

Sharma 2021 and Brandenburg, He, and Sharma 2021). These simulations involve solving the

evolution equations for the scaled magnetic vector potential, denoted as A ≡ fA, within the

Coulomb gauge (see, e.g., Subramanian 2010)[
1

c2
∂2

∂t2
−∇2 − k2

∗(t)

]
A = 0. (1)

Here, k2
∗(t) = f ′′/f is a generation term because it destabilizes the field at large length scales

for wavenumbers k < k∗(t). Analogous to the primes on a(t), primes on f(t) also denote

conformal time derivatives. Toward the end of the reheating phase, where f → 1, we expect

k∗(t) → 0. Our objective is to present calculations where the transition from a vacuum state

to high conductivity is smooth and continuous. To determine the generation term k∗(t), a

commonly used approach is to employ a power-law representation in terms of a(t). Specifically,

during inflation, f follows f ∝ aα with α > 0 while during reheating, it follows f ∝ a−β

with β > 0 (Subramanian 2010). We focus on the reheating phase, where a(t) ∝ t2 (Sharma,

Jagannathan, et al. 2017 and Sharma, Subramanian, and Seshadri 2018) making f equal to 1

when the radiation-dominated era begins, and thus f = 1 and k2
∗(t) = 0 for a > 1. For a < 1

however, we have,

k2
∗(t) = β

[
(β + 1)(a′/a)2 − a′′/a

]
. (2)
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It is important to note that for a = t2, we have a′ = 2t and a′′ = 2, so (a′/a)2 = 4/t2

and a′′/a = 2/t2, and therefore, f ′′/f = 2β(2β + 1)/t2. In contrast to previous numerical

work Brandenburg and Sharma 2021 and Brandenburg, He, and Sharma 2021 the inclusion

of the displacement current is now maintained consistently throughout. However, a challenge

arises as k∗(t) exhibits a discontinuity, transitioning from k2
∗(1) = β(β + 1) ̸= 0 to zero at

the moment when conductivity is activated. In the simulations, this discontinuity did not

appear to significantly affect the results, as the magnetic field at the end of the electromagnetic

phase merely served as an initial condition for the magnetohydrodynamic calculations after the

transition. Nevertheless, in a continuous calculation without such a switch, this issue must be

addressed.

2.2 Conformal time: Cosmological expansion scaled out

Conformal time is a used in cosmology and relativistic physics to describe the progression of

time in a way that accounts for the expansion of the Universe. It is a coordinate system that

scales out the effects of cosmic expansion, making it a useful tool for simplifying the equations

of General Relativity and understanding the evolution of the Universe.

In cosmology, the expansion of the Universe is a fundamental phenomenon described by

Hubble’s law, which states that galaxies are receding from each other, and the rate of recession

is proportional to their distance. This expansion affects not only the spatial dimensions of the

Universe but also the passage of time itself.

Now, to get the conformal time η, we need to solve the equation

dtconf =
dtphys
a(t)

. (3)

So, conformal time can be defined as

tconf =

∫
dtphys
a(t)

. (4)

In this equation, tphys is the proper time, which is the time experienced by an observer at

a particular location in the Universe; and a is the scale factor of the Universe as a function

of cosmic or conformal time. The scale factor represents the relative size of the Universe at

different times.

In the following, however, we always work with conformal time and therefore drop the

subscript from now on.

2.3 Dominance of electric energy over magnetic energy

In the early universe, during the first moments after the Big Bang (at extremely high energies

and temperatures) the behavior of electromagnetic forces, specifically the electric and mag-

netic fields, can differ significantly from what we experience today. In standard hydrodynamic

turbulence, energy dissipation equals the energy input via forcing. However, the presence of
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magnetic fields introduces additional complexity. Energy can be transferred from kinetic to

magnetic energy, working against the Lorentz force. This leads to a situation with two exit

channels, making it unclear which dominates in specific scenarios. This can be further explained

using a reversed dynamo, where at large conductivities, magnetic energy can convert back into

kinetic energy at smaller length scales. Brandenburg and Protiti 2023 focused on the transition

of electric conductivity from zero (vacuum) to high values.

In the scenario where reheating is initiated by the feedback stemming from the Schwinger

effect, we would witness a supply of thermal energy from both ϵK and ϵM. Consequently, this

would establish a direct connection between the ensuing heating process and the emergence of

the parameter σ. This intricate interplay of energy transfer between the magnetic, electric, and

kinetic energy reservoirs is thoughtfully depicted in Figure 1

Figure 1: Energy conversion from magnetic to kinetic energies via the electric energy reservoir.

β 2β + 1 2β + 1/2 k∗(1)

1 3 2.5 2.45

2 5 4.5 4.47

4 9 8.5 8.49

Table 1: Parameters relevant for the models with different values of β.

The wavenumber below which the solution is still unstable, is determined by the generation

term k2
∗(t) ≡ f ′′/f . Table 1 shows that ctk = const ≈ 2β + 1/2 due to the fact that k2

∗(t) =

2β(2β+1)/t2; see Equation (2) and the application to the end of reheating below that equation.

It is easy to see that on large length scales, when the∇2 operator in Equation (1) is negligible

compared with k2
∗(t), we have

Az(x, t) = A0t
2β+1k−1 cos kx, (5)

Az(x, t) = Az/f = A0t
β+1k−1 cos kx, (6)

By(x, t) = A0t
β+1 sin kx, (7)

Ez(x, t) = −∂Az/∂t = −(β + 1)A0t
βk−1 cos kx. (8)

For ckt ≳ 1, which corresponds to the super-horizon scales, where the modes are still in an

unstable state, we observe that tErms/Brms ≈ β + 1. As we move to smaller length scales,
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i.e., for larger values of k, the modes stabilize, and we encounter the familiar behavior of

electromagnetic waves.

We still need to decide when we would start modeling the transition from a vacuum to one

of high conductivity and the related Joule heating, i.e., we need to set values of t0 and ttrans.

We obtain solutions where electromagnetic waves have already been established if we choose a

value of t0 that is too large.
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3 Methods

3.1 The Pencil Code

The Pencil Code refers to a specific software package or framework used for simulating MHD

phenomena using computational methods. It is designed to solve the MHD equations numeri-

cally and simulate the behavior of plasmas in the presence of magnetic fields.

This type of code is useful for understanding complex phenomena like solar flares, magnetic

reconnection, and the behavior of plasmas in fusion reactors Collaboration et al. 2021. In this

study, we employed the Pencil Code, a versatile computational tool widely used for simulating

magnetohydrodynamic (MHD) phenomena.

