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The decay of a turbulent magnetic field is slower with helicity than without. Furthermore,
the magnetic correlation length grows faster for a helical than a nonhelical field. Both
helical and nonhelical decay laws involve conserved quantities: the mean magnetic helicity
density and the Hosking integral. Using direct numerical simulations in a triply periodic
domain, we show quantitatively that in the fractionally helical case the mean magnetic
energy density and correlation length are approximately given by the maximum of the
values for the purely helical and purely nonhelical cases. The time of switch-over from
one to the other decay law can be obtained on dimensional grounds and is approximately

given by I
1/2
H I

−3/2
M , where IH is the Hosking integral and IM is the mean magnetic helicity

density. An earlier approach based on the decay time is found to agree with our new result
and suggests that the Hosking integral exceeds naive estimates by the square of the same
resistivity-dependent factor by which also the turbulent decay time exceeds the Alfvén
time. In the presence of an applied magnetic field, the mean magnetic helicity density
is known to be not conserved, and we show that then also the Hosking integral is not
conserved.
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1. Introduction

In recent years, there has been significant interest in the study of decaying turbulent
magnetic fields. One of the main applications has been to the understanding of the mag-
netic field evolution during the radiation-dominated era of early universe (Brandenburg
et al. 1996; Christensson et al. 2001; Banerjee & Jedamzik 2004). The special case with
finite magnetic helicity has been studied and understood for a long time (Hatori 1984;
Biskamp & Müller 1999). It is the prime example of large-scale magnetic field growth
due to an inverse cascade. The possibility of such an inverse cascade is explained by
the conservation of magnetic helicity (Frisch et al. 1975). However, even in the absence
of magnetic helicity, an inverse cascade can develop (Kahniashvili et al. 2013; Zrake
2014; Brandenburg et al. 2015), and it is well explained by the conservation of what is
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now called the Hosking integral (Hosking & Schekochihin 2021, 2023a; Zhou et al. 2022;
Brandenburg et al. 2023b), which is the correlation integral of the magnetic helicity
density.
In all the cases mentioned above, the magnetic helicity density was either vanishing,

so the spectral magnetic helicity was zero at all wavenumbers and the decay governed by
the conservation of the Hosking integral, or the magnetic helicity density was finite and
the spectral magnetic helicity had the same sign at all wavenumbers, so the decay was
governed by the conservation of the mean magnetic helicity density. A special situation
was studied in the work of Brandenburg et al. (2023a), where the magnetic helicity
was finite, but it was balanced by fermion chirality of the opposite sign so that the net
chirality was vanishing. For such a system, the decay was again successfully explained
by the conservation of the Hosking integral, which was adapted to include the chirality
from the fermions.
We have seen that the Hosking integral can be applied to broad ranges of systems

where magnetic helicity is still important locally, but globally, the net magnetic helicity
vanishes. However, there is an important class of astrophysically relevant systems, where
the magnetic field is not generated by magnetogenesis, as in the early universe, but
by dynamo action. This means that some of the kinetic energy of turbulent motions is
converted into magnetic energy. It is important to stress that, even if the velocity field
were helical, i.e., if there is finite kinetic helicity in the system, as is generally the case
when there is rotation and stratification of density and/or velocity, magnetic helicity
conservation still precludes the generation of magnetic helicity, at least on dynamical
timescales (Ji 1999).
In the aforementioned helically driven large-scale dynamos, magnetic helicity can be

generated at small scales, but it is then balanced by magnetic helicity at large scales so
as to conserve magnetic helicity. Alternatively, we can also say that magnetic helicity
is produced at large scales, for example by the tilting of buoyantly rising magnetic flux
tubes in cyclonic convective events, as envisaged by Parker (1955). Magnetic helicity
conservation then implies magnetic twist of opposite sign at smaller scales. In practice,
because there is always finite magnetic diffusivity, which acts especially on small scales,
the magnetic helicity from large scales will, after some time, dominate the total magnetic
helicity owing to the loss at small scales where the magnetic helicity has the opposite
sign. Therefore, there is always a small imbalance between the contributions from small
and large length scales. It is therefore a situation that is only partially suited to the
phenomenology involving the conservation of the Hosking integral.

