COURSE 4

MAGNETOHYDRODYNAMIC TURBULENCE

Annick Pouquet

Observatoire de la Céte d’Azur,
06003 Nice, France
and
High Altitude Observatory/MMM.
National Center for Atmospheric Research,
Boulder, CO 80307, USA

J.-P. Zahn and J. Zinn-Justin, eds.

Les Houches. Session XLVIL, 1987

Dynamique des fluides astrophysiques

Astrophysical fluid dvnamics

© 1993 Elsevier Science Publishers B.V. All rights reserved

139







=3

Contents

1.

Magnetohydrodynamic turbulence
1.1. Fundamental equations
1.1.1. Introduction
1.1.2. Coupling to the dynamics
1.2. The MHD approximation
1.2.1. The non-relativistic limit
1.2.2. The parameters
1.2.3. The incompressible case
1.2.4. The Elsisser variables
1.2.5. Discussion
1.3. Joule dissipation
1.4. Large magnetic Reynolds number
14,1, The frozen field
1.4.2. Hamiltonian dynamics
1.4.3. Flux tubes
1.5. Magnetohydrodynamical waves
1.6. Discussion

. Observations and phenomenology

2.1. Introduction
2.2. Methods of observation
2.2.1. The Zeeman effect
2.2.2. Polarization observations
2.3. The Earth as a planet
2.4. The Sun as a star
2.5. Beyond the Sun
2.6. Radio jets
2.7. A phenomenological analysis of MHD turbulence

. Large-scale behavior

3.1. The invariants of the MHD equations

3.2. An MHD fluid as a mechanical system
3.3. The general state of minimal energy

3.4. The two-dimensional case

3.5. Oscillations in a radio jet

3.6. Statistical mechanics of truncated systems
3.7. Self-organization of lows

. Topology of magnetic field lines

4.1. Knots are vital
4.2, Magnetic helicity and linkage of field tines

141

143
143
143
145
147
147
148
149
150
151

152
152
152
153
154
154
156
158
158
158
158
159
159
160
161
162
163
165
165
166
169
171

172
172
173
173
173
174



142 A. Pouqguet

4.3, Magnetostatic equilibrium
4.3.1. The derivation
4.3.2. Stability properties
4.4. Where does the energy go?
4.5. Topological solitons
4.6. The emerging dynamical picture
4.7. Change of topology
5. Transport coefficients
5.1. Introduction
5.2. The closure equations in MHD
5.3. Turbulent transport coefficients as non-local expansion of closures
5.4. Destabilization effect of small-scale magnetic helicity
5.4.1. A phenomenological argument
5.4.2. Closure results
5.5. The inverse cascade of magnetic helicity
5.5.1. Characteristic times

5.5.2. Numerical evidence for large-scale self-organization of MHD flows

5.6. Two-scale analysis of non-linear MHD
5.7. The non-linear dynamo
6. Low-dimensional MHD
6.1. The scalar model
6.2. Dimensionality of the flow
6.3. One-dimensional Burgers’ equation extended to MHD
6.4. Lack of singularity in two-dimensional inviscid MHD
6.5. The inverse cascade of the magnetic potential
6.6. The development of current sheets
7. The growth of velocity—magnetic field correlations
7.1. Introduction
7.2. Phenomenology of correlated flows
7.3. Does the correlation coefficient really grow and why?
7.4. Lack of universality of the inertial ranges of correlated MHD flows
7.5. Selective decay
7.6. The emerging dynamical picture
7.7. Conclusion
References

177
177
179
179
179
181
182
182
182
183
190
191
191
192
193
193
194
195
196
197
198
201
203
204
207
208
209
209
209
214
217
219
221
222
224



1. Magnetohydrodynamic turbulence
1.1. Fundamental equations

1.1.1. Introduction
One of the earliest manifestations of the magnetic field of the Earth put to use by
man is the compass, which was brought to Europe from China in the Middle Ages:
the cause for which the needle was indicating to a good precision North under all
circumstances was not known. The great phase of discovery of our planet by land
and, above all, sea travel, together with the mapping of Earth, allowed the scholars
of the seventeenth century to draw a map of the field and to realize that it behaves
as a lodestone with a simple dipole structure. On the other hand, the field of the
Earth is clearly weak, since no pull is felt when holding a small magnet in the hand;
hence, unlike gravity, magnetism, which occurs only between special materials,
has a reputation of mystery. Incidentally, the explanation of the Earth’s magnetic
field, B, as that of a lodestone had to be dropped once it was realized that the core
of the Earth is liquid and that at the temperature present in it, the magnetization is
lost. However, in the source of the difficulty lies also the answer: it are the very
motions in the core that are the source of the field.

So, the magnetic field of the Earth is, to first approximation, a dipole. No indi-
cation of a source nor of a sink, allows to write that:

V-B=0. (1.1

This law stands up to the present time: there is no conclusive observational evi-
dence of magnetic monopoles; on the other hand, the equivalent equation for the
electric field, F, reads:

V.E=V/e (12)

The rationalized mksa system of units will be used here; for a discussion of the
Gaussian system versus this one, see appendix | of Priest (1982). We will assume
the usual constitutive laws B = pH and D = ¢ E, where 1 and € are, respectively,
the magnetic permeability and the dielectric constant: they will be taken equal to
their value in free space, i.e. g = 47 x 1077 Hm™" and ¢ = 8.85 x 107"
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144 A. Pouquet

Fm~!', with jigee” = 1. where ¢ is the speed of light. E is the electric field. D the
electric displacement. and V is the charge density, respectively in V m ', Cm™,
and Cm ™" H is the magnetic field, in A m~'. and B the magnetic induction, in
T (with | T= 10 G).

Now, these two equations induce many comments. Because the electric field is
made up by positive and negative particles, when taking the spatial average over
a large enough region, it will cancel out, whereas no such cancellation can occur
for the magnetic field. This is the fundamental reason why in large. and hence in
many astrophysical, flows, magnetic fields are observed and furthermore are of
dynamical importance. Now, why such a discrepancy? This is unexpected when
one recalls that the E and B fields in fact, through their respective potentials, A:

B=V x A, | (1.3)
(to within a gauge transformation) and ®:

E=VJ, (1.4)
are part of the same quadrivector; through a Lorentz transformation, the electric

field may be zero in one frame of reference and not in another one; the transfor-
mation reads:

E =(E+vx By, +(1 -’yl,)%@v, (1.5)
B =(B - pev x Eyy, +(1 ~%)(~’3A—;}—z§—)vﬁ (1.6)

where E’ and B’ are measured in the frame of reference moving with the fluid
velocity v (Landau and Lifshitz 1959), and where v, = 1 —v?/c

E' is called the effective electric field and v x B the induced electric field
(induced by the motion of the plasma). The electric current density, j', is related
to the electric field, E', in the frame moving with the fluid by a linear constitutive
equation, Ohm’s law (in the non-relativistic case):

j =0E" (.7

where o is the electrical conductivity, measured in ' m~'. By analogy with
the viscosity of a non-conducting fluid, it is convenient to introduce the magnetic

“ g I B R
diffusivity, 7, measured in m= s b

n=1/on. (1.8)
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For a collision-dominated plasma. we have 1 ~ 10°T =Y m” s~ (Spitzer 1962),
where T is the temperature. In the laboratory frame, Ohm’s law thus reads:

j=cd(E+vxB). (1.9)

Often. the electrical conductivity is large, although the current remains finite, so
thateq. (1.9) reduces to E ~ —v x B and thus B’ = B to O(v*/c*) terms. consis-
tent with Maxwell’s equation, eq. (1.18) introduced below. Ohm’s law describes
the way by which the magnetic field is dissipated, via the current. A generalized
Ohm’s law can be introduced taking into account in particular the multi-fluid as-
pect (electrons, protons, neutrals) of the plasma. e.g. through the Hall conduc-
tivity associated with the drifting of charged particles across the magnetic field.
Particularly worth mentioning is the phenomenon of ambipolar diffusion; it arises
because the magnetic field lines are attached to the charged particles in the gas,
which collide with the neutrals; this effect dominates that of Ohmic diffusion at
low densities, such as those encountered in interstellar molecular clouds (~ 1073
particles/m*). For a discussion of the validity of Ohm’s law in astrophysical plas-
mas, see section 4.6 in Parker (1979).