The Pencil Code is a finite-difference code primarily designed to solve the compressible

MHD equations in a three-dimensional Cartesian grid. It incorporates high-order numerical

schemes for accurate and efficient simulations of fluid dynamics in the presence of magnetic

fields. The code utilizes MPI (Message Passing Interface) for parallel processing, enabling effi-

cient computation on distributed systems. Its modular design allows researchers to easily add

or modify components to suit different problem domains, making it versatile for various scien-

tific simulations. Collaboration et al. 2021 The MHD equations, which describe the evolution

of fluid density, velocity, pressure, and magnetic field, were numerically solved using the Pencil

Code. Spatial derivatives are calculated using central finite differences, ensuring accurate rep-

resentation of gradients even for complex flows. Time integration is achieved through explicit

time-stepping methods, with the Courant-Friedrichs-Lewy (CFL) condition used to determine

the time step size. To simulate physical systems in bounded domains, appropriate boundary

conditions can be imposed on the simulation domain. These included reflective, periodic, and

outflow conditions, depending on the specific scenario being modeled. Careful consideration

was given to the choice of boundary conditions to minimize artificial effects and ensure accurate

representation of the physics. Key simulation parameters, such as domain size, resolution, ini-

tial conditions, and magnetic field strength, were carefully chosen based on the specific scientific

questions under investigation.

3.2 Governing equations

In the post-inflationary era, the MHD equations can be derived from Maxwell’s equations,

which state the fundamentals of electricity and magnetism.

∇ ·E = ρe/ϵ0 [Gauss’s law] (9)

∇ ·B = 0 [Gauss’s law for magnetism] (10)

∇×E = −∂B

∂t
[Faraday’s law of induction] (11)

∇×B = µ0J +
1

c2
∂E

∂t
[Ampere’s law] (12)
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The symbols used here can be defined as following,

E is the electric field

B is the magnetic field

J is the current density

µ0 is the vacuum permeability

c is the speed of light

We begin by studying here a simple one-dimensional model, where an electromagnetic wave

with equal amounts of electric and magnetic energies gets converted into magnetic and kinetic

energies as the conductivity increases and the electric field short-circuits. In one-dimension

the divergence equations (Equation (9) and Equation (10)) vanishes and the only remaining

equations (Equation (11) and Equation (12)) are the curl of electric and magnetic fields, which

represent their evolution with time.

The evolution of the electric and magnetic fields, E and B, respectively, is given by the

Maxwell equations, written here in SI units:

1

c2
∂E

∂t
= ∇×B − µ0J , (13)

∂B

∂t
= −∇×E, (14)

where c is the speed of light and µ0 is the vacuum permeability. Equation (13) implies the

generation of charge To close the equations, we use Ohm’s law,

J = σ (E + u×B), (15)

where σ is the electric conductivity and u is the velocity. Usually Ohm’s law tells us how

the current density is related to the force acting on free charges in a medium and is given by,

J = σE; see Davidson 2016. But in MHD, we also need to consider the electric field in a

co-moving frame with the velocity of the plasma, which leads to the form Equation (15).

In the early universe, during the inflationary period, the plasma is highly diluted, leading to

a state where there are virtually no particles present. Consequently, the electric conductivity

of the universe becomes extremely low, approaching zero. However, as the universe evolves,

a phase of reheating becomes necessary. One proposed mechanism for this reheating phase is

related to the stretching caused by the cosmological expansion. This expansion leads to the

amplification of electromagnetic fields until the electric field strength surpasses a critical value,

known as the Schwinger effect threshold.

Kobayashi and Afshordi 2014 showed that, when this threshold is exceeded, it triggers the

production of charged particles, resulting in the emergence of electric conductivity in the uni-

verse. This transition in the electric conductivity (denoted as σ) suggests the existence of an
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intermediate phase where σ takes on a specific value for a certain duration. During this phase,

there is an associated electromagnetic energy loss, quantified as the dot product of the current

density (J) and the electric field (E). This process is a well-established phenomenon in the

field of magnetohydrodynamics, where the displacement current is disregarded. In magnetohy-

drodynamics, the equations that describe the relationship between magnetic energy and other

physical properties are used to derive the magnetic energy equation. Ignoring the displacement

current we have,

∂

∂t

(
B2/2µ0

)
= −B ·∇×E/µ0 = J ·E −∇ · (E ×B/µ0), (16)

where E × B/µ0 is the Poynting vector. Introducing volume average, which we denote with

angle brackets,
d

dt

〈
B2/2µ0

〉
= −⟨J ·E⟩ . (17)

Using Ohm’s law we get,

⟨J ·E⟩ =
〈
J2/σ

〉
+ ⟨u · (J ×B)⟩ = ϵM +WL (18)

The flows of energy between magnetic, electric, and kinetic energy reservoirs is illustrated in

Figure 1. We denote those as

EM ≡ ⟨B2/2µ0⟩, EE ≡ ⟨ϵ0E2/2⟩, and EK ≡ ⟨ρu2/2⟩, (19)

respectively.

The momentum and continuity equations,

ρ
Du

Dt
= −∇p+ J ×B +∇ · (2ρνS), (20)

D ln ρ

Dt
= −∇ · u, (21)

where D/Dt ≡ ∂/∂t+u ·∇ is the advective derivative, p = ρc2s is the pressure for an isothermal

equation of state with sound speed cs, which is constant, ν is the viscosity, and Sij = (∂iuj +

∂jui)/2− δij∇ · u/3 are the components of the rate-of-strain tensor S.

3.3 The displacement current module

Faraday’s law (Equation (13)) and the induction equation (Equation (14)) or its uncurled

version (in the Weyl gauge, i.e., without the electrostatic potential),

∂A

∂t
= −E, (22)

needs to be solved as the displacement current can not be neglected in electromagnetism. For

this the module named ’disp current’ was used. The module is structured with subroutines to
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initialize, calculate, and manipulate various quantities related to electric fields, vector poten-

tials, and magnetic fields. The main components are:

1. Imports and input parameters: It imports several other modules and subroutines for nec-

essary functionalities. The module defines various input parameters such as amplitudes,

wavenumbers, phases of the three components of the electric field, and other settings that

control the behavior of the electromagnetic fields in the simulation. One example for this

is the speed of light which is squared as input parameter, so it is usually not computed

self-consistently from the actual speed of light.