If we now were to turn off the driving, the turbulence would gradually decay. This decay
should then be governed by the conservation of both the Hosking integral and the mean
magnetic helicity density. Both helical and nonhelical cases lead to inverse cascading,
where the magnetic field decays more slowly than the velocity field, leading ultimately to
a magnetically dominated state. Such conditions could apply to the decay of a magnetic
field produced in a proto-neutron star. There, we expect a turbulent dynamo to occur
that is driven by convection (Thompson & Duncan 1993). This would happen when the
neutrino opacity is large enough to prevent neutrinos from escaping freely (Epstein 1979;
Burrows & Lattimer 1986).
Another source of turbulence in proto-neutron stars could be the magnetorotational

instability that results from the radially outward decreasing angular velocity gradient
associated with collapsed material having an approximately constant angular momentum
density (Guilet et al. 2022). In both cases, the turbulence itself has kinetic helicity of
opposite signs in the northern and southern hemispheres (negative in the north and
positive in the south). In each hemisphere, this leads to dynamo action of the type
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described above, but the magnetic helicities have opposite signs not only in the two
hemispheres, but also on small and large length scales. One would thus focus only on one
hemisphere and ignore the interaction between north and south. The magnetic helicities
from small and large length scales would then nearly cancel. Such fields have been called
“bihelical” and their decay properties were first studied by Yousef & Brandenburg (2003).
They found that the positive and negative contributions rapidly mix and annihilate, and
that the ratio of the magnetic helicity spectrum to the magnetic energy spectrum has
local extrema both at small and large scales, although the latter is dominant in an
absolute sense.
Since the net magnetic helicity of a bihelical magnetic field does not vanish exactly,

and since the mean magnetic helicity itself is an important conserved quantity, we are
confronted with a situation where the magnetic decay is governed by two conserved
quantities. Investigating this aspect in a more controlled fashion is the main purpose of
this paper.
In an earlier paper, Tevzadze et al. (2012) did already study a case with fractional

helicity. They found that the correlation length developed a steeper growth (indicative
of magnetic helicity domination) at a specific moment that depends on the value of the
magnetic helicity as well as on the initial values of the magnetic energy and the magnetic
correlation length. This consideration provided a quantitative estimate for the time of
the switch-over from non-helical to helical scalings. A similar estimate was provided by
Hosking & Schekochihin (2021) based on the scaling of the Hosking integral IH. One
may then ask whether the time of the switch-over from a decay controlled by IH to
one controlled by the mean magnetic helicity density IM can be computed based on
dimensional arguments. Indeed, given that the quantity IH has dimensions cm9 s−4 and
IM has dimensions cm3 s−2 (see Brandenburg 2023, and note that the magnetic field is
here understood to be in Alfvén units with dimensions cm s−1), a combination of IH and

IM that yields a time would be I
1/2
H I

−3/2
M . It will turn out that this is indeed the time of

switch-over between the two regimes.

2. Our model

2.1. Basic equations

We simulate the compressible magnetohydrodynamic (MHD) equations with an
isothermal equation of state with constant sound speed cs, so the pressure p and the
density ρ are related by p = ρc2s . The equations for the magnetic vector potential, A,
the velocity U , and the logarithmic density ln ρ, are

∂A

∂t
= U ×B + η∇2

A, (2.1)

DU

Dt
= −c2s∇ ln ρ+

1

ρ
[J ×B +∇ · (2ρνS)] , (2.2)

D ln ρ

Dt
= −∇ ·U , (2.3)

where D/Dt = ∂/∂t+U ·∇ is the advective derivative, B = ∇×A is the magnetic field,
J = ∇×B/µ0 is the current density, µ0 is the vacuum permeability, ν is the viscosity,
and Sij = (∂iUj +∂jUi)/2− δij∇ ·U/3 are the components of the traceless rate-of-strain
tensor S. Our computational domain is a periodic cube of size L3, and k1 = 2π/L is the
smallest wavenumber. Since the mass in domain does not change, the volume averaged
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density is constant in time, i.e., 〈ρ〉 = const ≡ ρ0. Here and below, angle brackets denote
volume averaging.

2.2. Initial conditions

In our idealized studies, we focus on the decay governed by two conserved quantities
(Hosking integral and mean magnetic helicity density). We construct an initial magnetic
vector potential in Fourier space as Ã(k) = R(k; ς)Ãnhel, where

Rij(k; ς) = δij − k̂ik̂j + ik̂ℓςǫijℓ (2.4)

is a matrix with k̂i being the components of the unit vector k̂ = k/k, |ς| 6 1 is a
nondimensional parameter that quantifies the fractional helicity, and Ãnhel is a nonhelical
field with random phases and possesses the desired spectrum for the magnetic field
Sp(B) = k2Sp(A), i.e.,

Sp(B) =
A0k

α

1 + (k/k0)5/3+α
, (2.5)

where A0 is an amplitude, k0 denotes the initial position of the spectral peak, α is the
subinertial range slope (here always α = 4), and the inertial range has a k−5/3 spectrum.
Note that A is by construction periodic. Therefore, B = ∇×A has zero mean field. At
the end of this paper, we also briefly discuss a case with a finite mean magnetic field.
The strength of the magnetic field can be characterized by the Alfvén speed, vA =

Brms/
√
µ0ρ0, which is here based on the mean density. For ς 6= 0, we have a finite

magnetic helicity and expect then the decay to be governed by both the Hosking integral
and the mean magnetic helicity density.
In equation (2.5), Sp(·) denotes a shell integrated spectrum. This operation will also

be applied to the local, gauge-dependent magnetic helicity density h = A · B, so that
Sp(h) = (k2/8π3L3)

∮

4π
|h̃|2 dΩk. The tilde marks a quantity in Fourier space, and Ωk is

the solid angle in Fourier space, so that
∫

Sp(h) dk = 〈h2〉, and likewise for
∫

Sp(B) dk =
〈B2〉. Owing to the integration over shells in three-dimensional wavenumber space, the
spectrum of a spatially random (δ correlated) field is proportional to k2. This is indeed
the case for a globally non-helical field, where 〈h〉 = 0.