1.1.2. Coupling to the dvnamics

It is a remarkable feature of Maxwell’s equations, which we are about to write,
that they are compatible with special relativity, which appeared much later histor-
ically (they can in fact be written in the general relativity framework). This may be
related to the fact that in electromagnetism particle velocities may be close to the
velocity of light. whereas in daily life mechanical velocities are much smaller. The
coupling to the fluid velocity appears in the transformation (1.5) above; hence, we
can now write the hydrodynamical equations for a compressible fluid, in which
JF, are the various body forces per unit mass that can come into play; Newton’s
law of motion (non-relativistic) for a continuum medium reads:

1 s
p%g =p (%? +v- V'U) =pF, - Vp+ §“l graddivo + p'V-v.
(1.10)

where p is the density, p the pressure, i’ = pv the coefficient of viscosity, and v -
the kinematic viscosity. The equation for the conservation of mass is:

d
5§+div(,m>:o. (111

The eguation of motion is written in a frame that is not rotating (otherwise, one
would add the Coriolis force. F. = 2§2 x v, where (2 is the instantaneous angular



146 A. Pouquet

velocity relative to an inertial frame. and €2 is assumed constant). The equation of
state will be that for a pertect gas:

p=RT/p. (1.12)

where T is the temperature and R’ the gas constant. The energy equation can take
many forms. For adiabatic changes we have:

p/p” = constant, (1.13)

where 7 is the ratio of the specific heats at constant pressure and volume, respec-
tively; it will suffice for our purpose. Otherwise, the energy equation should in-
clude (see Priest (1982), section 2.4) the heat loss from Ohmic dissipation, thermal
conduction, and radiation, and also the heat gain from nuclear reactions.

Two body forces of importance for astrophysical flows are the gravitational
force, giving rise to convection, and the force F.. exerted by an electromagnetic
field on a solid conductor:

Fn=0E+jx B. (1.14)

Let us go back to the problem of the absence of magnetic monopoles. It is surpris-
ing on the basis of the similarity between the E and B fields; and in fact, in the
process of unifying the forces of physics (a topic most certainly beyond the scope
of these lectures), the need appears for the existence of monopoles at an early time
in the universe. They have recently been sought for, in particular at the suggestion
of Parker, who made an estimation of their presence in the galaxy; a discussion of
this point can be found in his book (Parker 1979), but for the moment they have
not been identified.

We will now write the remaining Maxwell’s equations; they involve the curl of
the E and B field and read:

oD
1H =)+ —, A
cur it (1.15)
1 0H
CU[‘]D-*—;:-2'—5T~ (1.16)
or, equivalently:
1 0F
cut B=pj+-——. (1.17)
e~ ot
oB
curl £ = —— (1.18)

ot
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They show that from time variation of the magnetic field an electrical field arises,
and inversely a current together with a time-varying electrical field give rise to a
magnetic field. We will now see that, in the non-relativistic case, the former effects
dominate.

1.2. The MHD approximation

1.2.1. The non-relativistic limit
In a conducting fluid, typical velocities range from 1 ms~! in the laboratory (at
best)to | kms™', e.g., in the solar photosphere. Hence, v/c < 1, and the above set
of equations can be simplified further using this fact in a consistent way, yielding
the MHD approximation. It was written soon after the second world war, when
extensive studies of the terrestrial and solar environment were undertaken. Such
an assumption naturally excludes relativistic, magnetized flows, since they occur,
e.g., in some radio jets and in the magnetosphere of pulsars.

Let us evaluate the relative strength in eq. (1.17) of the displacement current to
B:

i oF 1 E 2
e 1B~ — =
¢ ot curl B 2t B ¢

where E ~ v B has been used; therefore we can neglect the displacement current
and write Ampere’s law:

curl B =pj. (1.19)

Combining this with Ohm’s law (eq. (1.9)) and eq. (1.18), we can eliminate the
electric field and obtain:

a—a? =curl(v x B)+7nV*B. (1.20)

Note that, by dropping from Maxwell’s equations terms of order v?/c? and smaller,
we filter out the familiar electromagnetic waves, so we can concentrate on fluid-
type phenomena. As noted previously, by changing the frame of reference we have,
again up to terms O(v” /¢?): ‘

B' =B, (1210
and therefore, because of eq. (1.19):

i'=3.
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In this approximation. the magnetic field is independent of the frame of reference
in which it is measured. and the electric field is determined using Ohm’s law once
the velocity and the magnetic field are known:

E=-vx B+ncurl B. (1.23)

1.2.2. The parameters

The induction equation (1.20) is linear in the magnetic field: its right-hand side
contains a term of stretching of magnetic field lines by velocity gradients, with
characteristic time 7y ~ lo/Va, and a term of Joule dissipation, which will become
preponderant on small scales; the Ohmic diffusion time is 73 ~ [3/1; both times
are computed at scale [y, with velocity V. The ratio of these two times, which
measures the relative strength of the related terms, defines the magnetic Reynolds
number, M :

Vol
pM= 1 oo (1.24)
Tst n

In the laboratory, typical magnetic Reynolds numbers are small: Roberts (1967)
gives the example of a sphere of mercury of I m in diameter; when imparting to
the mercury a velocity of 1 ms~!, RM = 1. Magnetic Reynolds numbers of the
order of 30 can be achieved in the cooling circuit of liquid-metal breeder reactors.
This situation is in sharp contrast with the values for RM that are encountered
in astrophysical flows, including in the magnetosphere, where they range from
107 to 10'2, be it only because of the astronomical distances involved. Because
of the severe limitation on RM for laboratory flows, numerical computations will
be a privileged tool for the experimental approach to an understanding of MHD
turbulent flows. This will be discussed later. Experiments with plasmas, on the
other hand, are numerous, in particular in the context of fusion. Several devices,
such as the reversed field pinch (RFP), can lead to a better understanding of MHD
turbulence. One can also mention the experiments of Stenzel et al. (1983), withan
argon plasma with density 10'® particles/m”*, with the electron and ion temperature
respectively equal to 5 and 0.5 e V; the plasma is confined in a 2 m vessel by a radial
magnetic field of 20 G. Clever graphical displays have helped the diagnostics of
the flow and have yielded information in particular on the reconnection events;
however. MHD-induced effects are but one aspect of such experiments, which
appear to be dominated by whistler waves.

Finally, note that [VE/(j x B)] = O(v?/¢?). and thus can be neglected. We
will therefore take for the Lorentz force:

ﬁ\lszB~ (le)
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Several dimensionless parameters, besides the kinetic and magnetic Reynolds
number. ¥ and RM, can be defined starting from the MHD equations for the
velocity (1.10), with the Lorentz force (1.25), for the density (1.11) with the
barotropic law (1.13), and for the induction (1.20) together with the divergence-
free condition (1.1).

Linearizing them (see section 1.6) around a basic state with density py, pressure
po. and induction By, two velocities naturally arise, that of sound, Vs:

V  po

and the Alfvén velocity:

VA = Bﬂ/\//l/)()» (127)

Finally, the magnetic Prandtl number, PM:
PM =v/n=11/Tise » (1.28)

measures the relative dissipation by Joule and viscous effects. We leave aside sev-
eral other dimensionless numbers, to prevent the list from getting too long.

Let us give some idea of such numbers, including the Reynolds number RY =
Volo/v, v being the viscosity. For example, in the core of the Earth RV ~ 10° and
RM ~ 10" (with the velocity in the fluid core of iron and nickel of the order of a few
mms~"). Ina sunspot (ly = 10" m, Vo = 10 ms~") RV ~ 10'2 and RM ~ 107,
with subsonic velocities (M, = V,/Vs = 0.05), and even more so sub-Alfvénic
(My = Vo/Va ~ 4 x 107%), thus yielding a plasma 3 = 2upo/B; ~ 1077,
with By ~ 10° G. Finally, in a molecular cloud ([p = 1 pc = 3 x 10'°m, V; =
10*ms~!', T ~ 100 K), Reynolds numbers can be estimated (with n ~ 10° 7"~3/2,
following relationships given by Spitzer) as 10'?, and the Mach number as M, ~
4, indicative of highly turbulent supersonic flows.

