Magnetically-assisted Vorticity Production in Decaying Acoustic Turbulence

AXEL BRANDENBURG^{1, 2, 3, 4} AND EVAN SCANNAPIECO⁵

¹Nordita, KTH Royal Institute of Technology and Stockholm University, Hannes Alfvéns väg 12, SE-10691 Stockholm, Sweden
 ²The Oskar Klein Centre, Department of Astronomy, Stockholm University, AlbaNova, SE-10691 Stockholm, Sweden
 ³McWilliams Center for Cosmology & Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, USA
 ⁴School of Natural Sciences and Medicine, Ilia State University, 3-5 Cholokashvili Avenue, 0194 Tbilisi, Georgia
 ⁵School of Earth and Space Exploration, Arizona State University, P.O. Box 876004, Tempe, AZ 85287, USA

ABSTRACT

We study vorticity production in isothermal, subsonic, acoustic (nonvortical), decaying turbulence 8 due to the presence of magnetic fields. Using three-dimensional numerical simulations, we find that the 9 resulting turbulent kinetic energy cascade follows the ordinary Kolmogorov phenomenology involving 10 a constant spectral energy flux. The nondimensional prefactor for acoustic turbulence is larger than 11 the standard Kolmogorov constant due to the inefficient dissipation of kinetic energy. We find that 12 the Lorentz force can drive vortical motions even when the initial field is uniform, by converting a 13 fraction of the acoustic energy into vortical energy. This conversion is shown to be quadratic in the 14 magnetic field strength and linear in the acoustic flow speed. By contrast, the direct production of 15 vortical motions by the magnetic field is linear in the field strength. Our results suggest that magnetic 16 fields play a crucial role in vorticity production in cosmological flows, particularly in scenarios where 17 significant acoustic turbulence is prevalent. We also discuss the implications of our findings for the 18 early universe, where magnetic fields may convert acoustic turbulence generated during cosmological 19 phase transitions into vortical turbulence. 20

²¹ Keywords: Astrophysical magnetism (321) — Plasma astrophysics (1261)

22

1

1. INTRODUCTION

One can envisage diverse astrophysical situations 23 where the velocity field is irrotational and the gas mo-24 ²⁵ tions are predominantly acoustic. Such flows can be de-26 scribed as the gradient of a potential function and thus 27 may arise hydrodynamically from gradients of the gravi-²⁸ tational potential or of barotropic pressure fluctuations. Vortical motions, on the other hand, arise hydro-29 ³⁰ dynamically through shocks (Porter et al. 2015) and ³¹ through the baroclinic term (Del Sordo & Brandenburg 32 2011; Federrath et al. 2011; Jahanbakhshi et al. 2015; 33 Elias-López et al. 2023, 2024) resulting from oblique 34 gradients of density and pressure. However, the effi-³⁵ ciency of these effects is limited because they depend on ³⁶ the Mach number, which is often small, and thus ther-37 mal effects such as differential heating may be too weak 38 to produce baroclinicity.

On the other hand, it has been known for some time that magnetic fields create vorticity regardless of the possible presence of irrotational turbulence as long as the curl of the Lorentz force is nonvanishing. This was demonstrated by Kahniashvili et al. (2012), who were ⁴⁴ primarily interested in the effect of turbulence from cos⁴⁵ mological phase transitions on an inflationary-generated
⁴⁶ magnetic field. Yet the possibility of producing vortic⁴⁷ ity in the presence of magnetic fields is more general and
⁴⁸ may also have occurred under other circumstances.

49 A characteristic property of vortical turbulence is the ⁵⁰ constancy of the energy flux from the driving scale ⁵¹ along the turbulent cascade down to the dissipation ⁵² scale. This allows one to express the energy spectrum ⁵³ in nondimensional form, yielding a dimensionless pref-⁵⁴ actor known as the Kolmogorov constant (Frisch 1995; ⁵⁵ Sreenivasan 1995), which is well measured in vorti-56 cal turbulence. There have been numerous studies of 57 acoustic turbulence starting with the early works of 58 Kadomtsev & Petviashvili (1973), Elsasser & Schamel ⁵⁹ (1974, 1976), and L'vov & Mikhailov (1981). How-60 ever, many subsequent studies focused on compress-⁶¹ ibility effects (Passot & Pouquet 1987; Shivamoggi 62 1992; Cho & Lazarian 2005; Galtier & Banerjee 2011). 63 Although also the spectral properties of acoustic 64 turbulence have been investigated in some detail 65 (Falkovich & Meyer 1996; Kuznetsov & Krasnoselskikh

66 2008; Kochurin & Kuznetsov 2022; Ricard & Falcon 67 2023), no values for a Kolmogorov-like prefactor have 68 been quoted for magnetized acoustic turbulence.

Here, we use numerical simulations to revisit magnetic vorticity production in acoustic turbulence, focusing on three main questions. (1) Can the Kolmogorov prefacbed determined for acoustic turbulence and how does the presence of a magnetic field change its value? (2) To what extent does magnetically modified acoustic turbubed for a coustic turbulence? (3) Can the kinetic fe energy of acoustic turbulence be converted into that of vortical turbulence due to the presence of a magnetic field?

We emphasize that we are not concerned with strong compressibility effects, which would occur at large Mach numbers (Schleicher et al. 2013; Federrath et al. 2014; Porter et al. 2015). This is why we prefer the term acoustic (Kadomtsev & Petviashvili 1973) over compressive. Furthermore, compared to the more general term irrotational, the term acoustic is more directly suggestive of low amplitude subsonic flows.

The structure of this work is as follows. In §2 we describe the MHD equations and their implications for vorticity production, as well as our numerical approach, parameter space, and approach to analyzing the runs. In §3 we present our results focusing on measurements of the Kolmogorov prefactor and magnetic vorticity production. Implications and conclusions are given in §4.

94 2. THE MODEL

95

2.1. Basic Equations

⁹⁶ We solve the hydrodynamic and magnetohydrody-⁹⁷ namic (MHD) equations with an isothermal equation of ⁹⁸ state, where the pressure p and the density ρ are related ⁹⁹ to each other through $p = \rho c_s^2$ with $c_s = \text{const}$ being the ¹⁰⁰ isothermal speed of sound. This precludes vorticity pro-¹⁰¹ duction by the baroclinic term. The evolution equations ¹⁰² for ρ and the velocity \boldsymbol{u} are then given by

$$\frac{\mathrm{D}\ln\rho}{\mathrm{D}t} = -\boldsymbol{\nabla}\cdot\boldsymbol{u}, \quad \mathrm{and}$$

103 104 105

$$\frac{\mathrm{D}\boldsymbol{u}}{\mathrm{D}t} = -c_{\mathrm{s}}^{2}\boldsymbol{\nabla}\ln\rho + \frac{\boldsymbol{J}\times\boldsymbol{B}}{\rho} + \boldsymbol{F}_{\mathrm{visc}},\qquad(2)$$