2.3. Definitions of the Hosking integral

The Hosking integral IH is defined as the asymptotic limit of the magnetic helicity
density correlation integral,

IH(R) =

∫

VR

〈h(x)h(x+ r)〉 d3r, (2.6)

for scales R large compared to the correlation length ξM of the turbulence, but small
compared to the system size L. Here, VR = 4πR3/3 is the volume of a ball of radius
R. For small values of R, the function IH(R) increases proportional to R3, but for
large R, it levels off when there is no net magnetic helicity. However, as explained in
Hosking & Schekochihin (2021), this is different for finite magnetic helicity, as will be
discussed below. In practice, the value of R is chosen empirically and must always be
small compared to the size of the domain.
Zhou et al. (2022) devised and compared different methods for computing IH(R).

These methods are all based on the Fourier transform of h. Particularly simple is what
they called the box-counting method for a spherical volume with radius R. This allowed



Turbulent decay controlled by two conserved quantities 5

Table 1. Summary of runs presented in this paper. The arrows indicate the change from the
beginning to the end of the run.

Run k0/k1 ς vA0/cs vAm/cs Ma Lu IM/2ξMEM N3 Figures

A 60 1 0.57 0 0.20 → 0.03 1000 → 2500 0.95 → 0.94 11523 1
B 30 0.003 0.21 0 0.10 → 0.005 2700 → 1500 0.01 → 0.13 10243 2, 3, 8
C 60 0.01 0.20 0 0.10 → 0.001 1300 → 800 0.06 → 0.78 10243 4–8
D 60 0 0.22 0.1 0.11 → 0.001 800 → 70 0 10243 9

them to rewrite equation (2.6) as a weighted integral over Sp(h),

IH(R) =

∫ ∞

0

w(k,R) Sp(h) dk, (2.7)

where

w(k,R) =
4πR3

3

[

6j1(kR)

kR

]2

, (2.8)

and j1(x) = (sinx− x cosx)/x2 is a spherical Bessel function.

2.4. Input and diagnostic parameters of the model

Important input parameters of the model are the ratio of the initial Alfvén speed to
the sound speed, vA0/cs. In the presence of an imposed mean field, Bm = Bmx̂, a case
discussed at the end of the paper, the corresponding Alfvén speed is denoted by vAm.
To obtain information about the turbulent decay that is independent of the size and
shape of the computational domain, we must choose the value of k0/k1 to be sufficiently
large. However, it should also not be chosen too large, because it would diminish the
range of wavenumbers between k0 and the largest wavenumber in the domain, which is
called the Nyquist wavenumber, kNy = k1N/2, where N is the number of meshpoints.
The sensitivity of the results on the choice of k0 has been studied on various occasions
(e.g., Zhou et al. 2022). A reasonable compromise that still allows for sufficiently large
Reynolds numbers seems to be k0/k1 = 60. This is the value that will be used for the
main run in the present paper, but we also present some results with k0/k1 = 30; see
table 1 for a summary of runs presented in this paper.
To characterize the degree of compressibility and the vigor of turbulence, we quote the

Mach and Lundquist numbers,

Ma = urms/cs, Lu = vA/ηk0. (2.9)

Since our model is spatially homogeneous, it can be characterized by the magnetic
energy and helicity spectra, EM(k, t) and HM(k, t), respectively. They are normalized
such that their integrals give the mean magnetic energy and helicity densities, EM ≡
∫

EM(k, t) dk = 〈B2〉/2µ0 and IM ≡
∫

HM(k, t) dk = 〈A ·B〉, respectively.†
The position of the peak of the spectrum is characterized by the inverse magnetic

† The name IM has been chosen here to mark its important role as an ideal invariant and to
highlight its usage analogously to that of the Hosking integral IH.
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integral scale, kpeak = ξ−1
M , where ξM is here defined as

ξM =

∫

k−1 EM(k, t) dk

/
∫

EM(k, t) dk. (2.10)

Of particular importance are the time dependencies ξM(t) and EM(t), which, in turn,
are characterized by the instantaneous scaling exponents q(t) = d ln ξM/d ln t and p(t) =
−d ln EM/d ln t. The relative magnetic helicity can be computed as the non-dimensional
ratio IM/2ξMEM, which is between −1 and +1.
The relevant information that quantifies the Hosking integral is the first nonvanishing

coefficient in the Taylor expansion,

Sp(h)|k→0 =
IH
2π2

k2 + ... ; (2.11)

see Hosking & Schekochihin (2021), Schekochihin (2022), and Zhou et al. (2022) for
details. This is also the primary method used here to determine the value of IH; see Zhou
et al. (2022) for a comparison between different methods. We confirm that 2π2Sp(h)/k2

has an approximately flat part for small values of k and use its value at k = k1 to
measure IH. Below, we also confirm that IH is nearly independent of time; see Zhou et al.