2. Subroutines and functions:

• register special configures and registers the electric field that is used within the

module

• initialize special initializes module variables based on input parameters

• init special sets initial conditions for the electric field (see below)

• pencil criteria special specifies pencils (spatial regions) of the simulation that are

relevant for this module. In particular, the current density, from Equation 15, which

is computed in magnetic.f90, must be requested

• calc pencils special calculates the values of certain variables (pencils) based on the

current state of the simulation. These include pencils for the vector E, the quantity

E2, E ·∇B and B ·∇E that are used for diagnostic purposes

• dspecial dt calculates the right-hand side of differential equations that govern the

evolution of the electromagnetic fields over time (Equation (13),Equation (14))

• read special init pars and write special init pars read and write input parameters

from and to a file

• read special run pars and write special run pars read and write run-time parameters

from and to a file

• rprint special manages printing and reporting of diagnostic and analysis information

• get slices special generates slices of E for visualization

3. Use of other modules: The module uses other modules. These modules which provide

functionalities related to parallel computing, data manipulation, diagnostics, and more.

One of the modules used here is ‘cparam’ which is mentioned below.

3.4 The magnetic field module

This modules deals with all aspects of magnetic fields and includes declarations, parameters, and

variables related to magnetic field calculations and simulations; assuming there is an imposed

magnetic fields. The key elements of this module are:
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1. Use of other modules: The module also uses some other modules such as ‘cparam’ which

is mentioned before.

2. Variable declarations: The module declares a range of real and integer variables that hold

various physical parameters, constants, and computational settings. These parameters

control the behavior of the magnetic field calculations and simulations. They are also

defined and initialized later.

3. Logical flags: There are numerous logical flags (variables with boolean values - true/false)

that control the execution of specific parts of the code. These flags determine which

routines and calculations are enabled or disabled based on simulation requirements.

4. Array declarations: The module declares arrays with dimensions that are likely related

to spatial grids used in the simulations. For instance, there are arrays like bb xy, jj xy,

aps xy, aamz, etc.

5. Diagnostic quantities: Each diagnostic variable corresponds to a specific quantity that

the simulation aims to analyze or measure. These quantities are related to various aspects

of the plasma or MHD system being simulated. For example:

• idiag eta tdep represents the time-dependent resistivity (η) in the simulation

• idiag ab int represents the volume integral of the dot product of vector A and vector

B

• idiag jb int represents the volume integral of the dot product of current density j

and vector B

• xyaver.in associated with quantities that have been averaged over the x-y plane

• xzaver.in related to quantities that have been averaged over the x-z plane

• yzaver.in associated with quantities that have been averaged over the y-z plane

• yaver.in associated with quantities that have been averaged over the y-direction

• zaver.in related to quantities that have been averaged over the z-direction, etc. Some

other variables are also mentioned here which are related to vector potential (aa),

electric field (ee), magnetic field (bb), current density (jj), resistivity (eta), Alfven

speed (alfven), and other quantities associated with MHD simulations.

6. Precalculations: Some precalculations are done, such as calculating the inverse of the

inertial length squared (linertial 2) and the inverse of the nu ni coefficient (nu ni1).

7. Calculation of B-field related values: The code calculates various values related to the ex-

ternal magnetic field (B ext), such as its magnitude squared (B ext2), its inverse squared

magnitude (B ext21), unit vector (B1 ext), and a vector (B ext inv) used in calculations.

For each specified method in the ’initaa’ array, there is a subroutine that calculates and

sets the magnetic field values in the f array.
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8. Mathematical operations: Various mathematical operations are performed to calculate

the magnetic field values. These operations involve trigonometric functions (sin, cos),

hyperbolic functions (tanh), exponential functions, etc. These calculations are used to

define the structure of the magnetic field based on the chosen initialization method.

9. Error handling: The module also includes error checks and fatal error calls in certain

cases to handle unexpected conditions.

3.5 Suitable initial conditions

The initial conditions chosen for magnetic and electric energy spectra during the matter-

dominated era in the post-inflation universe play

an important role in the numerical simulations and also in understanding how the magnetic

and electric energy spectra evolve during the matter-dominated era. In the post-inflation

matter-dominated era, the magnetic field spectrum is initially scale invariant during inflation

but does not contribute significantly to the growing solution in this era.

However, there is a contribution proportional to k3 for the scales of interest. As a result, for

super-Hubble scales, only the k3 spectrum is present, as discussed by Sharma, Jagannathan,

et al. 2017 and Brandenburg and Sharma 2021.

In one dimension with ∂/∂x ̸= 0 and σ = 0, we can have electromagnetic waves, for example,

B±
y (x, t) = By0 sin k(x ∓ ct) and E±

z (x, t) = ∓kBy0 sin k(x ∓ ct), traveling in the positive

(negative) x direction. Note that the electric and magnetic energies are here equal to each

other.

In the code, we use the initial condition initaa=’coswave-phase’ with ampl az=+.1 and

kx az=1, which means that Az = 0.1 cos kx. This implies that By = 0.1 sin kx and corresponds

to the desired electromagnetic wave, B±
y (x, t) = By0 sin k(x ∓ ct), for the upper sign with

By0 = 0.1, k = 1, and c = 1. Thus, our expression for A±
z can be written as

A±
z =

By0

k
cos k(x∓ ct). (23)

This expression obeys Equation (22), i.e.,

E±
z = −∂Az

∂t
= ∓cBy0 sin k(x∓ ct). (24)

To realize this in the code, we use for the electric field the initial condition initee=’coswave-phase’

with ampl ez=+.1, kx ez=1, and phase ez=1.5707963 (≈ π/2), which means that Ez =

0.1 sin kx.

Once conductivity has emerged, the electromagnetic waves become replaced by Alfvén

waves, provided we add a constant magnetic field Bx0 in the x direction. Such a constant

field does not change the electromagnetic waves. However, the propagation speed now changes
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from c to the Alfvén speed vA = Bx0/
√
ρ0µ0. Thus, instead of Equation (23), we now have

A±
z =

By0

k
cos k(x∓ vAt). (25)

Furthermore, Equation (24) becomes modified and now reads

E±
z = −∂Az

∂t
= ∓vABy0 sin k(x∓ vAt). (26)

In that case, however, the electric field is no longer controlled by the displacement current, but

by Ohm’s law, Equation (15), which, using perfect conductivity, σ → ∞, implies E = −u×B,

or E±
z = u±

y Bx0. Therefore, we have

u±
y = ∓vA

By0

Bx0

sin k(x∓ vAt). (27)

This expression obeys the momentum equation (20), of which the relevant part is

ρ0
∂u±

y

∂t
= J±

z Bx0. (28)

Here, J±
z = k2A±

z is the current density in terms of A±
z . Inserting the expressions above, we

see that ρ0kv
2
A(By0/Bx0) cos k(x∓ vAt) = µ−1

0 kBx0By0 cos k(x∓ vAt), which is evidently obeyed

when using vA = Bx0/
√
ρ0µ0.