1.2.3. The incompressible case

Because they will be often used. the MHD equations in the incompressible limit
are now given. for a velocity field v and for the Alfvén velocity b = B/, /1ipq.
where B is the induction and pg the uniform density; they read:

d I ) .
E-BA-vﬂvvﬁ——-V])+l/V“U+]Xb. (1.29)
ot Po

b 9
9— =curltv x by+n V-b. (1.29b)

ot
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V-.v=0. (1.29¢)
V.b=0. (1.29d)
with here the current density being defined as j = V x b. Using the vector identity
ax(bxey=bla-c)—cla-b)
specifically for the case where a is the V operator, yields:
curf(v x by = (divb+b- V)v — (divo+wv- V)b,
so that the induction equation can be written as:

d ' ,
6—?+v-Vb=b~Vv+nV‘b. (1.30)

This shows that Ohm's law separates, in the incompressible case, into an advec-
tion term and a term of stretching of magnetic field lines by velocity gradients.
Similarly, using:

(curlb) x b=b - Vb~ V(3b°),

where W - b = 0 is taken into account, and where the relationship between the
antisymmetric tensor ¢;;; and the Kronecker symbot &,

€ijl €imn = §jm O — (5]'71 Otm s
can be found of some use, one can rewrite eq. (1.29a) as:

%—'t’w-w:~V(p+§b2)+uv2u+b-v11. (1.31)

The Lorentz force thus amounts to a magnetic pressure term b* /24 transverse to
the lines of force and isotropic, and to a tension along the lines of force.

1.2.4. The Elsdsser variables
An even more symmetrical form of the MHD equations in the incompressible case
is readily seen to be, using the Elsisser variables (Elsiisser 1950)

z¥=vtb (1.32)
and defining the dissipation coefficients as vy = %(1/ +n)and 1h = %(1/ —

0z*
ot

+z” -V::":-Vp*%»ulvzz*—ruzvzz‘. (1.33a)
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%ZT +z2"-Vz = -Vp* +1, V27 + ugvlz*. (1.33b)
with p* = p/p + %bz the total pressure. These equations. found independently
by Lundquist (1952), correspond in fact to the characteristic system of the MHD
equations in the absence of pressure; the viscosity v, can be negative for magnetic
Prandtl numbers smaller than unity. This form of the equations will prove very
useful in several instances: their symmetry under interchanging + and — allows
one to write eq. (1.33b) directly from eq. (1.33a), and shows that the underlying
mathematical structure only contains one type of non-linear vertex; indeed, only
(z*/z7) interactions appear in egs. (1.33a, b), and either (2*/2*) or (z~ /z~) non-
linear interactions are ruled out. An exact solution of the MHD equations in the
incompressible case is thus readily found: when either 2* = 0 (corresponding
to v = —b) or when 2z~ = 0 (corresponding to v = +b), the non-linear terms
cancel exactly and the temporal evolution is simply on the dissipative time scale,
assumed to be very large in most astrophysical or geophysical situations. This
solution does not require to linearize the MHD equations; it has a finite amplitude
and was shown to be stable by Chandrasekhar (1961).

1.2.5. Discussion

Pertinent boundary conditions can be found in Roberts (1967). Let us simply
mention here that the magnetic induction must decay at infinity (r — oo0) as
B ~ 1/r%*, because of the divergence-free condition; also we will write that on
the boundary of the domain (surface of discontinuity) with its normal, 7, oriented
in the outward direction, B - n = 0 (together with v - n = 0.

Finally, let us mention two sub-sets of eqs. (1.29a—d) that are often found in the
literature. One concerns the flow in a liquid metal, for which RM « 1, embedded
in a strong external magnetic field in the vertical direction, Balancing in the in-
duction equation the Joule diffusion of magnetic fluctuations against the stretching
of By, one finally ends up with the usual Navier-Stokes equation for the velocity
field, in which an extra linear dissipation term appears, proportional to BZ cos? 6,
where £ is the angle between By and the wavevector k of a given Fourier mode
ii(k.t). Thus, except for f = %7!', the velocity modes are strongly damped. This is
in fact used in the laboratory to produce two-dimensional fluid turbulence.

A different simplification of eqgs. (1.29a—d) arises in the context of fusion; mak-
ing use of the large aspect ratio in a tokamak, an ordering is taken whereby deriva-
tives in the vertical z-direction (the length of the plasma the long way along the
torus) are taken to be small compared to derivatives in the z- and y-direction (cross
section of the torus), and also the magnetic induction in the z-direction is domi-
nating the other two components (Strauss 1976). The resulting two, scalar. three-
dimensional equations for the (orthogonal) vorticity and the flux (z-component of
the magnetic potential) have been used extensively, in particular in numerical stud-
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ies. because of the substantial reduction in storage that they imply (scalar instead
of vector equations for the general three-dimensional problem).

1.3. Joule dissipation

The simplest form of the induction equation, assuming v = 0,

oB 3
—— 3 V‘B, l34
3 = (1.3

is easily solved by writing B = B(0.t) exp(ik-x), from which follows that B(t) =
BO)explik - = — r;kzt). The Joule dissipation time, 73 ~ lf,/n. for the Sun (I =
10°m, T = 10° K)is 7 ~ 10'3 s or 3 x 107 yr: it is very long indeed, unless
some other process can hasten the decay of the field, through turbulent transport
to the small scales. From eq. (1.34) we can also write the equation for the decay
of magnetic energy:

9EM

—— = -n(j*) +no // dS - (B x E), (1.35)
ot s

using j = o E when v = 0. The first term corresponds to Joule heating by the
current in the conductor (here, the loss is due to the mechanical displacement of the
fluid, not to radiation) and the second term is the Poynting flux of energy flowing
through the surface of the conductor into it; if zero, the field decays on the Ohmic
time scale, 5.

1.4. Large magnetic Reynolds number
1.4.1. The frozen field
Let us now suppose that RM is so large that we can neglect Ohmic losses alto-
gether; then, the induction equation reads:
oB
— = curl(v x B), (1.36a)
ot
or equivalently, for the Lagrangian derivative of B/p:

D /B B
Di (z) - (z ‘ ‘7> v (1300

Equation (1.36b) indicates that lines of constant B/p are permanently attached
to the fluid (lines of B in the incompressible case). This is not unexpected if one
recalls that the vorticity equation for a Navier-Stokes fluid reads:

dw _ curl(v X w) (1.37)
T . .
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and thus the vorticity, w. and the magnetic field, B (when weak. so that we can
neglect the Lorentz force in eq. (1.37)) evolve similarly. This analogy will be used
again in section 3 when looking at the invariants of the equations. We can then de-
rive the analogue of the Kelvin—Helmholtz theorem: the zero-divergence equation
V- B =0.inintegral form f[; B - dS = 0, states that the magnetic flux through
a closed surface is zero. By taking for S the surface enclosed by the closed curve
C'y at time t, using the surface swept by C; in time 8¢, and taking the surface
enclosed by C(t + 8t) = C, we can write:

B(t)-ds x vdt—/ B(t)-dS, =0.
-C\ <‘Cl

/ B +6t)-dS, +
Jo,

where ds is a linear element on contour C') and dS x V' 6t is the surface swept by
C during time &7,
Thus, the change of flux through a given contour, following the motion, is:

6‘I>=6t// dS-(g—]z) «y{ Stds - (v x B)=0.
JC at C,

Recalling eq. (1.36a) and using Stokes’ theorem, we arrive at the desired result:
the magnetic flux through any closed contour moving with the fluid is constant.

1.4.2. Hamiltonian dvnamics
Let us recall that a magnetic field line is at any point tangent to the direction of B,
and thus obeys, in Cartesian coordinates:

dz/B, =dy/B, =dz/B,. (1.38)

Note that V - B = 0 does not necessarily imply that magnetic field lines are
closed. In fact, they can terminate at singular points or they can be ergodic: take
the simple example (Elsdsser 1956) of two wires carrying currents i; and ,, with
7, flowing along the vertical axis and i, flowing in a loop in the horizontal plane;
a magnetic field line encircling the loop will not close upon itself, except for a
set of values of i /i, of zero measure and linked to the safety factor, in tokamak
terminology (a field line wrapped around a torus n times the large way and m
times the small way around, will close upon itself for m = a’n, a’ € N'). This has
far-reaching consequences and is linked to the definition of magnetic surfaces and
to the underlying Hamiltonian dynamics. For example (Tsinganos et al. 1984) in
the case of a magnetic field around an O-type neutral point (i.e. a point at which
B vanishes. with nested magnetic surfaces around that point), the field due to the
current J = (0.0.2a), with a = By/g, is simply B = (—ay.ar.c). with ¢ an
arbitrary constant. Take for the phase variables, p and ¢, of the Hamiltonian, H,
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p = yand ¢ = r.and for the pseudo-time variable 7 = z/boand write df /dT = I
then, defining:

H = %a(p2 + qz).

you can check that the usual Hamiltonian dynamics, 0H/Jp = ¢ together with
9H/dq = —p. is equivalent to eq. (1.38) for the magnetic field lines. These
equations of motion are those for a classical harmonic oscillator, and its one-
dimensional phase portrait coincides with the magnetic field lines around an O-
type neutral point. The X-type neutral point can be treated similarly by writing
now B = (ay.axz.c), and the Hamiltonian, with the same change of variables,
reads:

H=1ap’ = ¢*%

it now corresponds to the phase portrait of an unstable one-dimensional Hamilto-
nian system.