(2022) for quantitative assessment of its invariance in the ideal limit. Note that, since
∫

Sp(h) dk = 〈h2〉, which has dimensions ( cm3 s−2)2, Sp(h) has dimensions, cm7 s−4 and
therefore IH has dimensions cm9 s−4, as expected.
To facilitate comparison with other work, it is useful to present our results in nondi-

mensional form. The time used in the numerical simulations is made nondimensional by
plotting the evolution versus csk1t, which is convenient for numerical reasons, because
cs and k1 are constant in time. However, physically more meaningful would be a nondi-
mensionalization by using the Alfvén speed and the inverse correlation length. Both are
time dependent, but the values vAe and ke at the end of the simulations seem to be most
meaningful.

2.5. Run time and scale separation

To obtain meaningful results, two important constraints need to be obeyed. First,
the value of Lu needs to be large enough so that we are in the regime of developed
turbulence. Second, the subinertial range must always be large enough so that, by
the end of the run, its slope is not affected by finite size effects of the computational
domain. This automatically limits the maximum run time below which our results
can still be meaningful. Both constraints can only be obeyed in the limit of infinite
resolution. In practice, the largest resolution that is presently feasible is typically 20483

meshpoints (Zhou et al. 2022), but this large resolution does already constrain the
number of experiments that can reasonably be performed. Therefore, we use for most of
our simulations a lower resolution of N3 = 10243 meshpoints. In that case, the largest
wavenumber in the domain is kNy = k1N/2 = 512 k1. As discussed above, this led us to
the compromise of choosing the values 30 and 60 for the scale separation ratio k0/k1, so
k0/kNy = 17–8.5, leaving barely enough dynamical range for turbulence to develop.

3. Results

In the present context, we have to deal with two conserved quantities, namely the
Hosking integral IH and the mean magnetic helicity density IM = 〈A ·B〉. The former
case has been studied extensively in recent years. Specifically, Brandenburg & Larsson
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Table 2. Summary of the coefficients characterizing the decays governed by the conservation
of magnetic helicity (i = M) and the Hosking integral (i = H).

i β q p σ C
(ξ)
i C

(E)
i C

(E)
i

M 0 2/3 2/3 1/3 0.13 4.1 0.7
H 3/2 4/9 10/9 1/9 0.12 3.7 0.025

Figure 1. (a) Magnetic energy spectra, as well as compensated evolutions of (b) ξM(t) and (c)
EM(t) for the maximally helical run of figure 2(c) of Brandenburg & Kahniashvili (2017), here
referred to as Run A. In (a), the red symbols denote the spectral peaks.

(2023) and Brandenburg et al. (2023b) found

ξM(t) ≈ 0.12 I
1/9
H t4/9, EM(t) ≈ 3.7 I

2/9
H t−10/9, EM(k, t) <∼ 0.025 I

1/2
H (k/k0)

3/2.
(3.1)

The hope is that the coefficients in these expressions are universal, but it should be noted
that they have not yet been verified in other contexts.

3.1. Decay controlled by mean and fluctuating magnetic helicities

In the helical case with IM 6= 0, we have ξM ∝ t2/3 and EM ∝ t−2/3 (Hatori 1984;
Biskamp & Müller 1999; Brandenburg & Kahniashvili 2017). In the present context, the
pre-factors are important. Using the data from figures 1(c) and 2(c) of Brandenburg &
Kahniashvili (2017), here referred to as Run A, we find

ξM(t) ≈ 0.12 I
1/3
M t2/3, EM(t) ≈ 4.3 I

2/3
M t−2/3, EM(k, t) <∼ 0.7 IM. (3.2)

Generally, we can write

ξM(t) = C
(ξ)
i Iσi t

q, EM(t) = C
(E)
i I2σi t−p, EM(k) = C

(E)
i I

(3+β)σ
i (k/k0)

β , (3.3)

where the index i in the integrals Ii and the coefficients C
(ξ)
i , C

(E)
i , and C

(E)
i stand for

M or H for magnetic helicity and Hosking scalings, respectively, and σ is the exponent
with which length enters in Ii: σ = 1/3 for the magnetic helicity density (i = M) and
σ = 1/9 for the Hosking integral (i = H); see table 2 for a summary of the coefficients.†
In figure 1, we show the magnetic energy spectra, as well as compensated evolutions

of ξM(t) and EM(t) for the maximally helical run (Run A). We see that the peak of EM(t)

† In equation (3.3c), we have here corrected a typo in equation (12c) of Brandenburg &
Larsson (2023) and equation (3.1c) of Brandenburg et al. (2023b), where the exponent on Ii
was incorrectly stated as (3+β)/σ instead of (3+β)σ, but the calculations were done correctly.