3.6 The global parameters

The module ‘cparam’ contains various global parameters (constants) used throughout the pro-

gram. It defines a range of constants and parameters for numerical simulations, computational

grids, physical constants, and more. The main parts are:

1. Grid parameters that are related to the computational grid used in the simulation, such as

grid dimensions (nx, ny, nz), total grid size (nxygrid, nxzgrid, nyzgrid), and the number

of processors (nprocxy, nprocyz, nprocxz) in different directions. For the one-dimensional

case, we have nx = 128, ny = nz = 1.

2. Derived and fixed parameters such as the total number of variables (mfarray), communi-

cation arrays (mcom), and parameters for different data structures. Two derived types

are defined here: slice data to hold slice information and boundary condition to define

module-specific boundary conditions.

3. Array dimensions that defines dimensions and indices for various arrays used in the sim-

ulation and includes definitions for array sizes (mx, my, mz, mxgrid, etc.), along with

indexing ranges (l1, l2, m1, m2, etc.).

4. Yin-Yang Grid constants which are related to the Yin-Yang grid, a method used in spher-

ical coordinate simulations.
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For our simulations, we utilize the magnetic vector potential A, to ensure that the magnetic

field B = ∇ × A maintains divergence-free properties. The evolution equation for A in this

framework is expressed as:

1

c2
∂2A

∂t2
−∇2A+∇∇ ·A+

1

η(t)

(
∂A

∂t
+ u×B

)
= 0, (29)

where ∇ ·A = 0 holds when utilizing the Coulomb gauge. This equation shows that, when σ →
0 or η → ∞, we just have electromagnetic waves described by the wave equation Ä−c2∇2A = 0.

In the opposite limit of σ → ∞ or η → 0, we obtained the usual uncurled induction equation

where η∇2A acts as a diffusion term.

Since the speed of light is now the fastest speed in the system, the time step is governed

by a CFL condition where the speed of light enters, i.e., the time step ∆t is never larger than

∆x/c. Here, ∆x = L/N is the grid size in a periodic domain of size L represented by N mesh

points.
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4 Results

4.1 Energetics during emergence of conductivity

In the system depicted in Figure 1, there is no external energy input. However, this situation

would alter if we were to introduce external forcing into the momentum equation (20). Fur-

thermore, within our discussion, we delve into another possibility in greater depth, namely,

the potential for energy injection during the reheating phase that marks the conclusion of the

inflationary period.

Before discussing this in more detail, let us first discuss the energetics for the kinetic energy

equation. By taking the dot product of Equation (20) with the velocity vector u, employing

Equation (21), performing integration by parts, and considering the properties of ∂iuj (which

can be expressed as a sum of a symmetric and an antisymmetric tensor), we observe that when

multiplied by S (a symmetric and trace-free tensor), there’s no contribution when δij∇ ·u/3 is

added. Consequently, we find that Sij∂iuj = S2, leading us to the evolution equation for kinetic

energy in the following form:

d

dt

〈
ρu2/2

〉
= −⟨u ·∇p⟩+ ⟨u · (J ×B)⟩ −

〈
2ρνS2

〉
, (30)

This equation can also be expressed more concisely as ĖK = WP+WL−ϵK, whereWP = −⟨u·∇p⟩
is the work done by the pressure force, and ϵK = ⟨2ρνS2⟩ represents viscous heating. The dot

on the kinetic energy EK indicates a time derivative. It is important to note that the divergence

term, ∇ · (pu) equals u · ∇p + p∇ · u, and for a triply periodic domain, it has a vanishing

volume average. Therefore, −⟨u ·∇p⟩ = ⟨p∇ · u⟩, highlighting that this term contributes to

compressional heating. This term has been found to be significant in simulations of gravitational

collapse (Brandenburg and Ntormousi 2021). We will see that when energy is injected through

WL, this energy is utilized to increase kinetic energy (ĖK > 0) and drive viscous heating.

The work done by the pressure force, Wp, is always small. Thus, we have the relationship:

WL = ĖK + ϵK −WP. (31)

In our simulations, we adopted an isothermal equation of state, disregarding the evolution of

thermal energy. If thermal energy were included, we would have:

ĖT = ϵM + ϵK −WP. (32)

The thermal evolution, which accounts for the changes in thermal energy, plays a significant

role in simulations related to thermal magneto-convection (Brandenburg, Jennings, et al. 1996).

In such simulations, it aids in modeling buoyancy variations. Similarly, in simulations of the

magneto-rotational instability, potential energy is converted into kinetic and magnetic energies,

which subsequently dissipate as heat and radiation (Brandenburg, Nordlund, et al. 1995). How-

ever, for our specific objectives, it is adequate to focus on integrating the kinetic and magnetic
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contributions over time. This involves calculating
∫
ϵK dt and

∫
ϵM dt, respectively.

Now, let us discuss the interaction between electric and magnetic energies. This interplay is

typically disregarded in the field of magnetohydrodynamics, where the evolution of the electric

field, particularly the Faraday displacement current, is commonly omitted, according to Alfvén

1942. Taking the dot product of Equation (13) with E/µ0 and using 1/(µ0c
2) = ϵ0, we obtain

∂

∂t

(
ϵ0E

2/2
)
=

E

µ0c2
· ∂E
∂t

= E ·∇×B/µ0 − J ·E, (33)

so, after averaging, we have

d

dt

〈
ϵ0E

2/2
〉
= ⟨E ·∇×B/µ0⟩ − ⟨J ·E⟩ . (34)

Next, we take the dot product of Equation (14) with B/µ0 and obtain

∂

∂t

(
B2/2µ0

)
= −B ·∇×E/µ0. (35)

In view of the ⟨E ·∇×B/µ0⟩ term in Equation (34), it is convenient to rewrite Equation (35)

in the form of
∂

∂t

(
B2/2µ0

)
= −E ·∇×B/µ0 −∇ · (E ×B/µ0). (36)

Again, given that the Poynting flux divergence vanishes under a triply periodic volume average,

we have
d

dt

〈
B2/2µ0

〉
= −⟨E ·∇×B⟩ /µ0. (37)

It is important to note the difference to Equation (17), which ignores the displacement current.