¹⁰⁶ where **B** is the magnetic field, $J = \nabla \times B/\mu_0$ is the ¹⁰⁷ current density with μ_0 being the vacuum permeability, ¹⁰⁸ $J \times B$ is the Lorentz force, $F_{\text{visc}} = \rho^{-1} \nabla \cdot (2\nu \rho \mathbf{S})$ is the ¹⁰⁹ viscous force per unit mass with ν being the kinematic ¹¹⁰ viscosity, and **S** the rate-of-strain tensor with compo-¹¹¹ nents $S_{ij} = \frac{1}{2}(\partial_i u_j + \partial_j u_i) - \frac{1}{3}\delta_{ij}\nabla \cdot \boldsymbol{u}$. Note that our ¹¹² simulations only include the usual shear viscosity and as-¹¹³ sume that the bulk viscosity is absent; see Beattie et al. ¹¹⁴ (2023) for a recent work on this aspect. In simulations in which the magnetic field is included, the we also solve for the magnetic potential A via

$$\frac{\partial \boldsymbol{A}}{\partial t} = \iota \boldsymbol{u} \times \boldsymbol{B} + \eta \nabla^2 \boldsymbol{A}, \qquad (3)$$

¹¹⁸ so that $\nabla \times \mathbf{A}$ is always divergence-free. In several of ¹¹⁹ our models, we also impose an external magnetic field ¹²⁰ \mathbf{B}_0 by writing $\mathbf{B} = \mathbf{B}_0 + \nabla \times \mathbf{A}$, so that we can adopt ¹²¹ periodic boundary conditions on \mathbf{A} . In Equation (3), ¹²² the parameter ι is introduced to allow us to turn off the ¹²³ induction term ($\iota = 0$). By default, we have $\iota = 1$.

2.2. Vorticity Production

117

124

127

132

137

(1)

To understand the terms leading to vorticity production, we take the curl of Equation (2) and find

$$\frac{\partial \boldsymbol{w}}{\partial t} = \boldsymbol{\nabla} \times (\boldsymbol{u} \times \boldsymbol{w}) + \dot{\boldsymbol{w}}_{\text{mag}} + \dot{\boldsymbol{w}}_{\text{visc}}, \qquad (4)$$

¹²⁸ where $\dot{\boldsymbol{w}}_{\text{mag}} = \boldsymbol{\nabla} \times (\boldsymbol{J} \times \boldsymbol{B}/\rho)$ is the magnetically-¹²⁹ produced vorticity and $\dot{\boldsymbol{w}}_{\text{visc}} = \boldsymbol{\nabla} \times \boldsymbol{F}_{\text{visc}}$ is the vis-¹³⁰ cously produced vorticity. Under the assumption that ¹³¹ $\nu = \text{const}$, we find (Mee & Brandenburg 2006)

$$\dot{\boldsymbol{w}}_{\text{visc}} = \nu \nabla^2 \boldsymbol{w} + \nu \boldsymbol{\nabla} \times \boldsymbol{G} \quad (\nu = \text{const}), \qquad (5)$$

¹³³ where $G_i = 2\mathsf{S}_{ij}\nabla_j \ln \rho$ is a term that always drives ¹³⁴ vorticity—even if it is initially absent. Alternatively, if ¹³⁵ $\mu \equiv \nu \rho = \text{const}$, we have $\mathbf{F}_{\text{visc}} = \rho^{-1} \mu (\nabla^2 \boldsymbol{u} + \frac{1}{3} \boldsymbol{\nabla} \boldsymbol{\nabla} \cdot \boldsymbol{u})$ ¹³⁶ and

$$\dot{\boldsymbol{w}}_{\text{visc}} = \frac{\mu}{\rho} \left[\nabla^2 \boldsymbol{w} + \boldsymbol{\nabla} \ln \rho \times \left(\boldsymbol{\nabla} \times \boldsymbol{w} - \frac{4}{3} \boldsymbol{\nabla} \boldsymbol{\nabla} \cdot \boldsymbol{u} \right) \right],$$
(6)

¹³⁸ when $\mu = \text{const.}$ This expression shows that viscous vor-¹³⁹ ticity production results from the obliqueness of density ¹⁴⁰ and velocity divergence gradients, which is somewhat ¹⁴¹ analogous to vorticity production by a baroclinic term ¹⁴² in the non-isothermal case. The $1/\rho$ term in the ex-¹⁴³ pression for $\dot{\boldsymbol{w}}_{\text{mag}}$ is generally only of minor importance ¹⁴⁴ when the Mach number is small. Thus in the follow-¹⁴⁵ ing, we focus on the case $\nu = \text{const}$, where vorticity ¹⁴⁶ production occurs through similar terms as in the case ¹⁴⁷ $\mu = \text{const.}$

¹⁴⁸ While $\dot{\boldsymbol{w}}_{\text{visc}}$ can play a role at small scales, it is not ¹⁴⁹ the only term that can convert acoustic motions into ¹⁵⁰ vortical motions in a magnetized flow. This is because ¹⁵¹ acoustic flows modify the magnetic field, which may ¹⁵² then exert a Lorentz force with a finite curl. We re-¹⁵³ fer to this as magnetically-assisted vorticity production. ¹⁵⁴ We give a simple one-dimensional example of this pro-¹⁵⁵ cess in Sect. 3.6.1, and in Sect. 3.6.2 we present a set of ¹⁵⁶ simulations that validate the scaling relations obtained ¹⁵⁷ from the one-dimensional model.

2.3. Summary of the Runs

¹⁵⁹ We use the PENCIL CODE (Pencil Code Collaboration et ¹⁶⁰ 2021), which employs sixth-order centered differences ¹⁶¹ and a third-order timestepping scheme. In all cases, we ¹⁶² use a resolution of 1024³ mesh points. Our simulations ¹⁶³ have periodic boundary conditions, so the mass in the ¹⁶⁴ volume is conserved and the mean density $\rho_0 \equiv \langle \rho \rangle$ is ¹⁶⁵ constant. Here and below, angle brackets denote volume ¹⁶⁶ averaging.

¹⁶⁷ Our initial velocity and vector potential are con-¹⁶⁸ structed in Fourier space as $\boldsymbol{u}(\boldsymbol{x}) = \sum \tilde{\boldsymbol{u}}(\boldsymbol{k}) e^{\mathrm{i}\boldsymbol{k}\cdot\boldsymbol{x}}$ and ¹⁶⁹ $\boldsymbol{A}(\boldsymbol{x}) = \sum \tilde{\boldsymbol{A}}(\boldsymbol{k}) e^{\mathrm{i}\boldsymbol{k}\cdot\boldsymbol{x}}$ with

¹⁷⁰
$$\tilde{u}_i(\boldsymbol{k}) = \left[(1-\zeta)\delta_{ij} - (1-2\zeta)\hat{k}_i\hat{k}_j \right] u_{\text{ini}}\tilde{S}_j(\boldsymbol{k}), \quad (7)$$

(8)

220

226

245

$$ilde{A}_i(oldsymbol{k}) = \left(\delta_{ij} - \hat{k}_i \hat{k}_j
ight) A_{
m ini} ilde{S}_j(oldsymbol{k}).$$

¹⁷³ Here, u_{ini} and A_{ini} are amplitude factors, \hat{k}_i are the com-¹⁷⁴ ponents of the unit vector $\hat{k} \equiv k/k$, $\tilde{S}_j(k)$ is a vector ¹⁷⁵ field in Fourier space with three independent compo-¹⁷⁶ nents that depend on $k = |\mathbf{k}|$, but have random phases ¹⁷⁷ $\varphi(\mathbf{k})$ for each \mathbf{k} vector, and ζ is the irrotationality pa-¹⁷⁸ rameter with $\zeta = 0$ when the initial velocity is vortical ¹⁷⁹ and $\zeta = 1$ when it is acoustic (irrotational). Here we ¹⁸⁰ choose

¹⁸¹
$$\tilde{S}_{j}(\boldsymbol{k}) = \frac{k_{0}^{-3/2} (k/k_{0})^{\alpha/2-1}}{1 + (k/k_{0})^{(\alpha+5/3)/2}} e^{i\varphi(\boldsymbol{k})}, \qquad (9)$$

where k_0 is the peak wavenumber of the initial condition and α is the slope of the subinertial range, which we set $\alpha = 4$ in this work.