8 A. Brandenburg and A. Banerjee

Figure 2. Evolution of ξM(t) (upper row) and EM(t) (lower row) for Run B with k0/k1 = 30
and ς = 0.003, compensated by the expected evolution if the decay is controlled either by IH
(left column) or by IM (right column). The dashed line denotes the use of IM at the end of the
run, while for the solid line, the time-dependent value was taken.

remains underneath a nearly flat envelope (its slope is β = 0), as is expected for a fully
helical turbulent decay at late times. The compensated evolutions of ξM(t) and EM(t)
are not yet fully converged toward the end of that run (the lines are not yet flat). This
is partially caused by the insufficient scale separation between the box wavenumber k1
and that of the spectral peak by the end of the run. Nevertheless, we can read off the

approximate values C
(ξ)
M ≈ 0.12 and C

(E)
M ≈ 4.3 toward the end of the run. The values of

these coefficients will be revisited later in this paper.
In figure 2, we again show the compensated evolutions of ξM(t) and EM(t), but now

for Run B, which is nearly perfectly nonhelical (ς = 0.003) and has k0/k1 = 30. The

resulting values coefficients are close to those estimated previously, namely C
(ξ)
H ≈ 0.12

and C
(E)
H ≈ 4.7. This supports the previous hypotheses of Brandenburg & Larsson (2023)

and Brandenburg et al. (2023b) that these coefficients may indeed be universal.
To determine the value of IH(t), we plot in figure 3 the evolutions of (2π2/k2) Sp(h)

(normalized by v4Ae/k
5
e ) for k/k1 = 1, 2, and 3 for Run B. We see that for k/k1 = 1,

the result shows a nearly negligible decline proportional to t−0.07. Note that, in units of
v4Ae/k

5
e , the value of IH is about 500.

3.2. Decay controlled by IM and IH

If both IM and IH control the decay, we have a combination of the two decay laws such
that the late times are always controlled by the more strongly conserved quantity, i.e., by
IM. One might expect that the resulting expression for the combination of the decay laws
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Figure 3. Evolutions of (2π2/k2) Sp(h), normalized by v4Ae/k
5
e , for k/k1 = 1 (solid line), 2

(dashed-dotted line), and 3 (dashed line), for the nearly nonhelical Run B with ς = 0.003 and
k0/k1 = 30.

Figure 4. Magnetic energy spectra for Run C with k0/k1 = 60 and ς = 0.01 at times
vAeke t = 0.07, 0.18, 0.40, 0.82, 1.65, 3.3, 6.1, 11.1, and 20.7.

(3.1) and (3.2) is given by the sum of both expression. This would be analogous to the
way how in radiation transport the cooling time is given by the sum of the cooling times
for the optically thick and thin cases; see equation (7) of Brandenburg & Das (2020). In
the present case, this would translate to

ξM ≈ 0.12 I
1/3
M t2/3 + 0.12 I

1/9
H t4/9, (3.4)

EM ≈ 4.3 I
2/3
M t−2/3 + 3.7 I

2/9
H t−10/9. (3.5)

Since the second terms involving IH are initially larger, but their contributions to ξM
grow more slowly and that to EM decay faster than the first terms, one expects their
contributions to become subdominant after some time. Thus, the magnetic helicity will
always survive and be the dominant contribution to explaining the decay.
To examine now a run where the decay is controlled both by IM and IH, we now

increase the initial fractional helicity slightly from 0.003 to 0.01; see figure 4 for magnetic
energy spectra at different times for Run C. Note that the peaks of the spectra evolve at
first underneath an envelope with the slope β = 3/2, as expected for a decay controlled
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Figure 5. Similar to figure 2, but for Run C with k0/k1 = 60 and ς = 0.01.

by IH. At later times, however, the envelope becomes flat (slope β = 0), as expected for
a decay controlled by IM.
In figure 5, we show the evolutions of ξM(t) and EM(t) for Run C, compensated by

t−2/3 and t2/3, respectively, as well as t−4/9 and t10/9, respectively. We see that now the
curves compensated by t−2/3 and t2/3, respectively, become nearly constant, as expected
for a decay that is governed by magnetic helicity conservation. Specifically, we find

ξM/(I
1/3
M t2/3) ≈ 0.14 and EM/(I

2/3
M t−2/3) ≈ 4.0. During a short intermediate interval,

however, we see that the curves compensated by t−4/9 and t10/9, respectively, show brief

plateaus around vAeket = 1 with ξM/(I
1/9
H t4/9) ≈ 0.12 and EM/(I

2/9
H t−10/9) ≈ 4.0.