An equation similar to Equation (17) can only be recovered for the sum of electric and magnetic

energies, which yields
d

dt

(〈
B2/2µ0

〉
+
〈
ϵ0E

2/2
〉)

= −⟨J ·E⟩ . (38)

An essential characteristic of well-conducting media in the context of magnetohydrodynamics

is that the electric energy is typically considered to be significantly smaller or negligible when

compared to the magnetic energy. In that limit, Equations (17) and (38) do indeed become

equivalent.

More compactly, we can then write Equation (37) in the form ĖM = −QE, where QE =

⟨E ·∇×B⟩ acts as a source in ĖE = QE − ϵM − WL. Hence, it becomes evident that the

electric energy reservoir is not merely a secondary component with limited energy content

due to inefficient coupling. Instead, it serves as an indispensable intermediate stage through

which magnetic energy is efficiently channeled onward, eventually contributing to kinetic and

thermal energies. This realization prompts the question of how justifiable it is to neglect the

displacement current, especially when, prior to the onset of conductivity, electric energy sur-

passes magnetic energy. This scenario is quite common in inflationary magnetohydrodynamic

scenarios.
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4.2 Electromagnetic and hydromagnetic waves

Brandenburg and Sharma 2021 discuss simulations of the early universe’s evolution, focusing

on electromagnetic fields, magnetic energy, and gravitational waves. The simulations are con-

ducted within periodic cubic domains of different sizes, using various mesh points and spatial

metrics, all scaled using conformal time. The speed of light is set to unity, and the Lorentz-

Heaviside unit system is applied to the Maxwell equations. The simulations are divided into

two steps. In the first step (Step I), they consider the end of reheating and solve the Maxwell

equations with zero conductivity, accounting for the breaking of conformal invariance. In the

second step (Step II), they transition into the radiation-dominated era, where the electric field

becomes negligible, and the magnetic and gravitational wave fields are evolved. During these

simulations, the importance of initializing the electric and magnetic fields were discussed to

ensure a specific energy density ratio.

In a one-dimensional scenario and when the conductivity is zero, electromagnetic waves can

indeed propagate in either the positive or negative x-direction. It’s important to note that, in

this case, the electric and magnetic energies are equal. However, as the conductivity becomes

large, the magnitude of the electric field becomes suppressed. To comprehend this suppression,

we need to examine Equation (13). As σ increases significantly, the need for balancing the

∇ × B term shifts from being regulated by the displacement current to being controlled by

the actual current. By introducing J = σE (representing the comoving current density), we

find E = η∇×B, implying that |E|/|cB| = O(ηk/c). Therefore, when σ reaches large values,

|E|/c becomes notably reduced relative to |B|. According to Brandenburg and Sharma 2021

for a linearly increasing conductivity profile, (σ(t) = σmax t/ttrans) during a specific time interval

t0 ≤ t ≤ t0 + ttrans with a duration of ttrans starting at t = t0 here was a decrease in amplitude.

The value of this amplitude drop increased approximately in inverse proportion to ηmink
2ttrans,

where ηmin = 1/µ0σmax.

4.3 Conductivity as a function of time σ(t)

The linear σ profile used by Brandenburg and Sharma 2021 is given by

σ(t) = σmin + (σ0 − σmin)Θ(t), (39)

where σ0 = 1/µ0η0, σmin = 1/µ0ηmax, and

Θ = max

[
min

(
t− t0
τ0

, 1

)
, 0

]
(40)

is a piecewise linear function that goes from 0 (for t ≤ t0) to 1 (for t ≥ t0 + τ0).

We also study a profile whose logarithm is linearly varying. We, therefore, refer to it as a

logarithmic profile, which is of the form

σ(t) = σ0 exp {ln(σmax/σ0) [1−Θ(t)]} . (41)
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This implies

ln η(t) = ln η0 + (ln ηmax − ln η0) [1−Θ(t)] . (42)

This approach enables us to determine the duration over which σ transitions by a factor of

ten (an order of magnitude) for any given value of σ. In contrast, with a linear σ profile, the

duration would vary across different ranges of σ values, and it would be exceptionally brief for

large values of σ.

4.4 Simulating the transition of Alfvén waves

Here, ∇×A represents the departure from the initially imposed magnetic field. Together with

the constant magnetic field Bx0 in the x-direction, we have B = (Bx0, −∂Az/∂x, 0). In the

subsequent numerical experiments, we adopt t = −10 to initiate the simulations. In Figure 2

we compare the behavior of By(x, t) as depicted in a colored contour plot in the xt plane. These

simulations were conducted within a domain of size L = 2π, where the lowest wave number is

k1 = 2π/L = 1. Initially, the density is uniform and equal to ρ0.

Figure 2: Evolution of By(x, t) for the logarithmic σ profile with (a) vA0 = 1, (b) vA0 = 0.3, and
(c) vA0 = 0.1, and ttrans = 10 in all cases. Note the transition to conductivity at t = t0 ≡ 0.
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We see that for vA0 = 0.3 and 0.1, the transition to Alfvén waves is accompanied by

a wobble in the magnetic field. To understand this and test the dependence on the initial

velocity for Alfvén waves, we show in Figure 3 the results for standard MHD simulations

(without displacement current) with different initial amplitudes, ampl uz=.1 (the usual case),

ampl uz=.05 (reduced initial velocity), and ampl uz=0 (no velocity). We see that the wobble

seen in Figure 2(b) is well reproduced by an intermediate value of the initial velocity. For the

simulation with vA0 = 1, on the other hand, the conversion to Alfvén waves is more efficient

and the required level of the velocity is readily achieved.

Figure 3: Evolution of By(x, t) for Alfvén waves with constant σ with (a) ampl uz=.1, (b)
ampl uz=.05 and (c) ampl uz=0. Here, the initial condition has been imposed at t = 0.

In Figure 4 we compare the evolution of By(x, t) for the logarithmic σ profile with the linear

one, setting vA = 0.3. It’s evident that the logarithmic profile exhibits a significantly more

pronounced drop in amplitude compared to the linear σ profile. As we will see below, this

is because for a logarithmic profile, the system spends considerably more time with R(t) ≈ 1

than for the linear profile. Achieving a comparable decrease with the linear σ profile would

necessitate an extension of ttrans to approximately 500, as illustrated in Figure 4(c).
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Figure 4: Evolution of By(x, t) for the logarithmic σ profile with vA = 0.3 and (a) the loga-
rithmic σ profile with ttrans = 10, (b) the linear σ profile with ttrans = 10, and (c) the linear σ
profile with ttrans = 500.