185 2.4. Diagnostic Quantities

An important characteristic of turbulence is its en-¹⁸⁶ ergy spectrum. The kinetic energy density per linear ¹⁸⁷ wavenumber interval, $E_{\rm K}(k,t)$, is defined as the modu-¹⁸⁹ lus squared of the Fourier transform of the velocity inte-¹⁹⁰ grated over concentric shells in wavevector space. The ¹⁹¹ spectrum is normalized such that $\mathcal{E}_{\rm K}(t) = \int E_{\rm K}(k,t) dk$ ¹⁹² is the mean kinetic energy density. To obtain the en-¹⁹³ ergy per unit volume, we include a ρ_0 factor, so $\mathcal{E}_{\rm K}(t) =$ ¹⁹⁴ $\rho_0 \langle u^2 \rangle / 2$, but we refer the reader to Kritsuk et al. (2007) ¹⁹⁵ for alternatives.

The magnetic energy spectrum $E_{\rm M}(k,t)$ is defined analogously such that $\mathcal{E}_{\rm M}(t) = \int E_{\rm M}(k,t) \, \mathrm{d}k$ is the mean magnetic energy density with $\mathcal{E}_{\rm M}(t) = \langle \boldsymbol{B}^2 \rangle / 2\mu_0$. In addition, we also compute the spectrum of the vorticity, $E_w(k,t)$, analogously to $E_{\rm K}(k,t)$, but with the veloctity \boldsymbol{u} being replaced by the vorticity $\boldsymbol{w} = \boldsymbol{\nabla} \times \boldsymbol{u}$. In this case $E_w(k,t)$ is related to the vortical part of the kinetic energy spectrum, $E_{\rm V}(k,t)$, through $E_{\rm V}(k,t) =$ $E_{w}(k,t)/k^2$. Finally, we also consider the scaled logarithmic den-205 Finally, we also consider the scaled logarithmic den-206 sity spectrum, $E_{\ln\rho}(k,t)$, which is normalized such that 207 $\int E_{\ln\rho}(k,t) dk = \rho_0 \langle (c_{\rm s} \ln\rho)^2 \rangle / 2$. Looking at Equa-208 tion (1), the spatio-temporal Fourier transform of its 209 linearized form reads $-i\omega \ln \rho = -i\mathbf{k} \cdot \tilde{\mathbf{u}}$, where ω is 200 the frequency. Using the dispersion relation for sound 211 waves, $\omega = c_{\rm s}k$, we have $c_{\rm s}\ln\rho = \hat{\mathbf{k}} \cdot \tilde{\mathbf{u}}$, so that $c_{\rm s}\ln\rho$ 212 is directly a proxy for the longitudinal velocity, and 213 $E_{\ln\rho}(k,t)$ is a proxy of the energy spectrum of the acous-214 tic part, $E_{\rm A} \approx E_{\ln\rho}$. We note that $E_{\rm K} = E_{\rm V} + E_{\rm A}$ is 215 a fairly accurate decomposition, at least for subsonic 216 flows. We therefore compute the acoustic velocity spec-217 trum as $E_{\rm A} = E_{\rm K} - E_{\rm V}$, and have verified that $E_{\ln\rho}$ is 218 indeed a good approximation of $E_{\rm A}$.

²¹⁹ The kinetic and magnetic dissipation rates are

$$\epsilon_{\rm K} \equiv \langle 2\nu \rho \mathbf{S}^2 \rangle, \quad \text{and} \quad \epsilon_{\rm M} \equiv \langle \eta \mu_0 J^2 \rangle, \quad (10)$$

²²¹ respectively. The magnetic dissipation can also be ob-²²² tained from $\epsilon_{\rm M}(t) = \int 2\eta k^2 E_{\rm M}(k,t) \, \mathrm{d}k$. For the kinetic ²²³ energy dissipation, however, we have to remember that ²²⁴ vortical and irrotational parts contribute differently, be-²²⁵ cause

$$\langle \mathbf{S}^2 \rangle = \langle \boldsymbol{w}^2 \rangle + \frac{4}{3} \langle (\boldsymbol{\nabla} \cdot \boldsymbol{u})^2 \rangle.$$
 (11)

²²⁷ Therefore, we also define $\epsilon_{\rm V}(t) = \int 2\nu k^2 E_{\rm V}(k,t) \, \mathrm{d}k$, and ²²⁸ $\epsilon_{\rm A}(t) = \frac{4}{3} \int 2\nu k^2 E_{\rm A}(k,t) \, \mathrm{d}k$, but note that, in general, ²²⁹ $\epsilon_{\rm K} \neq \epsilon_{\rm V} + \epsilon_{\rm A}$ owing to the existence of mixed terms.

To characterize the velocity and magnetic fields of our ²³⁰ To characterize the velocity and magnetic fields of our ²³¹ runs, we define five different Mach numbers. The usual ²³² Mach number is $Ma = u_{rms}/c_s$, which characterizes the ²³³ combined vortical and acoustic parts. These can also be ²³⁴ characterized separately through $Ma_V = \sqrt{2\mathcal{E}_V/\rho_0}/c_s$ ²³⁵ and $Ma_A = \sqrt{2\mathcal{E}_A/\rho_0}/c_s$, so that $Ma^2 = Ma_V^2 + Ma_A^2$ ²³⁶ The magnetic field is characterized by the Alfvén speed ²³⁷ $v_A = B_{rms}/\sqrt{\rho_0\mu_0}$, which allows us to define a cor-²³⁸ responding Mach number. Here, it is convenient to ²³⁹ consider separately the contributions from the imposed ²⁴⁰ field $v_{A0} = B_0/\sqrt{\rho_0\mu_0}$ and the rest, v_{A1} , so that $v_A^2 =$ ²⁴¹ $v_{A0}^2 + v_{A1}^2$. The corresponding Mach numbers are then ²⁴² $Ma_{M0} = v_{A0}/c_s$ and $Ma_{M1} = v_{A1}/c_s$.

We also define the time-dependent Reynolds number 244 Re = $u_{\rm rms} \xi_{\rm K} / \nu$ based on the usual integral scale

$$\xi_{\rm K} = \int k^{-1} E_{\rm K}(k) \, dk / \mathcal{E}_{\rm K} \tag{12}$$

²⁴⁶ and quote in the following a late-time average when it ²⁴⁷ varies only slowly. In all cases, our Mach numbers are ²⁴⁸ averaged over a fixed interval at a time of around one ²⁴⁹ hundred sound travel times, $(c_{\rm s}k_1)^{-1}$. The values of ²⁵⁰ the Mach numbers are well below unity. The magnetic ²⁵¹ Prandtl number, $\Pr_{\rm M} = \nu/\eta$, is taken to be unity in all ²⁵² cases.