1.4.3. Flux tubes

A magnetic flux tube is a volume enclosed by a set of field lines. Then, taking a
flux tube with infinitesimally small cross-section, we see that the lines of force,
in the absence of dissipation, move with the fluid: the magnetic field is said to be
frozen-in. However, one must recall that the dissipation term, 7 V'’ B, is omitted
in the preceding derivation: at sufficiently small scales it will become relevant,
and field lines will be able to change topology and reconnect.

The strength of a flux tube is defined as ® = I B - dS, i.e. as the amount
of flux going through its cross section (no flux goes through the walls of a flux
tube for which B « n = 0). In a molecuiar cloud contracting under the action of
self-gravity, both the magnetic flux, yielding B ~ r~2, and the mass is conserved,
yielding p ~ 7=3: thus B ~ p?/3, a relationship not too far from being verified,
although numerical simulations in the magnetostatic case seem to indicate that
B ~ p" with % <n< % (Mouschovias 1980). The conservation of flux also tells
us that the larger the cross section of a flux tube of given strength @, the weaker the
field: sirong-B regions have field lines packed together. In a compressible fluid,
eq. (1.36b) indicates that where B is weak, p is weak, and conversely.

1.5. Magnetohydrodynamical waves

When linearizing the MHD equations. several types of waves are found: see e.g.
Van Kampen and Felderhof (1967), whose derivation of the properties of the
waves is sketched below. or Jeffrey and Taniuti (1964) for an extended treatment
of shocks, or Roberts (1984) for the inhomogeneous case.
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Let us write as the unperturbed solution. in the static case:

p=p"=constant. p=p". b=b". " =0,

and let us perturb it in the following way:

p:/)o.{-.”‘
])=p0+pl.
v=v
b=b"+b"

where p'.v', and b! are small. It is straightforward to write:

v.v' =0,
V.b' =0,
o 0V

Pl — = -Vp' +-‘-(v x b')y x b,
ot ©

|
a3 = curl(v' x b%).

155

(1.39a)

(1.39b)
(1.39¢)
(1.39d)

This system is linear, homogeneous, with constant coefficients: by expanding the
perturbation f! in plane waves (where f stands for either p', v', or b') we obtain:

f' = frexplik - 7 — iwt),

where the wavevector k, the frequency w, and the amplitudes f; are constant. We

now have:
k- Vi = 0.
k-b,=0.

—wplvp = —kpy + l(Ic x by) x b,
1

—wh = k X (v % bo) = vk - bo).

(1.40a)
(1.40b)

(1.40¢)

(1.40d)

From the eight equations (1.40a~d) above, the divergence-free condition for the
magnetic field can be deduced from eq. (1.40b): thus we have to solve a system
of seven linear homogeneous equations for seven unknown: the condition A = 0.
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where A is the determinant. yields the dispersion relation. Equation (1.40a) in-
dicates that the wave propagates transversely to the wavevector: the stretching
by velocity gradients is counteracted by the tension of the lines of force. Equa-
tion (1.40d) shows that v, and by are parallel. The dispersion relation is:
042
wlsfﬁﬁ’i:(k-w)z. (1.41)
Pl
where V4 is the Alfvén velocity. The phase velocity of the Alfvén wave is w/k =
Vi cos(k. b"): the Alfvén wave is anisotropic (wa = 0 for k L b ); its group
velocity, dw/dk = w/k, shows that it is non-dispersive. In the simplest case
(k || b%), the wave propagates along the magnetic field. stretching the field lines
transversely; averaged over one period, b, = p’vj. i.e. there is equipartition of
energy, corresponding to equipartition between potential and kinetic energy in the
harmonic oscillator.
In the presence of dissipation, the dispersion relation becomes:

KV2E = (w + inh?)(w +ivk?), (1.42)

which induces both dispersion and penetration of the wave, on a length scale [}, =
Va/ /71, which is called the Hartmann layer.

In the compressible case, the analysis carries along as before, with now p =
p° + p', with as perturbation of the density p' = prexplik - 7 — iwt). Writing
p= f(p)and Vs = /f'(p), the dispersion law in the general case reads:

Wt — WRIVZ+ VD + KRTVE =0, (1.43)

where x = k - V. Three modes are now found: one is the transverse Alfvén wave
as before, with no pressure variation (px = 0) and with w = k - V. Assuming
w # 0, two new, longitudinal modes arise, corresponding to the two solutions of
eq. (1.43): the fast magnetoacoustic mode (with Vi > Va) and the slow mode (with
Vi < Va): like the Alfvén wave, the slow mode cannot propagate along field lines,
in sharp contrast to the fast mode.

When 8" || k. we have & = kV, and w? = k*V5': this represents an ordinary
sound wave propagating along the magnetic field line. It is not affected by the
magnetic field because it moves parallel to it (b' = 0). When b" L k, the phase

velocity is w/k = \/ V5 + V2, it is a compression wave propagating across the
field at a speed associated with the total kinetic plus magnetic pressure.

1.6. Discussion
The topic of waves has many ramifications. For the description of waves in an

inhomogeneous medium. see Roberts (1984) and Campos (1987) for a general re-
view. The damping of MHD waves by diffusion in a non-uniform atmosphere can
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provide part of the energy needed to heat the solar corona from 5 x 10! K at the
photospheric level to 10° K in the chromosphere (Nocera et al. 1986) by phase
mixing, or by resonant absorption linked to the discrete (instead of continuous)
sets of modes when the magnetic diffusivity is non-zero (Reidel 1986). When the
waves grow to finite amplitudes, they couple together and they steepen. giving
rise to magnetized shocks (see, e.g., Jeffrey and Taniuti (1964)). In the simplest
case, when the magnetic field is parallel to the shock front, one simply modifies
the Rankine-Hugoniot relations by adding the magnetic pressure, B? /24 (i = 1.2
referring to each side of the shock), and the magnetic momentum, B V;/2u, to
the corresponding equations, together with a continuity equation for the magnetic
flux across the shock [B;V;] = 0 (where the brackets indicate jump conditions).
In the general case, fast, intermediate (Alfvén), and slow waves give rise to fast,
intermediate, and slow shocks. Transport of energetic particles in a magnetized
medium by diffusion can be considerably enhanced in the presence of shocks by a
process referred to as first-order Fermi acceleration (see, e.g., Drury (1987) for a
review): one soives through the shock the diffusion equation (in the shock frame)
for the particle distribution function f(p,x,t), where p = pV is the momentum,
with V the velocity of the particle. Notating by V; and V5 the upstream and down-
stream velocities of the medium, with V' > V3, the probability that the particle
escapes to infinity as opposed to being scattered by collisions, is Pege ~ V3/V.
By crossing the shock many times back and forth, particles can gain momentum,
with Ap/p ~ V5/V. The resulting distribution function, f(p), is the power-law
) ~ (p/po)™, with & = 3/(j. — 1), where j. = V;3/V) is the compression jump
(je = 4 is a typical number in a strong shock, leading to a —2 energy spectrum).
This mechanism seems to give reasonable agreement for the cosmic-ray spectrum
below 107 eV,

This is not the place to discuss the interaction of magnetic fields and rotation
(see Chandrasekhar (1961) or Acheson and Hide (1973)). Let us simply mention
that in the case of aligned velocity and magnetic fields, as measured relative to the
rotating frame, i.e. when B = CU ,/[ip, the potential-vorticity theorem still holds,
where the potential vorticity is now defined as w + 202/(1 — C?), with w = curl v
and (2 the angular velocity. In fact, Hide (1983) has shown that there is a magnetic
analogue of Ertel’s potential-vorticity theorem: starting from eq. (1.36b) for B/p
and from an equation for a Lagrangian scalar invariant, A, such as entropy:

DA

2=
Dt

the quantity

I'=p"'B. VA (1.44)
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is also conserved for each fluid element; Hide proposed to call [ the potential
magnetic field, although this may induce some confusion with the widely studied
configurations where B is potential (no current).