For a more quantitative analysis, we need to examine Figure 5(a) where we compare the

temporal evolution of By at a specific location, denoted as x = x∗, for the three simulations

presented in Figure 4(a) and (c). It is worth noting that the reduction in wave amplitude

following t = 0 appears similar for runs (a) and (c) while it is significantly less pronounced for

run (b). In Figure 5(b) we provide a depiction of how the parameter σ varies over time. To

quantify the decay behavior, we employ a nondimensional resistivity, denoted as R(t), defined

as R(t) ≡ η(t)k/c. This quantity exhibits a substantial decrease from 104 to 5×10−4. Notably,

a majority of this decay transpires during the period when R(t) undergoes a transition near

unity. Due to the logarithmic nature of the profile, R(t) spends approximately ckttrans = 5

units of time while transitioning from 10 to 0.1 in value. Conversely, for the linear profile,

this time interval is nearly nonexistent. However, when we extend ttrans to 500 we observe

that ckttrans becomes similar to the values that led to a comparable decay in the logarithmic

profile. This observation is corroborated by the inset shown in panel (b) illustrating that R(t)

crosses the unity threshold by approximately an order of magnitude for cases (a) and (c), but
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not for case (b). These findings substantiate the significance of the time interval where R(t) is

approximately within an order of magnitude of unity.

Figure 5: (a) Evolution of By at one specific point x = x∗ in the three runs of Figure 4a,c. Note
that the drop of the wave amplitude after t = 0, and specifically at t = 50, is similar for runs a
and c, but much less for b. (b) Dependence of the nondimensional resistivity R(t) = η(t)k/c for
the logarithmic profile with ttrans = 10 in run a (black), and the linear profile with ttrans = 10
in run b (red) and ttrans = 500 in run c (blue). The inset shows a blow-up of a narrow strip
around R = 1 using a logarithmic time axis. We see from the inset that the time spent in R(t)
traversing unity by a margin of one order of magnitude (marked by the thick part of the black
line) is similar for runs a and c, but virtually non-existing for run b.

The evolution of electric, magnetic and kinetic energy densities, as well as the two contri-

butions to thermal energy,
∫
ϵM dt and

∫
ϵK dt, are shown in Figure 6. Examining Figure 6,

it becomes apparent that the electric energy initially matched the magnetic energy. However,

as the conductivity increases, there is a swift reduction in electric energy (ĖE < 0), with the

majority of it dissipating as thermal energy,
∫
ϵM dt. Only a small portion, amounting to less

than 20% for ttrans = 10, is channeled into kinetic energy. Remarkably, the average energy

densities for both magnetic and electric fields exhibit a decay pattern governed by exp(−νk2t).

Notably, this decay does not feature a factor of 2 in the exponent.

This behavior signifies not a transformation of kinetic energy, which would be proportional

to exp(−2νk2t), but rather a change in velocity, a contribution introduced through the work

term WL, which is linear in the velocity. Furthermore, it is noteworthy that the ratio EE/EM
remains at approximately 10 for PrM = 20. Additionally, it is worth mentioning that the

oscillations in the sum of magnetic and kinetic energies (EM + EK, represented by the orange

lines) are predominantly balanced by oscillations in electric energy (EE, depicted by the blue

lines).

27



Figure 6: Initially, all the energy is in electromagnetic energy, EE + EM for ν = 0.01 and
ηfin = 5 × 10−4. In the end, all the energy is converted into heat. The red lines give the
integrated Ohmic and viscous energy gains,

∫
ϵM dt and

∫
ϵK dt, respectively. At intermediate

times, this energy is distributed to equal amounts among kinetic energy EK (green lines) and
magnetic energy EM (gray lines). The orange lines shows their sum, EK + EM. The blue lines
represent EE. The inset shows a blow-up of the same graph around the origin. We see that EE
varies in phase with EK, but an anti-phase both with EM and the residual EM + EK.

From Figure 6, we have seen that WL/ϵM is always small, but it becomes even smaller when

ttrans is large. Therefore, the drop of magnetic energy after the transition should increase with

ttrans.

In Figure 7 we present the temporal evolution of various energy fluxes. It becomes evident

that magnetic energy progressively diminishes and releases energy into the electric energy reser-

voir, facilitated by the term QE = ⟨E ·∇×B⟩ > 0. Therefore, magnetic heating encompasses

the following components:

ϵM = −ĖE +QE −WL. (43)

For swift transitions with ttrans <∼ 5, QE is relatively small in comparison to −ĖE. Consequently,
ϵM primarily results from the depletion of electric energy (ĖE < 0). However, for extended

transitions (ttrans > 10), QE approximately equals −ĖE. In this case, ϵM is contributed to

approximately 50% by QE and the remaining 50% by −ĖE.
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Figure 7: Evolution of energy fluxes for the model with the logarithmic conductivity profile
with η = 5× 10−4 = ν at late times. In all cases, the initial diffusivity is ηini = 104. The main
difference to the run with a larger viscosity is that ϵK is larger.

In Figure 8 we provide a quantitative representation of the energy drop (loss of magnetic

energy) phenomenon by plotting the magnetic energy (EM) at t = 100 which corresponds to a

point in time when the conductivity has substantially increased. This is done for various values

of ttrans and vA0/c. Notably, we observe that the slope of this curve diminishes as the Alfvén

wave speed increases.

Figure 8: EM at t = 100, i.e., after the conductivity has increased to large value, vs. ttrans for
vA0/c = 1 (orange), vA0/c = 0.3 (red), and vA0/c = 0.1 (blue).
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4.5 Application to cosmological magnetic fields

As discussed in Brandenburg and Sharma 2021, magnetic fields are constantly being generated

through dynamo action on various scales in the present universe. This regeneration is driven

by gravitational energy released during processes like accretion or direct collapse.

In the vast regions between galaxy clusters known as “voids,” it is generally believed that

contemporary dynamo action cannot produce magnetic fields.

In addition, there is indirect evidence suggesting the presence of magnetic fields in voids,

which are difficult to explain via dynamo action. This evidence comes from observations related

to blazars. The presence of magnetic fields on very large cosmological scales could be of primor-

dial origin. These fields might have been created during or before the radiation-dominated era

of the universe, possibly during cosmological phase transitions or inflation. The role of electro-

magnetic fields in transitioning to magnetohydrodynamic fields during inflation is of particular

interest.

4.6 Avoiding the discontinuity in the generation term

In Brandenburg and Sharma 2021, the switch from a vacuum to a conducting Universe was

modelled as a discontinuous switch, where f ′′/f jumped from 1/2 to zero. To avoid this, we

need a version of a(t) where all its derivatives are continuous. Following the work of He, Roper

Pol, and Brandenburg 2023, we do this by solving the Friedmann equation.