158

172

Table 1. Summary of the runs discussed in this paper. Columns show the run name (column 1), irrotationality parameter ζ (column 2), induction switch ι (column 3), normalized peak wavenumber $\tilde{k}_0 = k_0/k_1$ (column 4), normalized amplitudes of initial velocity and vector potential, $\tilde{u}_{ini} = u_{ini}/c_s$ and $\tilde{A}_{ini} = k_1 A_{ini}/\sqrt{\rho_0 \mu_0}c_s$ characterize the initial random velocity and magnetic vector potential (columns 5 and 6), five different Mach numbers (columns 7–11), Reynolds number (column 12), and six different Kolmogorov-type parameters (columns 13–18). Dashes indicate that C_M cannot be determined for nonmagnetic runs. Run D is the same as Run C, except that the induction term has been ignored in Equation (3).

input parameters							output parameters										
Run	ζ	ι	$ ilde{k}_0$	$ ilde{u}_{ m ini}$	$ ilde{A}_{ m ini}$	${\rm Ma}_{{\rm M}0}$	Ma_{M1}	Ma_{K}	Ma_{V}	Ma_A	Re	C_{M}	$C_{\rm K}$	$C_{\rm KV}$	$C_{\rm KA}$	$C_{\rm V}$	C_{A}
А	0	1	10	0.020	0	0	0	0.020	0.020	0.002	1200	_	1.62	1.62	0.00	1.65	0.00
В	1	1	10	0.020	0	0	0	0.013	0.000	0.013	1000		6.06	0.00	6.06	0.35	6.06
С	1	1	10	0.020	0.005	0	0.009	0.014	0.004	0.013	1100	2.93	6.31	0.33	5.99	0.80	7.22
D	1	0	10	0.020	0.005	0	0.019	0.033	0.031	0.010	1200	0.00	1.86	1.65	0.22	1.69	0.48
Е	0	1	10	0	0.005	0	0.008	0.003	0.003	0.000	200	2.88	0.96	0.96	0.00	0.96	0.02
\mathbf{F}	1	1	10	0.020	0	1.00	0.010	0.014	0.008	0.012	200	3.66	3.92	1.57	2.35	3.09	3.17
G	1	1	2	0.020	0.005	0	0.014	0.013	0.007	0.011	2100	1.80	6.58	0.86	5.72	1.54	7.36
Η	1	1	2	0.020	0	0	0	0.026	0.000	0.026	1300	_	2.17	0.00	2.17	0.26	2.18
Ι	1	1	2	0.020	0	0.02	0	0.026	0.000	0.026	1900	0.19	2.26	0.00	2.26	0.18	2.27
J	1	1	2	0.020	0	0.05	0.001	0.026	0.000	0.026	1900	0.35	2.26	0.00	2.26	0.32	2.28
Κ	1	1	2	0.020	0	0.10	0.002	0.026	0.001	0.026	1500	0.57	2.13	0.00	2.12	0.74	2.13
\mathbf{L}	1	1	2	0.020	0	0.20	0.004	0.026	0.001	0.026	1300	0.98	2.11	0.02	2.09	1.39	2.09
Μ	1	1	2	0.020	0	0.50	0.011	0.026	0.005	0.025	1900	1.95	2.47	0.17	2.30	2.18	2.35
Ν	1	1	2	0.020	0	1.00	0.020	0.028	0.015	0.023	1900	2.92	3.13	1.01	2.12	2.32	2.67
Ο	1	1	2	0.004	0	0.10	0.001	0.008	0.000	0.008	500	0.63	2.74	0.00	2.74	0.16	2.76
Р	1	1	2	0.004	0	1.00	0.006	0.008	0.004	0.007	500	2.90	3.12	0.55	2.57	1.99	2.87

It is convenient to present magnetic and kinetic energy spectra in normalized form. Instead of normalizing them by a quantity characterizing the large-scale propeffective ($\mathcal{E}_{\rm K}/k_0$), we choose here to normalize them by the quantity $\epsilon_{\rm K}^{2/3}/k_0^{5/3}$ characterizing the small scales. For use our runs, we take the values $k_0/k_1 = 10$ and 2.

259

260

3.1. Summary of the Runs

3. RESULTS

We have performed a series of runs varying the input 261 parameters ζ , ι , k_0 , u_{ini} , A_{ini} , Ma_{M0} , and Ma_{M1} ; see 262 Table 1 for a summary. Nonmagnetic runs are those 263 where $Ma_{M0} = Ma_{M1} = 0$ (see Runs A, B, and H). When 264 $Ma_{M0} = 0$, but $Ma_{M1} \neq 0$, we have initially a random 265 ('turbulent') magnetic field with a spectrum peaking at $_{267}$ $k \approx k_0$, similarly as for the initial velocity field (Runs C-²⁶⁸ E and G). Run D is the same as Run C, except that the ²⁶⁹ induction term has been ignored in Equation (3), i.e., = 0. The Mach numbers are in the range 0.007-0.04270 l ²⁷¹ and the Reynolds number is in the range 200–1900.

The Kolmogorov-type parameter or prefactor for the magnetic field, $C_{\rm M}$, varies significantly and is usually in the range 2–8. In all cases with $\zeta \neq 0$, $C_{\rm K}$ exceeds the typical value of 1.6 for vortical turbulence (Run A). Almost no vorticity is produced when Ma_K and $C_{\rm KV}$ are small (Runs B, C, H–L, and O). This is the case ²⁷⁸ for all nonmagnetic and weakly magnetized cases when ²⁷⁹ $Ma_{M0} \leq 0.1$. Vorticity is being produced when $Ma_{M0} \gtrsim$ ²⁸⁰ 0.01 or $Ma_{M1} \gtrsim 0.02$ (Run C–E and G). We recall that ²⁸¹ Run G has a smaller value of k_0 than Run C–E.

3.2. Comparison of Typical Spectra

The velocity spectra for Run A, with vortical hydrody-283 ²⁸⁴ namic turbulence, Run B, with acoustic hydrodynamic ²⁸⁵ turbulence, and Run C, with acoustic MHD turbulence, ²⁸⁶ are compared at a fixed time in Figure 1. We see that, ²⁸⁷ although our runs have a fixed viscosity ($\nu k_1/c_s = 10^{-6}$ 288 for $k_0/k_1 = 10$ and $\nu k_1/c_s = 5 \times 10^{-6}$ for $k_0/k_1 = 2$), 289 and similar values of the Mach Number, only Run A has ²⁹⁰ a spectrum that still possesses significant energy at large $_{291}$ k. It is also the only run with a marked bottleneck, i.e., ²⁹² a shallow part just before the viscous subrange at large ²⁹³ k (Falkovich 1994). The peak of the scaled spectra for ²⁹⁴ Run B is higher, reflecting the fact that the Kolmogorov ²⁹⁵ prefactor for acoustic turbulence is larger, as we discuss ²⁹⁶ below. Finally, the kinetic energy spectra for Run B and ²⁹⁷ C are similar to that for Run A, except that there is no ²⁹⁸ visible bottleneck.

Figure 1. Kinetic energy spectra for Runs V (black), A (red), and C (blue), all at the time, $t = 28/c_s k_1$. No distinction between vortical and acoustic contributions has been made.