2. Observations and phenomenology
2.1 Introduction

Magnetic fields are widespread in the Universe and a review of relevant observa-
tions is far beyond the scope of these lectures. The following sections are thus a
totally biased sample of what is presently known, from numerous observations,
about magnetic fields. The reader is referred to basic books, and to the many re-
views devoted to the several components of this subject. However, a brief glance
is given below to set the scene of action.

2.2. Methods of observation

2.2.1. The Zeeman effect

A magnetic field lifts the degeneracy of the atomic line emission associated with
angular momentum, and in the simplest case of a singlet, the line is split up in three
components. Two circularly polarized ¢ components are symmetrically shifted on
the blue and red side of the basic frequency v by dv; the shift is directly propor-
tional to the magnetic field and also depends on the quantum numbers L and S.
When viewed in directions perpendicular to the field, a non-shifted linearly po-
larized m component, parallel to the field’s direction, is also present. In a more
general case, the shift is:

v ~ gB, Q.1

where

. +J(J+1)+S(S+l)—L(L+1)
7= 2J(J + 1)

is the Landé factor. For the iron line Fe 5250, for which the natural line width is
0.1 A, one has 6 = 4 x 105 A/G. When the field is so weak that the line splitting
is smaller than the natural line width, one can use a differential effect between the
two wings of the line. because of the difference in sign of the circular polarization:
this is the basis of the Babcock magnetograph. Note that a possible selection effect
is due to the fact that there are other sources of broadening, such as rotation and
micro-turbulence.
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2.2.2. Polarization observations
In radioastronomy, the most widely used method of measurement of a magnetic
field 1s Faraday rotation (Gardner and Whiteoak 1966). It gives the B component
through the rotation measure Ry:

RM=O.8I/N‘,B” dl, (2.2)

where Ry is in rad/m?, the line element, dl, in parsec, the parallel (to the line of
sight) component of the magnetic field, By, in 4G, and N, is the electron density
in m~3. The rotation of the direction of polarization by scattering on irregulari-
ties in the electron density is over an angle 1 = Rm\”, where ) is the wavelength,
and where 2 ambiguities are removed by measuring at several wavelengths. Note
that, to have access to the induction, one must know the electron density, which is
unfortunately quite often not the case. As a last resource, one can evaluate the mag-
netic field from equipartition arguments with the dynamic, the gas, or the cosmic-
ray pressure.

2.3. The Earth as a planet

From paleomagnetism, knowledge of the Earth’s magnetic field goes back to 10°
yr. It is quite weak: its mean value is 0.3 G at the equator, with the dipole axis tilted
11° from the axis of rotation, and with a quadrupole component of about 0.15 times
the value of the total field (unlike Jupiter, where it is much stronger). It extends
to ten Earth radii, where it is finally stopped by the solar-wind pressure in the solar
direction. In the anti-solar direction it is drawn out to a long tail. A reversal of the
field has occurred at random intervals of 10°~107 yr, and happens abruptly, in less
than 10° yr. The field is due to the motions in the liquid core of iron and nickel
at 4000 K; with 7 = 1 m?s~!, and with a westward drift of inhomogeneities of
3x 10~* ms™', the magnetic Reynolds number is of the order of 10* and the Joule
diffusion time of the order of 10° yr.

In situ measurements by satellite provide data on other planets and on the solar
wind. In the latter case, the mean field is 60 G, with fluctuations of the same order
of magnitude, a velocity of 4 x 10° ms~' and an Alfvén velocity of 6 x 10* ms~';
the wind is viewed as an ensemble of Alfvén waves propagating outwards from the
Sun, probably generated by supergranulation, and of discontinuities and shocks.
The Voyager-2 data, averaged every 10 s, indicate that the spectra of the energy,
of the correlation (v - b), and of the magnetic helicity (a - b) are well developed
over several decades of wavenumbers (Matthaeus and Goldstein 1982, Matthaeus
etal. 1983, Smith et al. 1983): the spectral index m of the energy spectrum, E(A) ~
k- seems in good agreement with the Kolmogorov —3 law: the correlation
spectrum sometimes changes sign rapidly on the small scales, which may be due
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to an early development of turbulence in that case (see section 7.3), whereas the
magnetic helicity remains to have the sume sign and is between 2 and 5 au (1 au =
10" m). The correlation between the three components of the velocity and of the
magnetic field is high in periods of 24 h (Belcher and Davis 1971); the ratio of
kinetic to magnetic energy on the small scales is within a factor two equal to unity,
and in general (but not always) smaller than one; finally, the characteristic length,
A,, defined as:

A =27rE"/kE'(k)dk,
is greater by a factor five for the magnetic helicity spectrum,
Agm = 1.2 % 10" m, (2.3a)

than for the magnetic energy,

A = 10° m. (2.3b)

2.4. The Sun as a star

The mean field of the Sun is weak, of the order of 1 G, whereas in stars it ranges
from 100 G (the detection limit) to 20 000 G. Sunspots, barely visible to the naked
eye, have been observed in ancient China, and starspots covering large portions
of the stellar surface, are now being identified by the temporal modulation of the
light curves of the stars. The solar cycle of 22 yr — which corresponds to a large-
scale circulation, with L = 10° mand V = 10 m s~ ! — is now known to be typical
of stars of the same spectral type (Wilson 1978), although stars close in the H—
R diagram may have cycles differing by almost a factor of three: three years as
opposed to eight (S. Baliunas, private communication). A detailed investigation
of these stars, to find their intrinsic characteristics (mass and radius), is certainly
needed!

Other manifestations of stellar magnetic activity, like their coronae, studied with
X-ray measurements, and the inference of the existence of stellar winds complete
this description (Cram 1983, Marcy 1983). It is not clear, however, whether the
X-ray activity is transient or corresponds to continual flaring (Montmerle et al.
1983). For a brief review of theoretical aspects of magnetic activity in stars, see
Spruit (1983).

On the Sun. moreover. a lot of small-scale activity is routinely observed: iso-
lated flux tubes, with a strength of 1 kG. spicules in the chromosphere, and loops
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in the corona, made visible by density and temperature inhomogeneities. The mo-
tions of some of these features are probably linked to the underlying large-scale
convection and circulation. Sunspots, e.g.. may be attributed. following Parker
(1979), to the emerging part of toroidal flux tubes. because of magnetic buoyancy:
a flux tube is in pressure equilibrium with its surroundings:

5

e = i+“’i:~ 2.4
De =D 0 (2.4)

where e stands for the exterior of the tube and i for its interior. Using
p=pkT/m.

we can write:

Bi2 m

e = P+
Pe=p 2u kT

The flux tube is thus less dense than the medium in which it is embedded, and it
feels a buoyancy force (p. — p;)g per unit volume; the tube will rise as long as the
restoring force due to magnetic tension in the stretched field lines, is negligible;
defining A = kT /mg as the scale height, we get:

2

B7 1
9(pe = pi) > —-—, (2.5)
u L

the right-hand side being an estimate of the Lorentz force, and L being the size of
the tube. It is estimated that, at 1000 km below the photosphere, the residual force,
dp/p.is 4 x 1077, for an external density p. = 8 x 107°%, with T'= 1.5 x 10 and
B=10""'G.

2.5. Bevond the Sun

Magnetic fields in the interstellar medium are estimated to be in the 1-100 G
range. Using flux conservation, [ B - dS = constant, and mass conservation:

/// pd'r = constant.

one obtains:

B w/):/u'. (2(7)
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Note that scaling down from the Sun to a white dwarf with radius 10 km, one
predicts for the latter a field of 10'" G. However, when applied to a field of 1 4G
in an interstellar cloud. with a density of 100 particles m~*, this also gives a field
of 10" G for the Sun. Probably, the law (2.6) has to be modified; Mouschovias
(1980) suggests:
B~ pk,

with L < k < }, on the basis of numerical simulations of the evolution in the
magnetostatic case.

The Joule dissipation time of interstellar fields is very large: for L = 0.1 pc,
T = 10 K, and using Spitzer’s evaluation of the magnetic diffusivity, one arrives
at7) ~ 10'® yr. Other diffusion mechanisms, such as ambipolar diffusion, possibly
have to be invoked in very dense clouds where the degree of ionization falls below
108 (Mestel 1983).

The magnetic field of external galaxies is known only in a few cases, mostly for
spirals (Beck 1986, Sofue et al. 1986). The field lines of B, seem aligned with the
spiral arms, although the same data may also be fitted with a field twisted out of
the galaxy plane. It is either a circular configuration or a bi-symmetrical one, and
more observations clearly need to be made. The magnetic fluctuations, AB/ B,
are of order one, and the intensity of Bn, measured from Faraday rotation and
assuming a density of 3 x 108, is found to be 2.2 £ 0.4 uG, with irregularities
of the field on scales of 50 pc.