3.3. Improved fits with IM and IH

We have seen that the limiting cases where the decay is controlled either by IM or by
IH are well reproduced by equation (3.3). It turns out, however, that the combined fits
given by equations (3.4) and (3.5) are not very accurate. Improved fits can be obtained
by using large weighting exponents for both contributions, i.e.,

ξM ≈
[(

0.12 I
1/3
M t2/3

)s

+
(

0.14 I
1/9
H t4/9

)s]1/s

, (3.6)

EM ≈
[(

4.0 I
2/3
M t−2/3

)s

+
(

4.0 I
2/9
H t−10/9

)s]1/s

. (3.7)

The result is shown in figure 6 for Run C, where we show that s = 10 yields satisfactory
fits, while s = 2 and s = 1 (our original hypothesis) are poor. The fact that the coefficients
for both parts are different from those of the individual fits and that they happen to be
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Figure 6. Decay of magnetic energy (black line) and the fit given by equation (3.5) (dotted
blue line, denoted by s = 1) as well as equation (3.7) with s = 2 (dashed orange line) and
s = 10 (solid red line). The red dotted line corresponds to the limit s → ∞, as realized by
equations (3.8) and (3.9).

4.0 in equation (3.7), but different from each other in equation (3.6) is probably just by
chance and reflect that degree of uncertainty of these values.
It is important to emphasize that the limit s → ∞ corresponds to

ξM ≈ max
(

0.12 I
1/3
M t2/3, 0.14 I

1/9
H t4/9

)

, (3.8)

EM ≈ max
(

4.0 I
2/3
M t−2/3, 4.0 I

2/9
H t−10/9

)

. (3.9)

These expressions yield discontinuities in the derivative. An advantage of such expressions
is that one can clearly see the regimes of validity of both expressions. The critical times
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when characterizing the cross-over from Hosking scaling to magnetic helicity scaling are
given by

tξ ≈ (0.12/0.14)9/2
(

IH/I
3
M

)1/2 ≈ 0.50 I
1/2
H I

−3/2
M , (3.10)

tE ≈ I
1/2
H I

−3/2
M . (3.11)

It would be plausible to assume that both times should equal each other. The fact that
they are not equal to each other might hint, again, at the possibility that the precise
values of these coefficients are still uncertain. On the other hand, looking at figure 5, it is
actually true that ξM approaches the IM-dominated scaling by a factor two earlier than
EM. A possible explanation for this behavior could lie in the fact that the spectral shapes
change as the system becomes fully helical. We return to this in section 3.4, where we
discuss the spectral shapes in more detail.
We recall that an essential assumption in our dimensional argument was the fact that

the magnetic field is understood to be in Alfvén units and thus has dimensions of cm s−1.
In neutron star crusts, by contrast, where the magnetic field is governed by the Hall
effect (Goldreich & Reisenegger 1992), it has units of cm2 s−1, so [IM] = cm5 s−2 and

[IH] = cm13 s−4 (Brandenburg 2023), so tξ and tE are now proportional to I
5/6
H I

−13/6
M , so

both exponents are larger than in the ordinary MHD case; cf. equations (3.10) and (3.11).
An example of the corresponding switch between the two regimes was presented in
figure 10(b) of Brandenburg (2020).

3.4. Collapsed spectra

The quality of the fits of equations (3.6) and (3.7) for s = 1 and s → ∞ can be
examined further by computing compensated spectra. This is shown in figure 7, where
the abscissa is scaled with ξM(t) and the ordinate with [EM(t)ξM(t)]−1. We see that the
collapse in figure 7(b), where s → ∞, is much better than that in figure 7(a), where
s = 1, and it is almost as good as that in figure 7(c), where the actual values of ξM(t)
and EM(t) are used. This supports our finding that in the fractionally helical case, the
magnetic energy and correlation length are approximately given by the maximum of the
values for the purely helical and purely nonhelical cases, and not by their sum, as might
naively have been expected.
As alluded to in section 3.3, there is a change in the shape of the spectrum as the

system becomes fully helical. In particular, the position of the peak appears for slightly
larger values of kξM(t) at later times; see figure 7(c). Thus, the value of ξM(t) is slightly
overestimated, which would explain the smaller value of tξ compared to tE .