3.3. Kolmogorov Prefactor

In Kolmogorov theory, the constancy of the kinetic and energy flux along the turbulent cascade makes $\epsilon_{\rm K}$ an important quantity for dimensional arguments. On dimensional grounds, the spectrum should be equal to $C_{\rm K} \epsilon_{\rm K}^{2/3} k^{-5/3}$, where $C_{\rm K}$ where the dimensionless prefactor is the Kolmogorov constant (Frisch 1995). To obtain the value of $C_{\rm K}$, it is convenient to present compensated spectra, $\epsilon_{\rm K}^{-2/3} k^{5/3} E_{\rm K}(k,t)$, which should show a constant plateau in the k range where Kolmogorov scaling applies. Note that the difference to our normalization in Figure 1 lies in the fact that there the factor $k_0^{5/3}$ was and a constant, but now it is k-dependent.

We begin with the more familiar vortical case with 312 313 **(** = 0 and no magnetic field (B = 0, Run A). The result ³¹⁴ is shown in Figure 2, where we see the approach to a ₃₁₅ plateau in the compensated spectrum at the level $C_{\rm K} \approx$ 316 1.6, which agrees with the usual Kolmogorov constant (Kaneda et al. 2003; Brandenburg et al. 2023). Near 317 ³¹⁸ the dissipative subrange, we also see a strong bulge. This ³¹⁹ was already evident from Figure 1 and was characterized as the bottleneck (Falkovich 1994). It is here signifi-320 321 cantly stronger than for ordinary turbulence, for which 322 the compensated spectrum at the bottleneck is usually well below 3 (Kaneda et al. 2003; Haugen et al. 2004; 323 ³²⁴ Brandenburg et al. 2023). This could partially be a con-325 sequence of having underresolved the high wavenumbers 326 at early times.

The corresponding case for acoustic turbulence, where $\zeta = 1$, looks different in many ways. This is shown in Figure 3, where we plot spectra that are compensated so separately for the vortical and acoustic parts, i.e.,

$$c_i(k,t) = \epsilon_i^{-2/3}(t) k^{5/3} E_i(k,t), \qquad (13)$$

Figure 2. Compensated kinetic energy spectra for Run A at times $c_{\rm s}k_{1}t = 3$, 7, 14, and 28. The dotted line denotes the initial state and the thick line marks the last time. The dashed-dotted horizontal line marks the approach to the value $C_{\rm K} = 1.5$. The inset shows the approach to a plateau in a semilogarithmic plot.

Figure 3. Compensated kinetic energy spectra for acoustic turbulence (Run B), $\epsilon_i^{-2/3}(t) k^{5/3} E_i(k, t)$, separated into the vortical (i = V, blue lines) and acoustic (i = A, orange lines) components.

³³² and denote by C_i the approximate average of $c_i(k,t)$ ³³³ over the flat part for i = V, or A. Here still see the ³³⁴ approach to a plateau, but the bottleneck is very weak ³³⁵ (see the inset). Instead, there is a spike in E_A at the ³³⁶ low wavenumber end, where the spectrum transits from ³³⁷ the subinertial range to the inertial range. In the follow-³³⁸ ing, we refer to this spike as the subinertial range peak. ³⁴⁰ Usual value and is $C_A \approx 8$, suggesting that standard ³⁴¹ Kolmogorov scaling may not be applicable.

In Run B, some vorticity is produced by the interacition with viscosity. Even though the spectrum in Figition with viscosity. Even though the spectrum in Figition 44 ure 3 is normalized by ϵ_A , the level of the plateau is is low (around 0.5), albeit still increasing with time. As is discussed in Sect. 2.1, such vorticity production results

Figure 4. Similar to Figure 3, but for Run C, where the magnetic field produces vorticity. Compensated magnetic energy spectra are also plotted (i = M, red lines). The dashed-dotted horizontal lines indicate the approximate positions of plateaus at $C_{\rm A} \approx 8$ (orange), $C_{\rm M} = 3$ (red), and $C_{\rm V} = 2$ (blue).

³⁴⁷ from the obliqueness of density and velocity divergence ³⁴⁸ gradients. We find that the amount of vorticity produc-³⁴⁹ tion is virtually the same regardless of whether ν or μ are ³⁵⁰ held constant. This is likely because the Mach number ³⁵¹ is small in both cases, meaning that density fluctuations ³⁵² are small.

353 3.4. Magnetic Vorticity Production

Next, for Run C, we consider an irrotational initial flow ($\zeta = 1$, just like Run B) together with a random initial magnetic field with a spectrum $E_{\rm M} \propto k^4$ for $k < k_0$ and $E_{\rm M} \propto k^{-5/3}$ for $k > k_0$, just like the initial velocity field. Depending on the relative strengths of the magnetic and velocity fields, the curl of the Lorentz force can drive vorticity through the $\dot{\boldsymbol{w}}_{\rm visc}$ term in Equations (5) and (6).

The result for Run C is shown in Figure 4. Interaction a stingly, the magnetic energy $E_{\rm M}(k)$ shows neither a marked bottleneck nor a marked subinertial range peak. The compensated $c_{\rm V}(k)$ spectrum of Equation (13) does not have a plateau, but it crosses $C_{\rm V} \approx 1.6$ at intermediate wavenumbers. Note, however, that $C_{\rm M}(t)$ has a plateau with a magnetic Kolmogorov prefactor of about 359 3; see Figure 4.

In Appendix 4, we compare spectra for Runs C and ³⁷⁰ E with and without initial turbulence, Runs C and D ³⁷² with and without the induction term, i.e., $\iota = 1$ and 0, ³⁷³ respectively, as well as Runs C and G with $k_0/k_1 = 10$ ³⁷⁴ and 2, respectively. We see that in Run E, turbulence ³⁷⁵ is gradually being produced. Regarding the presence or ³⁷⁶ absence of the induction term, we see that for Run C the ³⁷⁷ induction term enables the magnetic and kinetic energy ³⁷⁸ cascades to be nearly parallel. This is not the case when

Figure 5. Same as Figure 4, but for Run G with $k_0/k_1 = 2$.

³⁷⁹ the induction term is absent (Run D). Finally, compar-³⁸⁰ ing Runs C and G, we see that both for $k/k_1 = 2$ and 10, ³⁸¹ there is a loss of kinetic energy in the acoustic compo-³⁸² nents along with a gain of kinetic energy in the vortical ³⁸³ component.

3.5. Comparison with Earlier Work

384

In of irrotational the presence forcing, 385 386 Kahniashvili et al. (2012) found that for an infla-³⁸⁷ tionary magnetic field with a magnetic energy spec-³⁸⁸ trum proportional to k^{-1} , vortical turbulence develops 389 with a spectrum $E_{\rm V}(k)$ that is in equipartition, i.e., 390 $E_{\rm V}(k) \approx E_{\rm M}(k)$. Comparing this with our present ³⁹¹ results, we see that equipartition between $E_{\rm V}(k)$ and $_{392} E_{\rm M}(k)$ exists only at high wavenumbers. This difference ³⁹³ to Kahniashvili et al. (2012) seems to be connected with ³⁹⁴ the fact that they used an inflationary magnetic field ³⁹⁵ with a k^{-1} spectrum, whereas here, $E_{\rm M}(k)$ has a peak at 396 intermediate wavenumbers. To further verify this inter-³⁹⁷ pretation, we show in Figure 5 the compensated spectra ³⁹⁸ of $E_{\rm V}(k,t)$ and $E_{\rm M}(k,t)$ for a Run with $k_0/k_1 = 2$. We ³⁹⁹ now see that the range over which the two spectra are ⁴⁰⁰ nearly parallel is not only increased, but also the degree 401 of equipartition is better, i.e., the two spectra are closer 402 together.