There are two actually independent Friedmann equations. The first one is

ȧ2 +Kc2

a2
=

8πGρ

3
, (44)

and the second one is given by

ä

a
= −4πG

3

(
ρ+

3p

c2

)
+

Λc2

3
. (45)

Here, a is the scale factor.

Using the Hubble parameter, H ≡ ȧ/a and the first equation, the second one can be

rewritten as,

ρ̇ = −3H
(
ρ+

p

c2

)
. (46)

These equations can be simplified as

H2 =

(
ȧ

a

)2

=
8πG

3
ρ− Kc2

a2
. (47)

Ḣ +H2 =
ä

a
= −4πG

3

(
ρ+

3p

c2

)
. (48)

Then, a density parameter (Ω) is introduced which is the ratio of the actual (or observed)
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density ρ to the critical density ρc of the Friedmann universe.

Ω ≡ ρ

ρc
=

8πGρ

3H2
. (49)

The Friedmann equations, which describe the evolution of the universe in the framework of

general relativity, can be solved exactly in the presence of a perfect fluid with a specific equation

of state,

p = wρc2 (50)

where p is the pressure, ρ is the mass density of the fluid in the comoving frame and w is some

constant that characterizes the type of fluid. The exact solutions to the Friedmann equations

depend on the value of w

and the curvature of the universe K. When w is approximately zero (for non-relativistic

matter like dark matter or non-relativistic particles), the exact solution leads to the matter-

dominated era, where the scale factor of the universe grows with time as a power of t (a ∝ t2/3).

For radiation, such as photons, w is equal to 1/3. The exact solution leads to the radiation-

dominated era, where the scale factor grows faster than in the matter-dominated era (a ∝ t1/2)

in a radiation-dominated universe). When w is equal to −1 (for dark energy with a cosmological

constant Λ), the exact solution corresponds to a universe dominated by dark energy. The

curvature of the universe, described by the parameter K (which can be 0, 1, or −1 for flat,

closed, or open universes, respectively), also plays a role in determining the exact solutions to

the Friedmann equations.

In the following, we work with conformal time η; see Section 2.2. In that case, the growth

of the scale factor with conformal time is a ∝ η during the radiative era when w = 1/3, a ∝ η2

during the matter-dominated era and during reheating when w = 0, and a ∝ (1−Hη)−1 during

inflation when w = −1. However, to avoid confusion with the magnetic diffusivity, which was

also called η, to still denote the conformal time by t.

4.7 Results for magnetogenesis around the end of reheating

In Figure 9 we illustrate the evolution of electric energy (EE), magnetic energy (EM) and kinetic

energy (EK) for k = 10 across three distinct values of β: 1, 2, and 4. Throughout these

simulations, the initial amplitudes were adjusted so that EM = 10−4 at t = t0. In all cases, the

solutions have stabilized by t = t0 = 1. Notably, we observe electromagnetic oscillations as we

approach the conclusion of the reheating phase, occurring just before the onset of conductivity

at t0 = 1.

When simulating the transition from a vacuum to high conductivity and the accompanying

Joule heating, it’s essential to make specific choices regarding when the conductivity, σ, should

begin to increase. This involves selecting values for t0 (the starting time) and ttrans (the transi-

tion duration). If t0 is chosen to be excessively large, the solutions will depict the establishment

of electromagnetic waves well before the transition, as illustrated in Figure 9. In this figure,

we note that the smallest wavenumber in the one-dimensional domain is k = 10. Therefore, by
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the time t = 1, even the largest modes within the domain have become stable. Additionally,

at early times, the electric energy (EE) and magnetic energy (EM) grow in an algebraic manner

and then transition into oscillatory behavior when k∗(t) falls below k. When conductivity is

switched on at t = t0 = 1, the electric energy diminishes rapidly, while the magnetic energy de-

clines at a much slower pace. However, the generated hydrodynamic energy remains relatively

low.

Figure 9: t dependence of EM (red), EE (blue), and EK (green) for runs with β = 1 (dotted lines),
2 (dashed lines), and 4 (solid lines) for Set (i) with k = 10, t0 = 1, and ttrans = 10. The initial
amplitudes have been arranged such that Brms = 0.01 at t = 1. From the double-logarithmic
representation, we see that the growth of EM and EE is algebraic, and much faster for the models
with a larger value of β. Before t = 1, EE dominates over EM, but drops immediately after
t = 1, when resistivity emerges and kinetic energy is being generated. Both EM and EK are
larger for larger values of β.

In the following sets of simulations, our aim is to explore scenarios different from Figure 9.

In Set (ii), we choose parameters k = 10, t0 = 0.1, and ttrans = 1 (as shown in Figure 10), while

in Set (iii), we use k = 1, t0 = 1, and ttrans = 10 (as presented in Figure 11). In both cases,

the electric energy decreases significantly when conductivity is activated. However, there is a

notable difference in the maximum magnetic energies achieved for the three cases with β = 1,

2, and 4. Specifically, for β = 4 the kinetic energy (EK) reaches approximately one percent of

the magnetic energy (EM) at t = 0.2.
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Figure 10: Similarly to Figure 9, but for Set (ii) with k = 10, t0 = 0.1, and ttrans = 1.

Figure 11: Similarly to Figure 9, but for Set (iii) with k = 1, t0 = 1, and ttrans = 10.

4.8 Source of electric energy during reheating

We recall that in Equation (1) we considered the scaled magnetic vector potential A ≡ fA.

To describe the flow of energy properly, it is convenient to return to the formula for A, which
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reads (Subramanian 2010) [
1

c2

(
∂2

∂t2
+

2f ′

f

∂

∂t

)
−∇2

]
A = 0. (51)

Compared with the original Ampere’s law (12), the conformal invariance breaking leads to

a modification of the displacement current, so the Ampere’s law therefore reads

1

c2

(
∂E

∂t
+

2f ′

f
E

)
= ∇×B − µ0J . (52)

Taking the dot product with E, we then obtain after volume averaging the evolution equa-

tion for the electric energy in the form

d

dt

〈
ϵ0E

2/2
〉
= −2(f ′/f)

〈
ϵ0E

2
〉
+ ⟨E ·∇×B/µ0⟩ − ⟨J ·E⟩ . (53)

Now, comparing Equation 53 with 34, we can see that we have an extra term, QG = −2(f ′/f) ⟨ϵ0E2⟩,
which corresponds to the energy input QG if f ′/f < 0.

