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ABSTRACT7

We study vorticity production in isothermal, subsonic, acoustic (nonvortical), decaying turbulence8

due to the presence of magnetic fields. Using three-dimensional numerical simulations, we find that the9

resulting turbulent kinetic energy cascade follows the ordinary Kolmogorov phenomenology involving10

a constant spectral energy flux. The nondimensional prefactor for acoustic turbulence is larger than11

the standard Kolmogorov constant due to the inefficient dissipation of kinetic energy. We find that12

the Lorentz force can drive vortical motions even when the initial field is uniform, by converting a13

fraction of the acoustic energy into vortical energy. This conversion is shown to be quadratic in the14

magnetic field strength and linear in the acoustic flow speed. By contrast, the direct production of15

vortical motions by the magnetic field is linear in the field strength. Our results suggest that magnetic16

fields play a crucial role in vorticity production in cosmological flows, particularly in scenarios where17

significant acoustic turbulence is prevalent. We also discuss the implications of our findings for the18

early universe, where magnetic fields may convert acoustic turbulence generated during cosmological19

phase transitions into vortical turbulence.20

Keywords: Astrophysical magnetism (321) — Plasma astrophysics (1261)21

1. INTRODUCTION22

One can envisage diverse astrophysical situations23

where the velocity field is irrotational and the gas mo-24

tions are predominantly acoustic. Such flows can be de-25

scribed as the gradient of a potential function and thus26

may arise hydrodynamically from gradients of the gravi-27

tational potential or of barotropic pressure fluctuations.28

Vortical motions, on the other hand, arise hydro-29

dynamically through shocks (Porter et al. 2015) and30

through the baroclinic term (Del Sordo & Brandenburg31

2011; Federrath et al. 2011; Jahanbakhshi et al. 2015;32

Elias-López et al. 2023, 2024) resulting from oblique33

gradients of density and pressure. However, the effi-34

ciency of these effects is limited because they depend on35

the Mach number, which is often small, and thus ther-36

mal effects such as differential heating may be too weak37

to produce baroclinicity.38

On the other hand, it has been known for some time39

that magnetic fields create vorticity regardless of the40

possible presence of irrotational turbulence as long as41

the curl of the Lorentz force is nonvanishing. This was42

demonstrated by Kahniashvili et al. (2012), who were43

primarily interested in the effect of turbulence from cos-44

mological phase transitions on an inflationary-generated45

magnetic field. Yet the possibility of producing vortic-46

ity in the presence of magnetic fields is more general and47

may also have occurred under other circumstances.48

A characteristic property of vortical turbulence is the49

constancy of the energy flux from the driving scale50

along the turbulent cascade down to the dissipation51

scale. This allows one to express the energy spectrum52

in nondimensional form, yielding a dimensionless pref-53

actor known as the Kolmogorov constant (Frisch 1995;54

Sreenivasan 1995), which is well measured in vorti-55

cal turbulence. There have been numerous studies of56

acoustic turbulence starting with the early works of57

Kadomtsev & Petviashvili (1973), Elsasser & Schamel58

(1974, 1976), and L’vov & Mikhailov (1981). How-59

ever, many subsequent studies focused on compress-60

ibility effects (Passot & Pouquet 1987; Shivamoggi61

1992; Cho & Lazarian 2005; Galtier & Banerjee 2011).62

Although also the spectral properties of acoustic63

turbulence have been investigated in some detail64

(Falkovich & Meyer 1996; Kuznetsov & Krasnoselskikh65
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2008; Kochurin & Kuznetsov 2022; Ricard & Falcon66