3.5. Comparison with earlier work

As mentioned in the introduction, the switch-over time from nonhelically to helically
dominated decay has been studied by Tevzadze et al. (2012) under the assumption that
p = 1 and q = 1/2 (Christensson et al. 2001) instead of p = 10/9 and q = 4/9, as now
motivated by the conservation of the Hosking integral. The basic idea is to assume that
at the time of switch-over, t∗, the real-space realizability condition (Biskamp 2003; Kah-
niashvili et al. 2010) is saturated, i.e., 2ξM(t∗)EM(t∗)/ρ0 = IM. Next, inserting ξM(t∗) =
ξM(t0) (t∗/t0)

q and EM(t∗) = EM(t0) (t∗/t0)
−p, we find 2ξM(t0)EM(t0)/ρ0 (t∗/t0)

−(p−q) =
IM, and therefore

t∗ = t0 [2ξM(t0)EM(t0)/IMρ0]
1/(p−q)

. (3.12)

For p = 1 and q = 1/2, we have 1/(p − q) = 2 and recover the result of Tevzadze
et al. (2012), while for p = 10/9 and q = 4/9, we have 1/(p − q) = 3/2. Comparing
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Figure 7. Magnetic energy spectra similar to figure 4, but the abscissa is scaled with ξM(t) and
the ordinate with [EM(t)ξM(t)]−1, where equations (3.6) and (3.7) are used with s = 1 in panel
(a), and with s → ∞ in panel (b). In panel (c), the actual values of ξM(t) and EM(t) are used.
The last time is shown as a thick red line.

with equation (3.11), we see that IM enters with the same exponent 3/2, and that the
remainder can be identified with

IH = [2ξM(t0)EM(t0)]
3
t20. (3.13)

This suggests that IH is related to ξM and EM, but the problem is that t0 is not
straightforwardly related to the Alfvén time ξM/vA, where v2A = 2EM/ρ0. Indeed,
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Figure 8. Box-counting result for IH(R) for runs B and C in the left- and right-hand panels.
Note the plateau for intermediate values of R at early times.

Brandenburg et al. (2024) found that there is a pre-factor CM that increases with
increasing magnetic Reynolds number. Such a factor has been motivated based on
magnetic reconnection arguments (Hosking & Schekochihin 2023a). Thus, inserting
t = CMξM/vA, we find

IH = C2
Mξ5Mv4A. (3.14)

The facts that CM enters quadratically and approaches values in the range 20–50 for
large magnetic Reynolds numbers explains why IH strongly exceeds the naive estimate
ξ5Mv4A. Interestingly, Zhou et al. (2022) found that part of the large excess over the naive
estimate is related to non-Gaussianity. Another smaller part has to do with the spectral
shape. Linking the value of CM to non-Gaussianity of the magnetic field provides a new
clue to the question of why there is a resistivity-dependent relation between decay and
Alfvén times in hydromagnetic turbulence.

3.6. Can the switch-over time be resistively limited?

We know that the decay time, τ(t) = (−d ln EM/dt)−1 = t/p(t) can be regarded as re-
sistively limited when relating it to the Alfvén time, τA = ξM/vA. In particular, as alluded
to in section 3.5, it turns out that τ/τA = CM(Lu), which is a monotonically increasing
function of Lu that saturates near Lu∗ at C∗

M ≈ 50 (Brandenburg et al. 2024). Such a
relation was theoretically expected and has been associated with magnetic reconnection
(Hosking & Schekochihin 2023a). However CM(Lu) was found to be independent of the
value of the magnetic Prandtl number, which raised doubts about this interpretation.
The question now is whether the switch-over time might also depend on the value of

Lu. Differentiating equation (3.7) or equation (3.9), we see that the decay time depends
on whether t < t∗ or t > t∗ and is equal to 9t/10 or 3t/2, respectively, but the switch-over
time itself is unaffected by resistivity effects. In other words, the decay time is always
t/p, where the value of p depends on the time.
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Figure 9. Time dependence of Sp(h) for run D (solid curve, vAm/cs = 0.1) and several cases
with weaker mean field (vAm/cs = 0.05 for the dashed-dotted line, 0.02 for the dashed line, and
0.01 for the dotted line).

There is also the possibility that for Lu < Lu∗, the exponent p might depend on the
order of the diffusion operator, i.e., on whether it is proportional to ∇2 or some higher
power; see Zhou et al. (2022) for details. However, this consideration only applies to the
regime of low enough values of Lu and it would still not affect the actual value of t∗.

3.7. Hosking scaling at intermediate length scales

Hosking & Schekochihin (2021) presented arguments that for finite magnetic helicity,
the Hosking scaling should only be obeyed at intermediate length scales. To check this,
we now use the box-counting method as described by equation (2.7) to plot IH(t, R) at
different times t. The result is shown in figure 8 and resembles the sketch provided in
figure 10 of Hosking & Schekochihin (2021). We do indeed see a short plateau where the
Hosking scaling can be discerned for intermediate times. Furthermore, at later times, we
see the expected R3 scaling over the whole range of R.