2.6. Radio jets

Extremely well collimated radio jets have now been observed to find their mag-
netic structures (Konigl 1987). The central engine may be active galactic nuclei
(AGN). In several cases, the magnetic field is first aligned with the axis of the jet
and then switches to the perpendicular direction. This can be understood by as-
suming (i) flux conservation and (ii) constancy of velocity; if R is the radius of
the jet, these yield:

B R? = constant
and
B 2r RV dt = constant.

Hence. the scaling with radius of the magnetic field along the axis (and along the
line of sight, because they are superfuminal in many instances) and across it. is
different:

By/B.~R". )]
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When looking in detail at the magnetic structures within radio lobes, e.g. in Cygnus
A. using the resolution of VLA (Very Large Array), small eddies appear. and the
magnetic flow takes a turbulent appearance (Perley 1987).

2.7. A phenomenological analvsis of MHD turbulence

Dealing with turbulent flows, can one apply the classical Kolmogorov phe-
nomenology, or should it be modified for conducting fluids? One essential dif-
ference in MHD is the presence of Alfvén waves with a characteristic time
7o = (kBg)~" at wavenumber k. Such coherent motions, or a mixture of them
traveling along the large-scale field By in opposite directions, are slowing down
the transfer of energy to small scales (Iroshnikov 1963, Kraichnan 1965), since
such eddies interact only while they collide. Writing now that the transfer time,
Ty, is the eddy turn-over time, 7yi, modified by the fractional collision time, i.e.
™~L/Ta, Where

TAa < TNL,
one obtains for the transfer time:
i
Tie = T/ TAS (2.8)

thus, one can write for the rate of energy transfer, €, assumed independent of
wavenumber, as for the classical Kolmogorov range:

dE. E _ kE(k) _KE*k)

TR eem— N — X —— 2.9

dt T TriL/TA By (2.9)
Constancy of flux then implies

E(k) ~ (eBy)'/2 k=72, (2.10)

Following Kraichnan and Nagarajan (1967), one can envisage that, in the tran-
sistory period — provided a dynamo mechanism is at work — when b < v, and
assuming 71 >> v, the energy spectrum will contain several regions, as depicted in
fig. 1.

In region 1, as long as the eddy turn-over time is shorter than the local Alfvén
time, the Kolmogorov —3 range will prevail. When these two times become
equal, at wavenumber k) = ¢/ B;. for energy injected at a rate ¢ at wavenumber
Ly = 1. the — 2 range takes over, with equipartition between velocity and magnetic
field (region 2). The range ends when Joule dissipation prevails over transfer, at
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Fig. 1. Kinetic (solid line) and magnetic (dashed line) energy spectra for different regimes (see text).

wavenumber k; = (eBy' /n*)!/?, obtained by equating 7, and 7 (region 3). Note
that equipartition will stop when 74 > 7, i.e. in the range of wavenumbers

k > k} = B()/T].

In that latter range, equating advection, By - Vb, and diffusion, n Vb, indicates
that

EM(k)/EV (k) ~ k™2

Temporal spectra can also be assessed with the same type of phenomenology (and
I am thankful to A. Brandeburg for having asked this question). Following Von
Weissicker, one writes that

¢ ~wEWw)/w™ ' =w EW)
is independent of frequency, w, thus leading to:
E(w) ~ W™

When taking again into account the effect of Alfvén waves. what happens? We
can now write:

wEw)

€

Tir
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. ~ ki .
with as before 7, = 75, /7a. Using wn. = w. we have:

W E(w)

0

[Ew)w™ "2

3
€~ w E(w)Ta ~

Writing E(w) ~ w~3/3, constancy of flux requires m = %, and the temporal spec-
trum now reads:

E(w) ~ (eBp)* w7, (2.11)

not to be mixed up with the Kolmogorov law.

The inertial-range spectral indices can be further modified to take into account
the discrepancy between z* and z~ eddies when the flow is strongly correlated.
This point will be discussed further in the last section.

3. Large-scale behavior
3.1. The invariants of the MHD equations

In the absence of dissipative processes (v = 0, n = 0), the MHD equations con-
serve several global invariants: the total energy

E'=! / (@ + b1 dV, 3.0
1%
and the cross-correlation
EC_—_%/ v-bdV, 3.2)
v

which does not require the stating of an equation of state.
Alternatively, in Elsiisser variables, we have:

Et = / (=+)dV. (3.3)
.
Moreover. in three dimensions the magnetic helicity is conserved:

HM = / (a-bd'r. (3.4
v
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whereas. in two dimensions it is the vector potential which is conserved. and in
particular its variance:

E'= / a’d’r. (3.5)
%

These two invariants depend solely on the induction equation and are therefore
conserved also for viscous flows, as long as n = 0. This strongly restricts the non-
linear coupling between the velocity and the magnetic field. One useful identity
in obtaining these conservation laws is:

/v . curl(w)d"r = /w . curl(v)d"r‘ 3.6)

assuming the boundary terms to be zero. From the analogy between the vorticity
and the magnetic field, we can in fact deduce that the kinetic helicity invariant
HY = [(v - w)d’r carries on to MHD as either the correlation E¢ = (v - b)
or as magnetic helicity, with w ~ b and now v = curl ' w ~ a. Other types
of analogies between fluid mechanics and magnetohydrodynamics are utilized in
Shercliff (1979).

To these invariants one should add those valid in the dissipative case as well,
like mass:

MO = / pdV, (3.7)
1%

and those stemming from symmetry considerations, namely invariance under
translation (momentum) and under rotation, i.e. angular momenturi:

MX = / (I x 7 - pv)dV, (3.82)
Vv

MY = / (m x 7 - pv)dV, (3.8b)
v

M? = / nxr-pv)dV, (3.8¢)
\'s

where I, . and n are unit vectors in Cartesian geometry.
3.2. An MHD fluid as a mechanical system

Lacking a general theory, one can look at familiar physics to try to describe the
How. Here. we will draw from classical mechanics, and in section 3.6 statistical
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mechanics will be used. In classical mechanics, the state of most stable equilibrium
is one which minimizes the energy while being compatible with a set of given con-
straints. Following Woltjer (1958), we will, therefore, minimize the energy of an
MHD fluid; assuming it is being dissipated by viscous and/or resistive processes,
while constraining the flow, to conserve the other quadratic invariants. One must
be a little careful here: in a two-dimensional neutra} fluid, one should rather mini-
mize enstrophy while maintaining energy. This is linked to the concept of cascade,
as opposed to inverse cascade, and will be mentioned later. But in MHD energy
minimization will work fine, both in two and in three dimensions. Let us first work
out a simple example where the magnetic helicity is maintained constant over the
whole volume. Assuming b - nn = 0 and v - n = 0 on the boundary of the vessel,
we can write, using a Lagrange multiplier, o

SET+asHM =0.
leading to:
v-Sv+b- 6(curl a) — %aa - d(curla) — %ab +ba =0,

where 5 X implies independent and arbitrary variation of X; using, as a conse-
quence of eq. (3.6):

a-bb=b-bda

and working directly with the magnetic potential, which will preserve the div b = 0
condition, we readily obtain:

v =0,

H

and
j=curlb=ab. (3.92)

Thus, the minimization of energy constrained to the sole conservation of mag-
netic helicity, yields a force-free field, or fff, i.e. one for which the Lorentz force
is zero. Such fields appear time and again, and we will now give a few examples of
them. This particular minimization, a subset of the general case treated by Woltjer
(1958), has been studied at length in the context of fusion problems (Taylor 1974,
1986) because of its ability to predict current profiles in reversed field pinch exper-
iments: it can be further refined by reintroducing other invariants, or by looking
at a maximal entropy condition (see Hameiri and Hammer (1982) for a finite-
pressure compressible equilibrium). But this would take us far afield. When the
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conservation of magnetic helicity is imposed on the whole volume, the Lagrange
multiplier «v is constant: this minimization procedure can, however, be generalized
10 cases where HM is conserved on individual flux tubes, in which case v becomes
space-dependent,

j =curlb=a(r)b, (3.9b)

and the fff is no longer linear.