2023), no values for a Kolmogorov-like prefactor have67

been quoted for magnetized acoustic turbulence.68

Here, we use numerical simulations to revisit magnetic69

vorticity production in acoustic turbulence, focusing on70

three main questions. (1) Can the Kolmogorov prefac-71

tor be determined for acoustic turbulence and how does72

the presence of a magnetic field change its value? (2) To73

what extent does magnetically modified acoustic turbu-74

lence resemble ordinary turbulence? (3) Can the kinetic75

energy of acoustic turbulence be converted into that of76

vortical turbulence due to the presence of a magnetic77

field?78

We emphasize that we are not concerned with strong79

compressibility effects, which would occur at large Mach80

numbers (Schleicher et al. 2013; Federrath et al. 2014;81

Porter et al. 2015). This is why we prefer the term82

acoustic (Kadomtsev & Petviashvili 1973) over com-83

pressive. Furthermore, compared to the more general84

term irrotational, the term acoustic is more directly sug-85

gestive of low amplitude subsonic flows.86

The structure of this work is as follows. In §2 we87

describe the MHD equations and their implications for88

vorticity production, as well as our numerical approach,89

parameter space, and approach to analyzing the runs.90

In §3 we present our results focusing on measurements91

of the Kolmogorov prefactor and magnetic vorticity pro-92

duction. Implications and conclusions are given in §4.93

2. THE MODEL94

2.1. Basic Equations95

We solve the hydrodynamic and magnetohydrody-96

namic (MHD) equations with an isothermal equation of97

state, where the pressure p and the density ρ are related98

to each other through p = ρc2s with cs = const being the99

isothermal speed of sound. This precludes vorticity pro-100

duction by the baroclinic term. The evolution equations101

for ρ and the velocity u are then given by102

D ln ρ

Dt
= −∇ · u, and (1)103

104

Du

Dt
= −c2s∇ ln ρ+

J ×B

ρ
+ Fvisc, (2)105

where B is the magnetic field, J = ∇ × B/µ0 is the106

current density with µ0 being the vacuum permeability,107

J ×B is the Lorentz force, Fvisc = ρ−1
∇ · (2νρS) is the108

viscous force per unit mass with ν being the kinematic109

viscosity, and S the rate-of-strain tensor with compo-110

nents Sij = 1
2 (∂iuj + ∂jui) − 1

3δij∇ · u. Note that our111

simulations only include the usual shear viscosity and as-112

sume that the bulk viscosity is absent; see Beattie et al.113

(2023) for a recent work on this aspect.114

In simulations in which the magnetic field is included,115

we also solve for the magnetic potential A via116

∂A

∂t
= ιu×B + η∇2

A, (3)117

so that ∇ × A is always divergence-free. In several of118

our models, we also impose an external magnetic field119

B0 by writing B = B0 +∇×A, so that we can adopt120

periodic boundary conditions on A. In Equation (3),121

the parameter ι is introduced to allow us to turn off the122

induction term (ι = 0). By default, we have ι = 1.123

2.2. Vorticity Production124

To understand the terms leading to vorticity produc-125

tion, we take the curl of Equation (2) and find126

∂w

∂t
= ∇× (u×w) + ẇmag + ẇvisc, (4)127

where ẇmag = ∇ × (J × B/ρ) is the magnetically-128

produced vorticity and ẇvisc = ∇ × Fvisc is the vis-129

cously produced vorticity. Under the assumption that130

ν = const, we find (Mee & Brandenburg 2006)131

ẇvisc = ν∇2
w + ν∇×G (ν = const), (5)132

where Gi = 2Sij∇j ln ρ is a term that always drives133

vorticity—even if it is initially absent. Alternatively, if134

µ ≡ νρ = const, we have Fvisc = ρ−1µ(∇2u+ 1
3∇∇ ·u)135

and136

ẇvisc =
µ

ρ

[
∇2

w +∇ ln ρ×
(
∇×w − 4

3∇∇ · u
)]

,

(6)137

when µ = const. This expression shows that viscous vor-138

ticity production results from the obliqueness of density139

and velocity divergence gradients, which is somewhat140

analogous to vorticity production by a baroclinic term141

in the non-isothermal case. The 1/ρ term in the ex-142

pression for ẇmag is generally only of minor importance143

when the Mach number is small. Thus in the follow-144

ing, we focus on the case ν = const, where vorticity145

production occurs through similar terms as in the case146

µ = const.147

While ẇvisc can play a role at small scales, it is not148

the only term that can convert acoustic motions into149

vortical motions in a magnetized flow. This is because150

acoustic flows modify the magnetic field, which may151

then exert a Lorentz force with a finite curl. We re-152

fer to this as magnetically-assisted vorticity production.153

We give a simple one-dimensional example of this pro-154

cess in Sect. 3.6.1, and in Sect. 3.6.2 we present a set of155

simulations that validate the scaling relations obtained156

from the one-dimensional model.157
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2.3. Summary of the Runs158

We use the Pencil Code (Pencil Code Collaboration et al.159

2021), which employs sixth-order centered differences160

and a third-order timestepping scheme. In all cases, we161

use a resolution of 10243 mesh points. Our simulations162

have periodic boundary conditions, so the mass in the163

volume is conserved and the mean density ρ0 ≡ 〈ρ〉 is164

constant. Here and below, angle brackets denote volume165

averaging.166

Our initial velocity and vector potential are con-167

structed in Fourier space as u(x) =
∑

ũ(k) eik·x and168

A(x) =
∑

Ã(k) eik·x with169

ũi(k) =
[
(1− ζ)δij − (1− 2ζ)k̂ik̂j

]
uiniS̃j(k), (7)170

171

Ãi(k) =
(
δij − k̂ik̂j

)
AiniS̃j(k). (8)172

Here, uini and Aini are amplitude factors, k̂i are the com-173

ponents of the unit vector k̂ ≡ k/k, S̃j(k) is a vector174

field in Fourier space with three independent compo-175

nents that depend on k = |k|, but have random phases176

ϕ(k) for each k vector, and ζ is the irrotationality pa-177

rameter with ζ = 0 when the initial velocity is vortical178

and ζ = 1 when it is acoustic (irrotational). Here we179

choose180

S̃j(k) =
k
−3/2
0 (k/k0)