3.8. Comment on the case of a finite mean field

Our simulations presented above had zero mean field. It is well known that in the
presence of a mean field across the entire domain, the magnetic helicity is no longer
conserved (??); see ? for corresponding decay simulations in the presence of a mean
field. To check whether the Hosking integral could still be meaningful in such a case,
we now present the time dependence of IH(t) for run D with different magnetic field
strength, where a mean field Bm = Bmx̂ is now imposed, so the magnetic field is given
by B = Bm +∇×A. As before, we evaluate IH(t) = 2π2Sp(h)/k2 at k = k1. The result
is shown in figure 9 for four values of vAm. We see that IH(t) is now decaying ∝ t−2, i.e.,
the Hosking integral is not conserved. Thus, with periodic boundary conditions, not only
is IM not conserved, but IH is also not conserved.
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3.9. Comment on the case with chiral fermions

As we have mentioned in the introduction, the Hosking integral also describes the
decay of helical turbulence in the presence of chiral fermions if their chirality exactly
balances the magnetic helicity. One may therefore ask whether a switch-over to helical
scaling could also occur in this case of the initial balance was not perfect. In ?, two
cases of imbalanced chirality were already presented. In the case where the magnetic
helicity exceeds the negative contribution to the chirality, a helical decay scaling ∝ t−2/3

of the magnetic energy was found, thus supporting our expectation. In the opposite case
of an excess of fermion chirality, the time evolution of the magnetic energy was more
complicated and no clear scaling suggestive of a helical decay was found.

4. Conclusions

The present work has shown that the decay laws for the combined case of two conserved
quantities is best represented not simply by the sum of the individual laws, but that a
good description of the numerical results is obtained by taking the maximum between the
two individual decay laws. The switch-over from one to the other decay law occurs earlier
for ξM(t) than for EM(t). This behavior is surprising, but confirmed by direct inspection
of the two time traces in figure 5(b) and (d) and perhaps explained by changes in the
shape of the magnetic energy spectrum during an otherwise almost perfectly self-similar
decay.
Comparing with earlier work on the switch-over from one to the other regime suggests

that the ratio of the decay time to the Alfvén time enters in such a relation. This is
remarkable, because in hydromagnetic turbulence the decay time is known to be longer
than the Alfvén time by a resistivity-dependent factor of up to 50 (Brandenburg et al.

2024). This large factor might also explain why the value of the Hosking integral is always
found to strongly exceed the naive estimate ξ5Mv4A. In other words, the reason why this
simple formula underestimates the value of the Hosking integral might be the occurrence
of the same resistivity-dependent factor that also occurs in the expression for the Alfvén
time. However, as shown in Zhou et al. (2022), also other factors enter that involve the
spectral shape. It would therefore be interesting to revisit this question.

As alluded to in the introduction, an obvious astrophysical application of our work is
the decay of an initially bihelical magnetic field. Such situations are important in proto-
neutron stars after the neutrino-driven convection ceases. Although this was actually
our initial motivation, we have not analyzed this case any further, because the most
important aspect turned out to be the fact that the magnetic field has always fractional
helicity in such cases, which we have now addressed in the present paper. A problem with
the application to proto-neutron stars is of course the fact that in stars, the magnetic
field is inhomogeneous and the decay is initially not yet magnetically dominated; see ?

and ?. Another obvious application is to the decay of primordial magnetic fields during
the radiation-dominated era of the early universe, which led to the aforementioned work
by Tevzadze et al. (2012).
A more general question is that of a decay governed by two decay laws and whether

there are other useful examples where the physics discussed in the present paper can
be studied. As far as turbulence is concerned, one might think of the Saffman and
Loitsyansky integrals, which represent the coefficients of the k2 and k4 terms in the
Taylor expansion of the kinetic energy spectrum (see, e.g., Davidson 2000). An initial k4

spectrum (for a vanishing Saffman integral) might survive for some time, but neither of
the two integrals is well conserved, and the Saffman integral might become important at
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later times when long-range interactions have occurred (Hosking & Schekochihin 2023b).
This idea could also be applied to the magnetic case.
The case with an imposed magnetic field in a triply-periodic domain is known to be

peculiar. The mean magnetic helicity density of the remaining magnetic field (without
the imposed one) is not conserved (?). Although one can construct an additional quantity
that takes the imposed field into account (?), it turns out that it is not gauge-variant
(?). Our present work has shown that with an imposed mean magnetic field, also the
Hosking integral is no longer conserved and tends to zero.
In summary, the present work has extended our knowledge about the Hosking integral,

a remarkably useful quantity whose influence on many aspects of decaying hydromagnetic
turbulence can be understood based on dimensional analysis. Numerical simulations are
used to pinpoint the values of the coefficients. For several different systems, the set of
these coefficients has been found to be similar, suggesting that their values might be
fundamental quantities. But more work is required to establish this more firmly.
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