Equation (3.9b) is very hard to solve. However, in the linear case for eq. (3.9a),
there are several known solutions for the fff condition: e.g. b = 0, or j = 0 almost
everywhere except where b = 0 (current sheet), or. more general, a parallel field
and current. Let us restrict ourselves to the latter. Writing V - 3 = 0, we obtain:

(b V) =0, (3.10)

i.e. the magnetic field lines lie on surfaces of constant « (Or « is constant per flux

tube).
Note that a simple fff stays force-free; assuming a stationary flow (v = 0), and
taking o constant, we obtain, taking the curl of eq. (3.9

olb=—-V1b,

hence, the induction equation becomes:

b
= —na’h.
t

Therefore, b(t) = by e~"'t and J(t) = j(,e”"“z', and thus field and current
remain parallel.
As an example of an fff, take:

(bysinkz.bycos kz.0).
This field is constant in each z = z, plane, with its direction changing periodically
with . left-handedly for & > 0. This field has j = kb.and a = &~ 'b. It thus has
maximal magnetic helicity. i.e. the equality in

(a-b) < (@) (0)"

is fulfilled. This will generally be the case for fff since a relative minimal 3 x b
for non-zero fields implies maximal j - b, which is directly related, in Cartesian
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geometry. to the magnetic helicity. by a factor k=2, Another example of an fff
helical field is the ABC flow (Amold 1965), with components:

D : (Asinovz + Ccosoy. Bsinar + Acosvz, Csiney + B cos cur).
3.1h

This field is solenoidal (div D = 0), and is a Beltrami flow. Define £ and F
as: £ =curl D = —aD and D = curl F, F' = —D /. Thus, either the kinetic
helicity, if D is a velocity field, or the magnetic helicity, if D is a magnetic field, is
maximal. When ABC # 0, the field lines of ID are chaotic (Hénon 1966, Dombre
et al. 1986). This flow has been studied in connection with the kinematic dynamo
(Galloway and Frisch (1984, 1986), see also Roberts’ Lectures). In that context, it
is interesting to mention that a necessary condition for chaos in stationary solutions
(and stationarity is important) of Euler flows is that it is a Beltrami — maximal
helical - flow; indeed:

v-[V <g+lvz>+vwa =0 (3.12)

p 2
hence, the velocity lies on lines of constant total pressure, unless v x w = 0;
moreover, in this case, w = \v with X constant (otherwise the velocity would lie
on lines of constant \). The emergence of chaos and/or magnetic fields are related
problems.

Another example of a pressure-balanced field (but stricto sensu no longer fff)
is that of the f-pinch: take, in cylindrical coordinates (z.r,#), a field in the z-
direction: b = b(r)é.; its current, 7 = —(db/dr) & is only in the #-direction
(hence the name “#"-pinch). The Lorentz force then only amounts to a pressure
—(db*(r)/2pudr) &, in the radial direction, pinching the flow towards the axis.

The stability, or lack thereof, of force-free fields is briefly discussed in sec-
tion 4.3.

3.3. The general state of minimal energy

Returning to the minimization procedure in the general case of a barotropic flow
(p = f(p)), and taking now for the total energy:

ET = / (%p[*nz] + %; +pl + qp«b> dv, (3.13)
. \/,‘ o

where U is the internal energy per unit mass and where ® is a gravitational po-
tential (V&b = 47Gp), with ¢ = 1 (respectively %) for an external (respectively
self-gravitating) potential. we have in the three-dimensional case (Woltjer 1958):

SET + a8 HM + 38EC +yx MY + 4y 8AY 442 8M % +790M" = 0.



170 A. Pouquer

thus leading to:

curlb = ab + jw. (3.140)
v — L xr)=3b. (3.14b)
| d
[ ]-Lxr-v= W) = Y0, (3.14¢)
2 dp

where
L=yxl+ym+yzn (3.14d)

and where 3 and the 7's are again Lagrange multipliers. Note that when 3 # 0,
i.e. for non-zero cross correlations, and when the density goes to zero, b — 0
(this can be seen as a consequence of the conservation of b/p along the motion).
Also, taking the divergence of eq. (3.14a) yields b - Va +w - V3 = 0; assuming
incompressibility, eq. (3.14b) yields:

b.-V3=—r-.curlL.

The most studied subset of eqs. (3.14a—) above is one for which v; = 0, Vi; we
then have:

j=curlb=ab+ jw, (3.15a)

v = b, (3.15b)

For constant /3, we again have an fff when 3 # 1

o
j = ——b, 3.16
1= 7 (3.16)
but with non-zero velocity proportional to the magnetic field. The solutions men-
tioned by Tsinganos (1981) fall in this category, but in fact are more general, since
the third components of the fields are not necessarily proportional (B.C. Low, pri-

vate communication).
The solution for 3 = 41 is one with pure Alfvén waves:

v =+b. 3.7
with maximal correlation E; it also corresponds to o = 0: note that it does not

give information on what range of scales. or equivalently of wavenumbers. the
solution sets in, contrary to the case of eq. (3.16). This will be discussed further in
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section 7.5. Also note that, when ;3 = 0, we always obtain an fff, whatever the other
constraints that are imposed. When /3 # 0, however. and taking into account the
angular momentum invariants, which are bound to play arole, e.g.. in the collapse
of a molecular cloud. the solution is no longer force-free.

3.4. The two-dimensional case

The magnetic helicity invariant may now be replaced by the squared magnetic
potential, and only one invariant for the angular momentum remains, say in the
z-direction. The general equations for the equilibrium with minimal energy are
the same as in the three-dimensional case, except the one involving the magnetic
variable, which now reads:

j=aa+ fw; (3.18)

all three variables are scalar, along z, and eq. (3.18) is thus the equivalent of the
force-free condition in the two-dimensional case, for which clearly j and b cannot
be parallel. Taking again the incompressible limit. with p = py = constant, the
system now reduces to:

v—L xr=/b, (3.19)

together with eq. (3.18); here L = y &.. For zero angular momentum, v and b are
aligned.

v =/b (3.20)

and

j=—2 a=-V, 3.21)

for constant /3, a solution similar to the one in the three-dimensional case. In
Fourier space this determines the wavenumber for which the solution sets it.
Again, the fully correlated Alfvénic state for which 3 = £1. with j undetermined
(cva = 0), appears as a special case. In the general case, taking the curl of eq. (3.19)
yields, assuming 9. = 0

w—Q+7r-V)y=j.

For constant 5 and for ;3% # 1, we obtain:

L N (3.22)

s+ .
1 -3 | — 3
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a generalization of eq. (3.21) for 3 # 0. When J = £1. it is the velocity, cor-
rected by a contribution stemming from angular-momentum conservation, which
is aligned with the magnetic tield. with now aa = F27. For zero angular momen-
tumn. the competition between conservation of magnetic anastrophy, E*, and of
correlation, £, is examined further in section 7.6.

3.5. Oscillations in a radio jet

Observations indicate that the apparent width of a jet oscillates with increasing
distance from the AGN core. The degree of linear polarization oscillates as well
with angular distance from the core, with a wavelength Ay ~ 2.5R, where R
is the jet radius, whereas the ridge line of the jet shows an oscillation with A, =
SR. A possible explanation for such oscillations comes from the minimum-energy
principle just described. The argument is as follows (Kénigl and Choudhuri 1985,
Konigl 1987). Using the condition for a linear force-free field, ie. Vx B=uB
with y constant, associated with constant global magnetic helicity, HM, and with
B,.(R) = 0, the minimum-energy configuration in cylindrical coordinates is given
by a linear superposition of the . = 0 and m = 1 modes, involving the Bessel
functions of the first kind Jo(y) and J, (), where the argument is y = (2 —kHYr
and where m# + k= is the phase. The point made by Konigl and Choudhuri is that
the axisymmetric 7n = 0 mode is the lowest-energy configuration for:

uwhR < 3.11.

Above that value, the non-axisymmetric m = | mode is energetically favorable,
with R = 3.11 and kR = 1.23, corresponding to a wavelength A = SR, as
observed in NGC 6251: but see the discussion in the aforementioned papers for
other possibilities, taking more constraints into consideration to account for the
observations of 3C 219, or for the braided field configuration in emission knot A
of the M 87 jet.

3.6. Statistical mechanics of truncated systems

The minimization of energy while preserving other invariants, may receive further
support from statistical mechanics. In the simplest case, in the absence of dissipa-
tive processes, an assembly of coupled modes evolves, for long times, towards a
state of equipartition of the energy among the modes. U (k) = constant.