α/2−1

1 + (k/k0)(α+5/3)/2
eiϕ(k), (9)181

where k0 is the peak wavenumber of the initial condition182

and α is the slope of the subinertial range, which we set183

to α = 4 in this work.184

2.4. Diagnostic Quantities185

An important characteristic of turbulence is its en-186

ergy spectrum. The kinetic energy density per linear187

wavenumber interval, EK(k, t), is defined as the modu-188

lus squared of the Fourier transform of the velocity inte-189

grated over concentric shells in wavevector space. The190

spectrum is normalized such that EK(t) =
∫
EK(k, t) dk191

is the mean kinetic energy density. To obtain the en-192

ergy per unit volume, we include a ρ0 factor, so EK(t) =193

ρ0〈u2〉/2, but we refer the reader to Kritsuk et al. (2007)194

for alternatives.195

The magnetic energy spectrum EM(k, t) is defined196

analogously such that EM(t) =
∫
EM(k, t) dk is the mean197

magnetic energy density with EM(t) = 〈B2〉/2µ0. In ad-198

dition, we also compute the spectrum of the vorticity,199

Ew(k, t), analogously to EK(k, t), but with the veloc-200

ity u being replaced by the vorticity w = ∇ × u. In201

this case Ew(k, t) is related to the vortical part of the202

kinetic energy spectrum, EV(k, t), through EV(k, t) =203

Ew(k, t)/k
2.204

Finally, we also consider the scaled logarithmic den-205

sity spectrum, Elnρ(k, t), which is normalized such that206 ∫
Elnρ(k, t) dk = ρ0〈(cs lnρ)2〉/2. Looking at Equa-207

tion (1), the spatio-temporal Fourier transform of its208

linearized form reads −iω l̃n ρ = −ik · ũ, where ω is209

the frequency. Using the dispersion relation for sound210

waves, ω = csk, we have cs l̃n ρ = k̂ · ũ, so that cs ln ρ211

is directly a proxy for the longitudinal velocity, and212

Elnρ(k, t) is a proxy of the energy spectrum of the acous-213

tic part, EA ≈ Elnρ. We note that EK = EV + EA is214

a fairly accurate decomposition, at least for subsonic215

flows. We therefore compute the acoustic velocity spec-216

trum as EA = EK − EV, and have verified that Elnρ is217

indeed a good approximation of EA.218

The kinetic and magnetic dissipation rates are219

ǫK ≡ 〈2νρS2〉, and ǫM ≡ 〈ηµ0J
2〉, (10)220

respectively. The magnetic dissipation can also be ob-221

tained from ǫM(t) =
∫
2ηk2EM(k, t) dk. For the kinetic222

energy dissipation, however, we have to remember that223

vortical and irrotational parts contribute differently, be-224

cause225

〈S2〉 = 〈w2〉+ 4
3

〈
(∇ · u)2

〉
. (11)226

Therefore, we also define ǫV(t) =
∫
2νk2EV(k, t) dk, and227

ǫA(t) = 4
3

∫
2νk2EA(k, t) dk, but note that, in general,228

ǫK 6= ǫV + ǫA owing to the existence of mixed terms.229

To characterize the velocity and magnetic fields of our230

runs, we define five different Mach numbers. The usual231

Mach number is Ma = urms/cs, which characterizes the232

combined vortical and acoustic parts. These can also be233

characterized separately through MaV =
√
2EV/ρ0/cs234

and MaA =
√

2EA/ρ0/cs, so that Ma2 = Ma2V + Ma2A235

The magnetic field is characterized by the Alfvén speed236

vA = Brms/
√
ρ0µ0, which allows us to define a cor-237

responding Mach number. Here, it is convenient to238

consider separately the contributions from the imposed239

field vA0 = B0/
√
ρ0µ0 and the rest, vA1, so that v2A =240

v2A0 + v2A1. The corresponding Mach numbers are then241

MaM0 = vA0/cs and MaM1 = vA1/cs.242

We also define the time-dependent Reynolds number243

Re = urmsξK/ν based on the usual integral scale244

ξK =

∫
k−1EK(k) dk/EK (12)245

and quote in the following a late-time average when it246

varies only slowly. In all cases, our Mach numbers are247

averaged over a fixed interval at a time of around one248

hundred sound travel times, (csk1)
−1. The values of249

the Mach numbers are well below unity. The magnetic250

Prandtl number, PrM = ν/η, is taken to be unity in all251

cases.252
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Table 1. Summary of the runs discussed in this paper. Columns show the run name (column 1), irrotationality parameter
ζ (column 2), induction switch ι (column 3), normalized peak wavenumber k̃0 = k0/k1 (column 4), normalized amplitudes
of initial velocity and vector potential, ũini = uini/cs and Ãini = k1Aini/