The velocity spectrum generated by the Lorentz force 404 of such a magnetic field alone, i.e., without an initial 405 acoustic component, is known to develop a shallow spec-406 trum near k_0 , and is in approximate equipartition with 407 the magnetic field at large wavenumbers. This is similar 408 to the $E_{\rm V}$ spectrum in Figure 4, where the compen-409 sated spectra are proportional to $k^{2/3}$, suggesting that 410 $E_{\rm V}(k) \propto k$ in the beginning of the magnetic inertial 411 range.

⁴¹² In agreement with the earlier work of ⁴¹³ Mee & Brandenburg (2006), the present results con-⁴¹⁴ firm that acoustic turbulence hardly contributes to ⁴¹⁵ driving magnetic fields. Theoretically, small-scale dy-⁴¹⁶ namo action of the type first proposed by Kazantsev ⁴¹⁷ (1968) should also be possible for acoustic turbu-⁴¹⁸ lence (Kazantsev et al. 1985; Martins Afonso et al. ⁴¹⁹ 2019), but this has never been confirmed numerically ⁴²⁰ (Mee & Brandenburg 2006). What has been confirmed, ⁴²¹ however, is a small negative turbulent magnetic diffu-⁴²² sivity (Rädler et al. 2011). Because its negative value is ⁴²³ never larger than the positive microphysical magnetic ⁴²⁴ diffusivity, it can only slow down the decay without ⁴²⁵ leading to dynamo action from this effect alone. Fur-⁴²⁶ thermore, this negative turbulent magnetic diffusivity ⁴²⁷ effect only concerns the mean or large-scale magnetic ⁴²⁸ field.

429 3.6. Magnetically-assisted Vorticity Conversion

As we have seen from Table 1, runs with suffitional ciently strong uniform magnetic fields produce noticeable amounts of vorticity. Here the mechanism causing as vorticity is different from the vorticity production contransformed in Sect. 3.4, because here it relies on the pressection of initially acoustic turbulence. This is what we as call magnetically-assisted vorticity conversion. To gain a better understanding of this conversion mechanism of as acoustic turbulent energy into vortical turbulent energy and the presence of a magnetic field, we consider first a simple one-dimensional example.

441 3.6.1. Vorticity Conversion in One Dimension

The conversion of acoustic kinetic energy into vortical 442 ⁴⁴³ kinetic energy can be demonstrated with the help of a 444 one-dimensional example. We consider a domain $-\pi < \pi$ 445 $x < \pi$ with a uniform magnetic field in the diagonal di-446 rection, $B_0 = (B_{0x}, B_{0y}, 0)$, constant density, $\rho = \rho_0$, 447 and a standing sound wave initially, i.e., $u_x = u_0 \sin kx$. ⁴⁴⁸ All the kinetic energy is then in acoustic motions. The 449 uncurled induction equation reads $\dot{A}_z = u_x B_{0y}$, and the 450 momentum equation becomes $\dot{\boldsymbol{u}} = J_z(-B_{0y}, B_{0x}, 0)/\rho_0$, ⁴⁵¹ where dots denote time derivatives. For vorticity pro-452 duction, which yields $w_z = u'_y$, where primes denote x $_{453}$ derivatives, only the u_y component matters and thus we ⁴⁵⁴ have $\dot{w}_z = J'_z B_{0x}/\rho_0$, Taking another time derivative 455 and using $J_z = -A''_z$, we have $\ddot{w}_z = -u'''_x v_{Ax} v_{Ay}$, where 456 v_{Ax} and v_{Ay} are the Alfvén speeds in the x and y di- $_{457}$ rections, respectively. Replacing t and x derivatives by 458 factors of ω and k, and using the dispersion relation for 459 sound waves, $\omega = c_{\rm s}k$, we find for the vorticity ampli-460 tude

$$w_z = (v_{\rm Ax} v_{\rm Ay} / c_{\rm s}^2) u_0 k.$$
 (14)

⁴⁶² For $u_x = u_0 \sin kx$, w_z is proportional to $\cos kx$. In ⁴⁶³ Figure 6, we show three cases: (i) $u_0 = 0.1$, $B_0 = 0.1$; (ii) ⁴⁶⁴ $u_0 = 0.05$, $B_0 = 0.1$; and (iii) $u_0 = 0.1$, $B_0 = 0.05$. We

461

Figure 6. (i) $u_0 = 0.1$, $B_0 = 0.1$; (ii) $u_0 = 0.05$, $B_0 = 0.1$; (iii) $u_0 = 0.1$, $B_0 = 0.05$. Note that the normalized curves of $w_{\rm rms}$ for all three cases are initially the same.

Figure 7. Visualization of (B_x, B_y) vectors overlaid on a color-scale representation of J_z (a), and of (u_x, u_y) vectors overlaid on w_z (b) in a two-dimensional plane by replicating the data of the one-dimensional calculation in the y direction.

⁴⁶⁵ see that the linear scaling in u_0 and the quadratic scaling ⁴⁶⁶ in B_0 in Equation (14) is reproduced by a numerical ⁴⁶⁷ simulation of this one-dimensional initial value problem. ⁴⁶⁸ In Figure 7 we present visualizations of (B_x, B_y) vec-⁴⁶⁹ tors and (u_x, u_y) vectors overlaid on color-scale represen-⁴⁷⁰ tations of J_z and w_z , respectively. To make the small ⁴⁷¹ departures from the uniform field more clearly visible, ⁴⁷² we have scaled the perturbations of B_y by a factor of 20 ⁴⁷³ and u_y by a factor of 300.

Figure 8. Visualizations of $\nabla \cdot \boldsymbol{u}$ (top) with a range of -4 to 4, \boldsymbol{B}^2 (middle) with a range of 4 to 6, and \boldsymbol{w}^2 (bottom) with a range of 0 to 2. All plots are on the periphery of the computational domain for Run N at $t c_s k_1 = 1$, 10, and 100.

Given that the magnetically-assisted conversion of aro acoustic into vortical motions requires strong fields, it aro is of interest to see whether the strength of this converaro can be verified Equation (14). This is done in the are next section.