This is indeed the case during reheating, when f ∝ a−β ∝ t−2β is assumed, because in that

case, we have
f ′

f
= −2β

t
, (54)

which makes QG = −2(f ′/f) ⟨ϵ0E2⟩ in the RHS of Equation 53 positive for β > 0. By

comparison, in the model of Sharma, Jagannathan, et al. 2017, we expect to have f ∝ aα

with α > 0 during inflation. Thus, with a ∝ (1 − Ht)−1 and a′/a = H/(1 − Ht), we have

f ′/f = αH, so now QG < 0, and energy is therefore drawn out of the system, so the electric

energy decreases. Thus, during that time, only the function A ≡ fA of Subramanian 2010

increases, but not A itself.

Figure 12: Similar to Figure 1, but now with inflationary magnetogenesis energy generation
and energy exchange between electric and magnetic energies in both directions.

In Figure 12 we see that the current situation involves a system that is energetically driven

by the input of energy through the QG term. It is enlightening to express the electric energy

equation as follows:

QG = ϵM + ĖE +WL −QE. (55)
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Figure 13: Time dependence of QG (red), QE (green), ϵM (black), ĖE (blue), and WL (orange)
for the runs of Set (ii) in Figure 10 with (a) β = 1, (b) β = 2, and (c) β = 4 for t0 = 0.1 and
ttrans = 1.

When comparing the three panels in Figure 13, it becomes evident that for β = 1, there is

a gradual generation phase (see the red line for QG) that initiates well before t0.

Let us call this Phase I. During that time, ĖE > 0, but QE < 0, so part of the electric

energy is converted into magnetic energy. In the second phase, which we call Phase II, we have

ĖE < 0. This phase starts when t = t0 and it also coincides with the maximum of QG and the

negative extremum of QE. Somewhat later, however, QE changes sign and becomes positive, so

now magnetic energy is converted back into electric energy. Nevertheless, ĖE remains negative,
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so electric energy still decreases. This is because all this energy is immediately converted onto

heat and mechanical energy through a negative WL, although this term is rather small by

comparison. It is important to note, however, that the vertical axis scales differ across the

panels.

To see whether more mechanical energy is being producing in the models of series (iii),

we show a corresponding plot of energy fluxes in Figure 14. Since this plot is on a linear

scale, unlike that of Figure 11, the resulting WL term appears still rather small. Upon closer

inspection, however, we can see that the ratio of the maxima of WL and ϵM has increased from

0.007 to 0.01.

Figure 14: Similarly to Figure 13, but now for Set (iii) with k = 1, t0 = 1, and ttrans = 10.
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5 Discussion

This study has demonstrated that the Lorentz force can perform significant work when the

conversion of electromagnetic energy takes place early and on sufficiently large scales to ensure

that the modes are still growing in time. This phenomenon arises due to a substantial surplus

of electric energy over magnetic energy. When conductivity emerges, this electric energy is

not just lost, but a sizeable fraction is converted into magnetohydrodynamic energy. Notably,

this effect has been overlooked in previous simulations related to inflationary magnetogenesis,

especially in investigations of the additional contributions to the resulting production of relic

gravitational waves.

For the survival of a significant amount of magnetic energy in the radiation-dominated

era, it is beneficial, if the emergence of conductivity happens rapidly, i.e., if ckttrans ≤ 10; see

Figure 7. For larger values of ckttrans, most of that energy is converted into heat and only a small

fraction survives as hydromagnetic energy, as noted above. It also matters when the transition

to conductivity occurs, because the excess of electric energy over magnetic energy decreases

toward the end of the reheating phase. In particular, we found that tErms/Brms ≈ β + 1, see

Brandenburg and Protiti 2023 for details. It would therefore be useful to find out more about

the particular way of how electric conductivity emerges.

In hindsight, it would have been useful to consider also larger values of β. The largest value

of β considered in the work of Brandenburg and Sharma 2021 was β = 10. In general, however,

the value of β should be calculated selfconsistently, depending on the assumed energy scale of

reheating. All the models of Brandenburg and Sharma 2021 assumed a relatively low reheating

energy scale between 3×105GeV, where β = 1.7 was obtained, and 0.15GeV, the QCD energy

scale, where β = 3 was used for a particular choice of the original electric and magnetic energy

spectra at the end of inflation. Larger values of β = 7.7 were derived for a particular model

with a reheating temperature of 10GeV and an initial k−3 spectrum for the magnetic energy.

It would also be useful to reconsider the differences between helical and nonhelical magne-

togenesis. The simulations of Brandenburg, He, and Sharma 2021 have focused on the resulting

gravitational wave production and found that their efficiency is similar for helical and nonhelical

inflationary magnetogenesis simulations.

Extending our research to turbulent flows and magnetic fields would be a valuable next

step. Achieving this involves solving for the evolution of the electric charge density, ρe, while

ensuring that ∇ · E = ρe/ϵ0 is consistently satisfied. In the presence of the magnetogenesis

mechanism, the evolution equation for ρe can be given by

∂ρe
∂t

+
2f ′

f
ρe = −∇ · J . (56)

It is worth noting that this constraint was automatically adhered to in our one-dimensional

models. In the future, exploring dynamo action in scenarios with moderate magnetic conduc-

tivity, where interactions with the electric energy reservoir may unveil novel insights, could

prove to be an intriguing avenue of research.
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6 Conclusions & Outlook

Even in the absence of cosmological expansion, it was observed that the transition to conduc-

tivity involves oscillatory exchanges between electric and magnetic energies. Notably, it is the

electric energy reservoir that primarily contributes to the kinetic and thermal energy reservoirs,

as opposed to the direct involvement of magnetic energy, as observed in magnetohydrodynam-

ics. Additionally, the duration of this transition plays a crucial role in causing a decrease in

magnetic energy, with the extent of the drop depending on magnetic field strength and the

Alfvén speed. The drop becomes smaller when the Alfvén speed approaches the speed of light.

For shorter transitions, electric energy is mostly converted into thermal energy. However, for

longer transitions, there is an approximately equal exchange between electric and magnetic

energies, with both contributing to thermalization.

While the present simulations have still not been able to explore the regime of a turbulent

transition into the radiation-dominated era, they have revealed a great wealth of detail even

just for the one-dimensional case. These simulations therefore provide an important benchmark

for future models. In particular, the identification of the QG term providing the energy input

in magnetogenesis from reheating may have been overlooked in the past. It demonstrated, for

example, that the original idea of producing a growing magnetic field for positive exponents in

the relation between f and the scale factor cannot lead to a net electric energy gain. This is

because previous work focused mostly of the scaled vector potential, A = fA, which can grow

even if |A| stays constant. Clarifying this further would therefore be another import objective

for future work.
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