√
ρ0µ0cs characterize the initial random velocity and

magnetic vector potential (columns 5 and 6), five different Mach numbers (columns 7–11), Reynolds number (column 12), and
six different Kolmogorov-type parameters (columns 13–18). Dashes indicate that CM cannot be determined for nonmagnetic
runs. Run D is the same as Run C, except that the induction term has been ignored in Equation (3).

input parameters output parameters

Run ζ ι k̃0 ũini Ãini MaM0 MaM1 MaK MaV MaA Re CM CK CKV CKA CV CA

A 0 1 10 0.020 0 0 0 0.020 0.020 0.002 1200 — 1.62 1.62 0.00 1.65 0.00

B 1 1 10 0.020 0 0 0 0.013 0.000 0.013 1000 — 6.06 0.00 6.06 0.35 6.06

C 1 1 10 0.020 0.005 0 0.009 0.014 0.004 0.013 1100 2.93 6.31 0.33 5.99 0.80 7.22

D 1 0 10 0.020 0.005 0 0.019 0.033 0.031 0.010 1200 0.00 1.86 1.65 0.22 1.69 0.48

E 0 1 10 0 0.005 0 0.008 0.003 0.003 0.000 200 2.88 0.96 0.96 0.00 0.96 0.02

F 1 1 10 0.020 0 1.00 0.010 0.014 0.008 0.012 200 3.66 3.92 1.57 2.35 3.09 3.17

G 1 1 2 0.020 0.005 0 0.014 0.013 0.007 0.011 2100 1.80 6.58 0.86 5.72 1.54 7.36

H 1 1 2 0.020 0 0 0 0.026 0.000 0.026 1300 — 2.17 0.00 2.17 0.26 2.18

I 1 1 2 0.020 0 0.02 0 0.026 0.000 0.026 1900 0.19 2.26 0.00 2.26 0.18 2.27

J 1 1 2 0.020 0 0.05 0.001 0.026 0.000 0.026 1900 0.35 2.26 0.00 2.26 0.32 2.28

K 1 1 2 0.020 0 0.10 0.002 0.026 0.001 0.026 1500 0.57 2.13 0.00 2.12 0.74 2.13

L 1 1 2 0.020 0 0.20 0.004 0.026 0.001 0.026 1300 0.98 2.11 0.02 2.09 1.39 2.09

M 1 1 2 0.020 0 0.50 0.011 0.026 0.005 0.025 1900 1.95 2.47 0.17 2.30 2.18 2.35

N 1 1 2 0.020 0 1.00 0.020 0.028 0.015 0.023 1900 2.92 3.13 1.01 2.12 2.32 2.67

O 1 1 2 0.004 0 0.10 0.001 0.008 0.000 0.008 500 0.63 2.74 0.00 2.74 0.16 2.76

P 1 1 2 0.004 0 1.00 0.006 0.008 0.004 0.007 500 2.90 3.12 0.55 2.57 1.99 2.87

It is convenient to present magnetic and kinetic en-253

ergy spectra in normalized form. Instead of normalizing254

them by a quantity characterizing the large-scale prop-255

erties (EK/k0), we choose here to normalize them by the256

quantity ǫ
2/3
K /k

5/3
0 characterizing the small scales. For257

our runs, we take the values k0/k1 = 10 and 2.258

3. RESULTS259

3.1. Summary of the Runs260

We have performed a series of runs varying the input261

parameters ζ, ι, k0, uini, Aini, MaM0, and MaM1; see262

Table 1 for a summary. Nonmagnetic runs are those263

where MaM0 = MaM1 = 0 (see Runs A, B, and H). When264

MaM0 = 0, but MaM1 6= 0, we have initially a random265

(‘turbulent’) magnetic field with a spectrum peaking at266

k ≈ k0, similarly as for the initial velocity field (Runs C–267

E and G). Run D is the same as Run C, except that the268

induction term has been ignored in Equation (3), i.e.,269

ι = 0. The Mach numbers are in the range 0.007–0.04270

and the Reynolds number is in the range 200–1900.271

The Kolmogorov-type parameter or prefactor for the272

magnetic field, CM, varies significantly and is usually273

in the range 2–8. In all cases with ζ 6= 0, CK exceeds274

the typical value of 1.6 for vortical turbulence (Run A).275

Almost no vorticity is produced when MaK and CKV276

are small (Runs B, C, H–L, and O). This is the case277

for all nonmagnetic and weakly magnetized cases when278

MaM0 <∼ 0.1. Vorticity is being produced when MaM0 >∼279

0.01 or MaM1 >∼ 0.02 (Run C–E and G). We recall that280

Run G has a smaller value of k0 than Run C–E.281

3.2. Comparison of Typical Spectra282

The velocity spectra for Run A, with vortical hydrody-283

namic turbulence, Run B, with acoustic hydrodynamic284

turbulence, and Run C, with acoustic MHD turbulence,285

are compared at a fixed time in Figure 1. We see that,286

although our runs have a fixed viscosity (νk1/cs = 10−6
287

for k0/k1 = 10 and νk1/cs = 5 × 10−6 for k0/k1 = 2),288

and similar values of the Mach Number, only Run A has289

a spectrum that still possesses significant energy at large290

k. It is also the only run with a marked bottleneck, i.e.,291

a shallow part just before the viscous subrange at large292

k (Falkovich 1994). The peak of the scaled spectra for293