479 3.6.2. Vorticity Conversion in Three Dimensions

To see if the scaling found in Sect. 3.6.1 applies to 480 our runs, we plot in Figure 9 the dependence of Ma_V 482 on Ma²_{M0}Ma_A for runs with an imposed magnetic field. 483 Except for Runs I–L with $0.02 \leq Ma_{M1} \leq 0.2$, in which 484 the magnetic field is weak and the acoustic turbulence 485 strong, the vorticity obeys the expected scaling with 486 Ma_V $\approx 0.67 Ma^2_{M0}Ma_A$. For the runs without an im-487 posed magnetic field, the same scaling can also be recov-488 ered if we multiply Ma_{M1} by a factor of ≈ 71 , suggesting 489 that a much weaker turbulent field has the same effect 490 as a stronger uniform field. Note that it is difficult to 491 distinguish this type of conversion from vorticity pro-492 duced directly from the Lorentz (here Run E). However, ⁴⁹³ we see that the expected dependence on Ma_A is indeed ⁴⁹⁴ obeyed; see Equation (14). This suggests that Runs C ⁴⁹⁵ and G (green symbols in Figure 9) with $k_0 = 10$ and ⁴⁹⁶ 2, respectively, with Ma_{M0} = 0 and Ma_{M1} = 0.005 also ⁴⁹⁷ experience magnetically-assisted vorticity production. ⁴⁹⁸ In Figure 8, we present visualizations of $\nabla \cdot \boldsymbol{u}, \boldsymbol{B}^2$, ⁴⁹⁹ and \boldsymbol{w}^2 on the periphery of the computational domain ⁵⁰⁰ for Run N at three different times. We see that the ⁵⁰¹ structures reflect the presence of shocks extending over ⁵⁰² major parts of the domain—especially for the local vor-⁵⁰³ ticity density.

4. CONCLUSIONS

Acoustic turbulence is common throughout astrophysics, arising naturally from gradients of the gravitational potential or of barotropic pressure fluctuations. In this work, we have used numerical simulations to study the production of vorticity in isothermal, decaying acoustic turbulence, focusing on the role of magnetic fields.

Figure 9. Dependence of M_{AV} on $Ma_{M0}^2Ma_A$ for our threedimensional runs with an imposed magnetic field, and on $(71Ma_{M1})^2Ma_A$ for Runs C and G without imposed magnetic field. The red filled symbols mark Runs F and N, while the green filled symbols mark Runs O and P. The green filled symbols mark Runs C and G without an imposed magnetic field. The solid line corresponds to $0.67 Ma_{M0}^2Ma_A$ and the dashed line to $0.03 Ma_{M0}$. The uppercase letters denote the runs.

We find that without magnetic fields, acoustic turbu-⁵¹² lence obeys a Kolmogorov-type phenomenology, with a ⁵¹⁴ nondimensional Kolmogorov prefactor of $C_K \approx 6$. This ⁵¹⁵ is significantly larger than the standard Kolmogorov ⁵¹⁶ constant for vortical turbulence, which is around 1.6. ⁵¹⁷ The presence of a magnetic field lowers this value to ⁵¹⁸ around 2–3 for most of our runs, although the univer-⁵¹⁹ sality of this prefactor remains uncertain, as we occa-⁵²⁰ sionally observe larger values.

Magnetic fields also influence the partitioning between the acoustic and vortical components of the turbulence. When a non-force-free magnetic field is added, the Lorentz force produces vorticity with a kinetic energy spectrum that is close to equipartition with the magnetic energy spectrum in the upper part of the inertial range. The turbulence also begins to resemble vortical turbulence, developing a spectrum that is nearly in equipartition with the magnetic energy spectrum at high wavenumbers. Our simulations reproduce this process, ⁵³¹ in agreement with earlier findings (Kahniashvili et al. ⁵³² 2012).

We also show that even if the magnetic field is force-533 ⁵³⁴ free, it is still able to produce vorticity by converting ⁵³⁵ acoustic energy into vortical kinetic energy. This con-⁵³⁶ version is most efficient when the acoustic component 537 has significant contributions from large length scales and ⁵³⁸ when the field is strong. The amplitude of the vortical ⁵³⁹ component in this case is expected to scale quadratically 540 with the magnetic field and linearly with the strength 541 of the initial acoustic component. This scaling is con-542 firmed by our simulations, particularly in Runs N and ⁵⁴³ P, where a strong imposed magnetic field ($Ma_{M0} = 1$) 544 converts acoustic energy into vortical energy. Even in ⁵⁴⁵ the case of a turbulent magnetic field, the same scaling ⁵⁴⁶ holds, though the required field strength is much weaker $_{547}$ (Ma_{M1} = 0.005).

The implications of our findings extend to cosmol-548 549 ogy, particularly to the early Universe. During the ⁵⁵⁰ radiation-dominated era, the gas obeys an ultrarela-⁵⁵¹ tivistic equation of state, where the pressure is propor-⁵⁵² tional to the density, similar to isothermal flows. The ⁵⁵³ sudden generation of acoustic turbulence, for example ⁵⁵⁴ from cosmological phase transitions (Turner et al. 1992; ⁵⁵⁵ Hindmarsh et al. 2015), could be converted into vorti-⁵⁵⁶ cal turbulence by a magnetic field. Such a field might 557 have been produced either during inflation or during the 558 subsequent reheating era just prior to the radiation-⁵⁵⁹ dominated era. This could play a significant role in ⁵⁶⁰ shaping the dynamics in the early Universe, particu-⁵⁶¹ larly the generation of vortical turbulence from initially 562 acoustic fluctuations.

⁵⁶³ We thank Liubin Pan for helpful discussion that im-⁵⁶⁴ proved the manucscript. We acknowledge inspiring dis-⁵⁶⁵ cussions with the participants of the program on "Tur-⁵⁶⁶ bulence in Astrophysical Environments" at the Kavli In-⁵⁶⁷ stitute for Theoretical Physics in Santa Barbara. This ⁵⁶⁸ research was supported in part by the Swedish Research ⁵⁶⁹ Council (Vetenskapsrådet) under Grant No. 2019-04234, ⁵⁷⁰ the National Science Foundation under Grants No. ⁵⁷¹ NSF PHY-2309135, AST-2307698, and NASA Awards ⁵⁷² 80NSSC22K0825 and 80NSSC22K1265. We acknowl-⁵⁷³ edge the allocation of computing resources provided ⁵⁷⁴ by the Swedish National Allocations Committee at the ⁵⁷⁵ Center for Parallel Computers at the Royal Institute of ⁵⁷⁶ Technology in Stockholm.

577 Software and Data Availability. The source code 578 used for the simulations of this study, the PENCIL 579 CODE (Pencil Code Collaboration et al. 2021), is freely 580 available on https://github.com/pencil-code/Acoustic.

581 The simulation setups and corresponding input 582 and reduced out data are freely available on 583 http://norlx65.nordita.org/~brandenb/projects/Acoustic.