Run B is higher, reflecting the fact that the Kolmogorov294

prefactor for acoustic turbulence is larger, as we discuss295

below. Finally, the kinetic energy spectra for Run B and296

C are similar to that for Run A, except that there is no297

visible bottleneck.298
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Figure 1. Kinetic energy spectra for Runs V (black), A
(red), and C (blue), all at the time, t = 28/csk1. No distinc-
tion between vortical and acoustic contributions has been
made.

3.3. Kolmogorov Prefactor299

In Kolmogorov theory, the constancy of the kinetic300

energy flux along the turbulent cascade makes ǫK an301

important quantity for dimensional arguments. On di-302

mensional grounds, the spectrum should be equal to303

CKǫ
2/3
K k−5/3, where CK where the dimensionless prefac-304

tor is the Kolmogorov constant (Frisch 1995). To obtain305

the value of CK, it is convenient to present compensated306

spectra, ǫ
−2/3
K k5/3EK(k, t), which should show a con-307

stant plateau in the k range where Kolmogorov scaling308

applies. Note that the difference to our normalization309

in Figure 1 lies in the fact that there the factor k
5/3
0 was310

a constant, but now it is k-dependent.311

We begin with the more familiar vortical case with312

ζ = 0 and no magnetic field (B = 0, Run A). The result313

is shown in Figure 2, where we see the approach to a314

plateau in the compensated spectrum at the level CK ≈315

1.6, which agrees with the usual Kolmogorov constant316

(Kaneda et al. 2003; Brandenburg et al. 2023). Near317

the dissipative subrange, we also see a strong bulge. This318

was already evident from Figure 1 and was characterized319

as the bottleneck (Falkovich 1994). It is here signifi-320

cantly stronger than for ordinary turbulence, for which321

the compensated spectrum at the bottleneck is usually322

well below 3 (Kaneda et al. 2003; Haugen et al. 2004;323

Brandenburg et al. 2023). This could partially be a con-324

sequence of having underresolved the high wavenumbers325

at early times.326

The corresponding case for acoustic turbulence, where327

ζ = 1, looks different in many ways. This is shown in328

Figure 3, where we plot spectra that are compensated329

separately for the vortical and acoustic parts, i.e.,330

ci(k, t) = ǫ
−2/3
i (t) k5/3Ei(k, t), (13)331

Figure 2. Compensated kinetic energy spectra for Run A
at times csk1t = 3, 7, 14, and 28. The dotted line de-
notes the initial state and the thick line marks the last time.
The dashed-dotted horizontal line marks the approach to the
value CK = 1.5. The inset shows the approach to a plateau
in a semilogarithmic plot.

Figure 3. Compensated kinetic energy spectra for acoustic
turbulence (Run B), ǫ

−2/3
i (t) k5/3Ei(k, t), separated into the

vortical (i = V, blue lines) and acoustic (i = A, orange lines)
components.

and denote by Ci the approximate average of ci(k, t)332

over the flat part for i = V, or A. Here still see the333

approach to a plateau, but the bottleneck is very weak334

(see the inset). Instead, there is a spike in EA at the335

low wavenumber end, where the spectrum transits from336

the subinertial range to the inertial range. In the follow-337

ing, we refer to this spike as the subinertial range peak.338

The height of the plateau also significantly exceeds the339

usual value and is CA ≈ 8, suggesting that standard340

Kolmogorov scaling may not be applicable.341

In Run B, some vorticity is produced by the interac-342

tion with viscosity. Even though the spectrum in Fig-343

ure 3 is normalized by ǫA, the level of the plateau is344

low (around 0.5), albeit still increasing with time. As345

discussed in Sect. 2.1, such vorticity production results346
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Figure 4. Similar to Figure 3, but for Run C, where
the magnetic field produces vorticity. Compensated mag-
netic energy spectra are also plotted (i = M, red lines). The
dashed-dotted horizontal lines indicate the approximate po-
sitions of plateaus at CA ≈ 8 (orange), CM = 3 (red), and
CV = 2 (blue).

from the obliqueness of density and velocity divergence347

gradients. We find that the amount of vorticity produc-348

tion is virtually the same regardless of whether ν or µ are349

held constant. This is likely because the Mach number350

is small in both cases, meaning that density fluctuations351

are small.352

3.4. Magnetic Vorticity Production353

Next, for Run C, we consider an irrotational initial354

flow (ζ = 1, just like Run B) together with a random ini-355

tial magnetic field with a spectrum EM ∝ k4 for k < k0356

and EM ∝ k−5/3 for k > k0, just like the initial velocity357

field. Depending on the relative strengths of the mag-358

netic and velocity fields, the curl of the Lorentz force can359

drive vorticity through the ẇvisc term in Equations (5)360

and (6).361

The result for Run C is shown in Figure 4. Inter-362

estingly, the magnetic energy EM(k) shows neither a363

marked bottleneck nor a marked subinertial range peak.364

The compensated cV(k) spectrum of Equation (13) does365

not have a plateau, but it crosses CV ≈ 1.6 at interme-366

diate wavenumbers. Note, however, that CM(t) has a367

plateau with a magnetic Kolmogorov prefactor of about368

3; see Figure 4.369

In Appendix 4, we compare spectra for Runs C and370

E with and without initial turbulence, Runs C and D371

with and without the induction term, i.e., ι = 1 and 0,372

respectively, as well as Runs C and G with k0/k1 = 10373

and 2, respectively. We see that in Run E, turbulence374

is gradually being produced. Regarding the presence or375

absence of the induction term, we see that for Run C the376

induction term enables the magnetic and kinetic energy377

cascades to be nearly parallel. This is not the case when378

Figure 5. Same as Figure 4, but for Run G with k0/k1 = 2.

the induction term is absent (Run D). Finally, compar-379

ing Runs C and G, we see that both for k/k1 = 2 and 10,380

there is a loss of kinetic energy in the acoustic compo-381

nents along with a gain of kinetic energy in the vortical382

component.383

3.5. Comparison with Earlier Work384

In the presence of irrotational forcing,385

Kahniashvili et al. (2012) found that for an infla-386

tionary magnetic field with a magnetic energy spec-387

trum proportional to k−1, vortical turbulence develops388

with a spectrum EV(k) that is in equipartition, i.e.,389

EV(k) ≈ EM(k). Comparing this with our present390

results, we see that equipartition between EV(k) and391

EM(k) exists only at high wavenumbers. This difference392

to Kahniashvili et al. (2012) seems to be connected with393

the fact that they used an inflationary magnetic field394

with a k−1 spectrum, whereas here, EM(k) has a peak at395

intermediate wavenumbers. To further verify this inter-396

pretation, we show in Figure 5 the compensated spectra397

of EV(k, t) and EM(k, t) for a Run with k0/k1 = 2. We398

now see that the range over which the two spectra are399

nearly parallel is not only increased, but also the degree400

of equipartition is better, i.e., the two spectra are closer401

together.402

The velocity spectrum generated by the Lorentz force403

of such a magnetic field alone, i.e., without an initial404

acoustic component, is known to develop a shallow spec-405

trum near k0, and is in approximate equipartition with406

the magnetic field at large wavenumbers. This is similar407

to the EV spectrum in Figure 4, where the compen-408

sated spectra are proportional to k2/3, suggesting that409

EV(k) ∝ k in the beginning of the magnetic inertial410

range.411

In agreement with the earlier work of412

Mee & Brandenburg (2006), the present results con-413

firm that acoustic turbulence hardly contributes to414
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driving magnetic fields. Theoretically, small-scale dy-415