REFERENCES

- 584 Beattie, J. R., Federrath, C., Kriel, N., Hew, J. K. J., & Bhattacharjee, A. 2023, arXiv e-prints, arXiv:2312.03984,
- 585 doi: 10.48550/arXiv.2312.03984
- 587 Brandenburg, A., Rogachevskii, I., & Schober, J. 2023,
- MNRAS, 518, 6367, doi: 10.1093/mnras/stac3555 588
- Cho, J., & Lazarian, A. 2005, ThCFD, 19, 127, 589
- doi: 10.1007/s00162-004-0157-x 590
- Del Sordo, F., & Brandenburg, A. 2011, A&A, 528, A145, 591 doi: 10.1051/0004-6361/201015661 592
- 593 Elias-López, A., Del Sordo, F., & Viganò, D. 2023, A&A,
- 677, A46, doi: 10.1051/0004-6361/202346696 594
- -. 2024, A&A, 690, A77, 595
- doi: 10.1051/0004-6361/202450398 596
- ⁵⁹⁷ Elsasser, K., & Schamel, H. 1974, PhLA, 47, 419,
- doi: 10.1016/0375-9601(74)90155-8 598
- -. 1976, ZPhyB, 23, 89, doi: 10.1007/BF01322265 599
- 600 Falkovich, G. 1994, PhFl, 6, 1411, doi: 10.1063/1.868255
- Falkovich, G., & Meyer, M. 1996, PhRvE, 54, 4431, 601
- doi: 10.1103/PhysRevE.54.4431 602
- ⁶⁰³ Federrath, C., Chabrier, G., Schober, J., et al. 2011,
- PhRvL, 107, 114504, 604
- doi: 10.1103/PhysRevLett.107.114504 605
- ⁶⁰⁶ Federrath, C., Schober, J., Bovino, S., & Schleicher, D.
- R. G. 2014, ApJL, 797, L19, 607
- doi: 10.1088/2041-8205/797/2/L19 608
- Frisch, U. 1995, Turbulence. The legacy of A.N. 609
- Kolmogorov (Cambridge University Press), 610
- doi: 10.1017/CBO9781139170666 611
- 612 Galtier, S., & Banerjee, S. 2011, PhRvL, 107, 134501,
- doi: 10.1103/PhysRevLett.107.134501 613
- Haugen, N. E., Brandenburg, A., & Dobler, W. 2004, 614 PhRvE, 70, 016308, doi: 10.1103/PhysRevE.70.016308 615
- 616 Hindmarsh, M., Huber, S. J., Rummukainen, K., & Weir,
- D. J. 2015, PhRvD, 92, 123009, 617
- doi: 10.1103/PhysRevD.92.123009 618
- Jahanbakhshi, R., Vaghefi, N. S., & Madnia, C. K. 2015, 619
- PhFl, 27, 105105, doi: 10.1063/1.4933250 620
- 621 Kadomtsev, B. B., & Petviashvili, V. I. 1973, SPhD, 18, 115

- 622 Kahniashvili, T., Brandenburg, A., Campanelli, L., Ratra,
- B., & Tevzadze, A. G. 2012, PhRvD, 86, 103005, 623
- doi: 10.1103/PhysRevD.86.103005 624
- 625 Kaneda, Y., Ishihara, T., Yokokawa, M., Itakura, K., &
- Uno, A. 2003, PhFl, 15, L21, doi: 10.1063/1.1539855 626
- 627 Kazantsev, A. P. 1968, JETP, 26, 1031
- 628 Kazantsev, A. P., Ruzmaikin, A. A., & Sokolov, D. D. 1985, ZhETF, 61, 285 629
- 630 Kochurin, E. A., & Kuznetsov, E. A. 2022, JETPL, 116, 863, doi: 10.1134/S0021364022602494 631
- Kritsuk, A. G., Norman, M. L., Padoan, P., & Wagner, R. 632 2007, ApJ, 665, 416, doi: 10.1086/519443 633
- 634 Kuznetsov, E., & Krasnoselskikh, V. 2008, PhPl, 15,
- 062305, doi: 10.1063/1.2928160 635
- L'vov, V. S., & Mikhailov, A. V. 1981, PhyD, 2, 224, 636
- doi: 10.1016/0167-2789(81)90076-2 637
- 638 Martins Afonso, M., Mitra, D., & Vincenzi, D. 2019,
- RSPSA, 475, 20180591, doi: 10.1098/rspa.2018.0591 639
- 640 Mee, A. J., & Brandenburg, A. 2006, MNRAS, 370, 415,
- doi: 10.1111/j.1365-2966.2006.10476.x 641
- Passot, T., & Pouquet, A. 1987, JFM, 181, 441, 642 doi: 10.1017/S0022112087002167 643
- Pencil Code Collaboration, Brandenburg, A., Johansen, A., 644
- et al. 2021, JOSS, 6, 2807, doi: 10.21105/joss.02807 645
- Porter, D. H., Jones, T. W., & Ryu, D. 2015, ApJ, 810, 93, 646 doi: 10.1088/0004-637X/810/2/93 647
- 648 Rädler, K.-H., Brandenburg, A., Del Sordo, F., &
- Rheinhardt, M. 2011, PhRvE, 84, 046321, 649
- doi: 10.1103/PhysRevE.84.046321 650
- 651 Ricard, G., & Falcon, E. 2023, PhRvF, 8, 014804,
- doi: 10.1103/PhysRevFluids.8.014804 652
- Schleicher, D. R. G., Schober, J., Federrath, C., Bovino, S., 653
- & Schmidt, W. 2013, NJPh, 15, 023017, 654
- doi: 10.1088/1367-2630/15/2/023017 655
- 656 Shivamoggi, B. K. 1992, PhLA, 166, 243,
- doi: 10.1016/0375-9601(92)90371-R 657
- Sreenivasan, K. R. 1995, PhFl, 7, 2778, 658
- doi: 10.1063/1.868656 659
- 660 Turner, M. S., Weinberg, E. J., & Widrow, L. M. 1992,
- PhRvD, 46, 2384, doi: 10.1103/PhysRevD.46.2384 661

At the end of Sect. 3.4, we mentioned spectral comparisons of Run C with three other runs (Runs E, D, and Geo G). In Figure 10, we compare the kinetic and magnetic energy spectra for Runs C and E, i.e., with and without initial turbulence. We see that turbulence is gradudes ally being generated by the magnetic field, but there is hardly any effect on the magnetic energy spectra.

In Figure 11, we show the resulting spectra for a case 670 where the induction term, $\boldsymbol{u} \times \boldsymbol{B}$, has been suppressed 671 ₆₇₂ in Equation (3), i.e., $\iota = 0$, and we just solve the dif-⁶⁷³ fusion equation, $\partial A/\partial t = \eta \nabla^2 A$. The magnetic field 674 then decays preferentially at high wavenumbers, where 675 magnetic diffusion acts the strongest. This is evident 676 from a premature cutoff of the magnetic energy spec-⁶⁷⁷ trum. The vortical part of the kinetic energy spectrum 678 now seems to show a very strong bottleneck, but the 679 acoustic part does have a plateau at a low level and a ⁶⁸⁰ small bottleneck. This suggests that the initial energy 681 in the acoustic component is unimportant for the dy-682 namics of the magnetic field. Moreover, the vorticity ⁶⁸³ production by the magnetic field is largely independent ⁶⁸⁴ of the initial energy in the irrotational component.

In Figure 12, we compare magnetic and kinetic energy spectra for the vortical and acoustic components for

Figure 10. Comparison of kinetic (blue lines) and magnetic (red lines) energy spectra for Runs C (solid lines) and E (dashed lines) at times 2.5, 7.5, and 25, i.e., runs with and without initial turbulence.

Figure 11. Similar to Figure 10, but for Runs C (solid lines) and D (dashed lines, $\iota = 0$, i.e., no induction) at times 2.5, 7.5, and 60. The black dotted lines provide fixed reference values in each panel.

Figure 12. Comparison of acoustic (green lines), vortical kinetic (blue lines), and magnetic (red lines) energy spectra for Runs C (solid lines) and G (dashed lines) at times 2.5, 7.5, and 25.

⁶⁸⁷ Runs C with G. We see that around the time 7.5, Run C ⁶⁸⁸ suffers a loss of kinetic energy in the acoustic compo-⁶⁸⁹ nents along with a gain of kinetic energy in the vortical ⁶⁹⁰ component. This energy exchange occurs around the ⁶⁹¹ wavenumber $k/k_1 = 2$.