namo action of the type first proposed by Kazantsev416

(1968) should also be possible for acoustic turbu-417

lence (Kazantsev et al. 1985; Martins Afonso et al.418

2019), but this has never been confirmed numerically419

(Mee & Brandenburg 2006). What has been confirmed,420

however, is a small negative turbulent magnetic diffu-421

sivity (Rädler et al. 2011). Because its negative value is422

never larger than the positive microphysical magnetic423

diffusivity, it can only slow down the decay without424

leading to dynamo action from this effect alone. Fur-425

thermore, this negative turbulent magnetic diffusivity426

effect only concerns the mean or large-scale magnetic427

field.428

3.6. Magnetically-assisted Vorticity Conversion429

As we have seen from Table 1, runs with suffi-430

ciently strong uniform magnetic fields produce notice-431

able amounts of vorticity. Here the mechanism causing432

vorticity is different from the vorticity production con-433

sidered in Sect. 3.4, because here it relies on the pres-434

ence of initially acoustic turbulence. This is what we435

call magnetically-assisted vorticity conversion. To gain436

a better understanding of this conversion mechanism of437

acoustic turbulent energy into vortical turbulent energy438

due to the presence of a magnetic field, we consider first439

a simple one-dimensional example.440

3.6.1. Vorticity Conversion in One Dimension441

The conversion of acoustic kinetic energy into vortical442

kinetic energy can be demonstrated with the help of a443

one-dimensional example. We consider a domain −π <444

x < π with a uniform magnetic field in the diagonal di-445

rection, B0 = (B0x, B0y, 0), constant density, ρ = ρ0,446

and a standing sound wave initially, i.e., ux = u0 sin kx.447

All the kinetic energy is then in acoustic motions. The448

uncurled induction equation reads Ȧz = uxB0y, and the449

momentum equation becomes u̇ = Jz(−B0y, B0x, 0)/ρ0,450

where dots denote time derivatives. For vorticity pro-451

duction, which yields wz = u′

y, where primes denote x452

derivatives, only the uy component matters and thus we453

have ẇz = J ′

zB0x/ρ0, Taking another time derivative454

and using Jz = −A′′

z , we have ẅz = −u′′′

x vAxvAy, where455

vAx and vAy are the Alfvén speeds in the x and y di-456

rections, respectively. Replacing t and x derivatives by457

factors of ω and k, and using the dispersion relation for458

sound waves, ω = csk, we find for the vorticity ampli-459

tude460

wz = (vAxvAy/c
2
s )u0k. (14)461

For ux = u0 sin kx, wz is proportional to cos kx. In462

Figure 6, we show three cases: (i) u0 = 0.1, B0 = 0.1; (ii)463

u0 = 0.05, B0 = 0.1; and (iii) u0 = 0.1, B0 = 0.05. We464

Figure 6. (i) u0 = 0.1, B0 = 0.1; (ii) u0 = 0.05, B0 = 0.1;
(iii) u0 = 0.1, B0 = 0.05. Note that the normalized curves
of wrms for all three cases are initially the same.

Figure 7. Visualization of (Bx, By) vectors overlaid on a
color-scale representation of Jz (a), and of (ux, uy) vectors
overlaid on wz (b) in a two-dimensional plane by replicating
the data of the one-dimensional calculation in the y direction.

see that the linear scaling in u0 and the quadratic scaling465

in B0 in Equation (14) is reproduced by a numerical466

simulation of this one-dimensional initial value problem.467

In Figure 7 we present visualizations of (Bx, By) vec-468

tors and (ux, uy) vectors overlaid on color-scale represen-469

tations of Jz and wz, respectively. To make the small470

departures from the uniform field more clearly visible,471

we have scaled the perturbations of By by a factor of 20472

and uy by a factor of 300.473
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Figure 8. Visualizations of ∇ ·u (top) with a range of −4 to 4, B2 (middle) with a range of 4 to 6, and w
2 (bottom) with a

range of 0 to 2. All plots are on the periphery of the computational domain for Run N at t csk1 = 1, 10, and 100.

Given that the magnetically-assisted conversion of474

acoustic into vortical motions requires strong fields, it475

is of interest to see whether the strength of this conver-476

sion can be verified Equation (14). This is done in the477

next section.478

3.6.2. Vorticity Conversion in Three Dimensions479

To see if the scaling found in Sect. 3.6.1 applies to480

our runs, we plot in Figure 9 the dependence of MaV481

on Ma2M0MaA for runs with an imposed magnetic field.482

Except for Runs I–L with 0.02 ≤ MaM1 ≤ 0.2, in which483

the magnetic field is weak and the acoustic turbulence484

strong, the vorticity obeys the expected scaling with485

MaV ≈ 0.67Ma2M0MaA. For the runs without an im-486

posed magnetic field, the same scaling can also be recov-487

ered if we multiply MaM1 by a factor of ≈ 71, suggesting488

that a much weaker turbulent field has the same effect489

as a stronger uniform field. Note that it is difficult to490

distinguish this type of conversion from vorticity pro-491

duced directly from the Lorentz (here Run E). However,492

we see that the expected dependence on MaA is indeed493

obeyed; see Equation (14). This suggests that Runs C494

and G (green symbols in Figure 9) with k0 = 10 and495

2, respectively, with MaM0 = 0 and MaM1 = 0.005 also496

experience magnetically-assisted vorticity production.497

In Figure 8, we present visualizations of ∇ · u, B2,498

and w2 on the periphery of the computational domain499

for Run N at three different times. We see that the500

structures reflect the presence of shocks extending over501

major parts of the domain—especially for the local vor-502

ticity density.503

4. CONCLUSIONS504

Acoustic turbulence is common throughout astro-505

physics, arising naturally from gradients of the gravita-506

tional potential or of barotropic pressure fluctuations.507

In this work, we have used numerical simulations to508

study the production of vorticity in isothermal, decay-509

ing acoustic turbulence, focusing on the role of magnetic510

fields.511
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Figure 9. Dependence of MaV on Ma2M0MaA for our three-
dimensional runs with an imposed magnetic field, and on
(71MaM1)

2MaA for Runs C and G without imposed magnetic
field. The red filled symbols mark Runs F and N, while the
green filled symbols mark Runs O and P. The green filled
symbols mark Runs C and G without an imposed magnetic
field. The solid line corresponds to 0.67Ma2M0MaA and the
dashed line to 0.03MaM0. The uppercase letters denote the
runs.

We find that without magnetic fields, acoustic turbu-512

lence obeys a Kolmogorov-type phenomenology, with a513

nondimensional Kolmogorov prefactor of CK ≈ 6. This514

is significantly larger than the standard Kolmogorov515

constant for vortical turbulence, which is around 1.6.516

The presence of a magnetic field lowers this value to517

around 2–3 for most of our runs, although the univer-518

sality of this prefactor remains uncertain, as we occa-519

sionally observe larger values.520

Magnetic fields also influence the partitioning be-521

tween the acoustic and vortical components of the tur-522

bulence. When a non-force-free magnetic field is added,523

the Lorentz force produces vorticity with a kinetic en-524

ergy spectrum that is close to equipartition with the525

magnetic energy spectrum in the upper part of the iner-526

tial range. The turbulence also begins to resemble vor-527

tical turbulence, developing a spectrum that is nearly in528

equipartition with the magnetic energy spectrum at high529

wavenumbers. Our simulations reproduce this process,530

in agreement with earlier findings (Kahniashvili et al.531

2012).532

We also show that even if the magnetic field is force-533

free, it is still able to produce vorticity by converting534

acoustic energy into vortical kinetic energy. This con-535

version is most efficient when the acoustic component536

has significant contributions from large length scales and537

when the field is strong. The amplitude of the vortical538

component in this case is expected to scale quadratically539

with the magnetic field and linearly with the strength540

of the initial acoustic component. This scaling is con-541

firmed by our simulations, particularly in Runs N and542

P, where a strong imposed magnetic field (MaM0 = 1)543

converts acoustic energy into vortical energy. Even in544

the case of a turbulent magnetic field, the same scaling545

holds, though the required field strength is much weaker546

(MaM1 = 0.005).547

The implications of our findings extend to cosmol-548

ogy, particularly to the early Universe. During the549

radiation-dominated era, the gas obeys an ultrarela-550

tivistic equation of state, where the pressure is propor-551

tional to the density, similar to isothermal flows. The552

sudden generation of acoustic turbulence, for example553

from cosmological phase transitions (Turner et al. 1992;554

Hindmarsh et al. 2015), could be converted into vorti-555

cal turbulence by a magnetic field. Such a field might556

have been produced either during inflation or during the557

subsequent reheating era just prior to the radiation-558

dominated era. This could play a significant role in559

shaping the dynamics in the early Universe, particu-560

larly the generation of vortical turbulence from initially561

acoustic fluctuations.562
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APPENDIX662

At the end of Sect. 3.4, we mentioned spectral com-663

parisons of Run C with three other runs (Runs E, D, and664

G). In Figure 10, we compare the kinetic and magnetic665

energy spectra for Runs C and E, i.e., with and with-666

out initial turbulence. We see that turbulence is gradu-667

ally being generated by the magnetic field, but there is668

hardly any effect on the magnetic energy spectra.669

In Figure 11, we show the resulting spectra for a case670

where the induction term, u ×B, has been suppressed671

in Equation (3), i.e., ι = 0, and we just solve the dif-672

fusion equation, ∂A/∂t = η∇2A. The magnetic field673

then decays preferentially at high wavenumbers, where674

magnetic diffusion acts the strongest. This is evident675

from a premature cutoff of the magnetic energy spec-676

trum. The vortical part of the kinetic energy spectrum677

now seems to show a very strong bottleneck, but the678

acoustic part does have a plateau at a low level and a679

small bottleneck. This suggests that the initial energy680

in the acoustic component is unimportant for the dy-681

namics of the magnetic field. Moreover, the vorticity682

production by the magnetic field is largely independent683

of the initial energy in the irrotational component.684

In Figure 12, we compare magnetic and kinetic en-685

ergy spectra for the vortical and acoustic components for686

Figure 10. Comparison of kinetic (blue lines) and mag-
netic (red lines) energy spectra for Runs C (solid lines) and
E (dashed lines) at times 2.5, 7.5, and 25, i.e., runs with and
without initial turbulence.

Figure 11. Similar to Figure 10, but for Runs C (solid
lines) and D (dashed lines, ι = 0, i.e., no induction) at times
2.5, 7.5, and 60. The black dotted lines provide fixed refer-
ence values in each panel.

Figure 12. Comparison of acoustic (green lines), vortical
kinetic (blue lines), and magnetic (red lines) energy spectra
for Runs C (solid lines) and G (dashed lines) at times 2.5,
7.5, and 25.
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Runs C with G. We see that around the time 7.5, Run C687

suffers a loss of kinetic energy in the acoustic compo-688

nents along with a gain of kinetic energy in the vortical689

component. This energy exchange occurs around the690

wavenumber k/k1 = 2.691
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