In three dimensions, the energy spectrum, summing over spherical shells. is
E(k) = dxk2U(k). thus leading to an ultraviolet catastrophe. the accumulation
of energy in the high-wavenumber region: this UV catastrophe in fact sometimes
happens in numerical simulations with insufficient dissipation through either vis-
cosity or artificial viscosity. As already noted by Onsager (1949), however. when
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the dynamics of a system which can be seen as an assembly of coupled oscilla-
tors. preserves more than one invariant, the resulting equilibrium may be ot a very
different nature; the distribution now depends on two effective temperatures. as-
sociated with the two invariants, and in some cases the resulting spectra will peak
at low wavenumber: this is the case for both the two-dimensional MHD prob-
lem (Montgomery et al. 1979, Kraichnan and Montgomery 1980) and the three-
dimensional one (Frisch et al. 1974): non-linear interactions tend to redistribute
the excitation among the available modes both to smaller and to larger wavenum-
bers. When dissipation is switched on, it is unlikely to affect the large scales very
much. at least within a few eddy turn-over times, so that indeed one can predict
the onset of inverse cascade towards large scales. This formalism can be rewritten
in terms of maximal entropy in plasmas, see Montgomery (1985).

3.7. Self-organization of flows

The system of dual cascades towards both small scales and large scales. with
the subsequent formation, by non-linear mode coupling. of both a small-scale
chaotic excitation, probably spatially intermittent, and large-scale coherent struc-
tures. long-lived (although also presenting some chaos, as will be discussed in
section 4.4), is a rather common occurrence in fluid and plasma physics (see the
review of Hasegawa (1985)). In isentropic 3D flows, the kinetic helicity is still an
invariant (Gaffet 1985), and it thus may lead to an inverse cascade again; instabil-
ity has in fact been demonstrated (Moiseev et al. 1982) in the linear case.

4. Topology of magnetic field lines
4.1. Knots are vital

Let us first divert our attention to biology, a field in which the theory of knots plays
an important role (Frank-Kamenetski and Vologodski 1981) in understanding the
properties of DNA — desoxyribonucleic acid. As is well known. it is structured as
a double helix, but, like any piece of string. it can be open-ended (OE) or closed
in a circular fashion (CC). Moreover, it can be knotted and/or twisted, and several
of such strings can be linked. The same can be said for magnetic field lines, and
the question now is: does it matter? It seems that it does. and I strongly encourage
you to read the afore-mentioned paper.

Although the topology of ribbons of DNA can change in time. evolving to a
configuration with lower energy through interactions with enzymes. it is of in-
terest at some time to identify and classify the different configurations of DNA
strands that are observed, and in particular to be able to decide which ones are
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equivalent. This problem — fundamental to knot theory — can be tackled, on the
one hand, observationally, by measuring the amount of “supercoiling™ in the DNA
(op. cit.), and, on the other hand, one can resort 10 the theory of knots and link-
ages (Crowell and Fox 1963). In particular, invariants can be attributed to knots
belonging to the same class of isotopy (obtained from one another by continuous
isotopic deformation), with the standard form of a knot being the one with the
minimal number of crossings when projected onto a plane (note that topology is
intrinsically three-dimensional: knottedness is the property of how a curve is em-
bedded in three-dimensional space). Having defined a sense of rotation along the
knot, by numbering the different segments between each crossing and by assign-
ing =+ 1 to each according to whether the crossing is a top one or a bottom one, one
can define an Alexander polynomial for each knot, hopefully different for differ-
ent knots. However, the polynomials for the trefoil knot and for its mirror-image,
depicted in fig. 2, are equal, although such knots are not equivalent. However,
new types of polynomials have been recently devised that do distinguish between
them (Jones 1986). Let us finally mention that most of what is known on knots is
for tamed knots; the wild ones, where there is loss of analyticity, e.g. because of
self-similarity (Trotter 1963), are less amenable to treatment.

Many properties of CC-DNA differ from the OE form, because of topological
restrictions. Moreover, the stress in the DNA ribbons induced by coiling, twisting,
and knotting weakens it: CC-DNA can be more easily modified by mutagens and
by carcinogens. Furthermore, a knotted ribbon, when duplicated by cutting along
it, gives rise to two linked ribbons (or sometimes one long one, as in the case of
the Moebius strip), which clearly defies the required properties for reproduction
and give rise to problems. Thus, knots are of vital importance.

4.2. Magnetic helicity and linkage of field lines

Take two flux tubes, @, and ¢; a simple way to distinguish between a configura-
tion where these tubes are free, from one where they are linked (see fig. 3), is to
compute the amount of magnetic flux piercing any surface S with oriented normal
N, sustained by the curve (' (or equivalently CH).

Let us now evaluate the magnetic helicity, H™ = (a - b), of the two configura-
tions depicted in fig. 3. In the unlinked case it is zero, since no flux passes through
S in the simple linked case, using Stokes’ theorem, one finds:

HM = —2¢, 3 (4.1)

the factor two comes from computing the flux through both surfaces Sy and 55,
and the sign is positive for the right-hand screw rule and negative otherwise.



Magnetohydrodynamic turbulence 175

/) 4D

(b}

(c) (d)

Fig. 2. The right-handed (a) and left-handed (b) trefoil knot (each other’s mirror image); its decompo-
sition by insertion of a flux tube (c) into linked flux tubes (d). one of which is twisted.

Cl CZ

(a) (b)

Fig. 3. Two flux tubes that are disjointed (a), leading to zero magnetic helicity. or linked (b).

The integral of eq. (4.1) is gauge-invariant, and can be computed for sim-
ply connected volumes: it is also a non-local quantity and depends — through the
potential - on the whole flow.

In the same way, the kinetic helicity. (v-w). measures the degree of knottedness
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of vortex lines and the cross correlation. (v« b. the mutual linkage of the velocity
and the magnetic ield (Moffatt 1969, Zeldovich et al. 1983).

In the case of the trefoil knot. the computation of its helicity is best done by
arranging it as two linked loops by an auxiliary flux tube of the same strength, ¢,
and in this case. the helicity is in fact —3¢°, because the large loop (see fig. 2¢)
has a twist in it (Berger and Field 1984). For some configurations, though, such as
the Borromean rings, in which no two rings are linked, but three are. the helicity
is zero and some other (third-order?) integral constraint should be devised.

Also note that zero total helicity does not mean that there is no linkage of field
lines, but that + linkages have canceled exactly.

In a continuous magnetic fluid, the field lines do not have such a simple struc-
ture as that depicted in fig. 3. We saw in previous sections that they can in fact
be chaotic: remember, Amnold showed that for inviscid stationary incompressible
fluids only Beltrami flows can be chaotic (see eq. (3.12)).

Examples of axisymmetric helical flows are given in Moffatt (1969); taking a
steady blob of vorticity confined to a sphere with i < a, and writing, in cylindrical
polar coordinates (z. 7. ¢),

_ 1 9 19y 5
v = (r —57— e w) . 4.2)

with ¢ = ¢(z.7: 1), for a steady flow:
w=C@)/r
and
1.2 _ 17y,
p/p+sv°=HW),
where 112 = v - v and where p is the pressure. A family of solutions is given by:
H = Hy+ M. C =+, 4.3)

where Hy. A, and o are constants. Note that eq. (4.2) is an extension of the Hill
(1894) vortex, for which w = 0 and which therefore is strictly non-hefical. In
spherical polar coordinates (R. 8. ¢) we have:

hl . hl A 3/2
p= R sin’ 0 {—; +A (%) jmmm} : (4.4

(-

where 4 is constant and 7 denotes a Bessel function. These solutions contain
as particular cases that of Chandrasekhar (1956) tor a Beltrami How and that of
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Fig. 4. A (3: 5) torus knot: one of many exact solutions to the MHD equations: this represents the field
lines, with v = +b.

Prendergast (1957) for an equilibrium star. The surfaces ¢! = constant consist of a
family of nested tori for R < a.

They close when their pitch, p;, is such that p; = 27rm/n where the line goes
m. times around the large side of the torus and n times around the small side. For
example, for the self-knotted structure in fig. 4 m = 3 and n = 5, and for the
trefoil knot m = 2 and n = 3. To see this, pack the lines either close to the central
hole, giving m, or close together around the donut, giving n (Neuwirth 1979).
The toric knots, which are all classified, will appear again as topological solitons
(section 4.5).

4.3. Magnetostatic equilibrium

4.3.1. The derivation

I will here follow a paper by Moffatt (1985) concerning the emergence of such
equilibria and their stability. The point is to consider again a structure as depicted
in fig. 3b and look at the dynamical consequences. In the presence of viscosity, the
total (kinetic plus magnetic) energy of the configuration will decay. but because of
the non-trivial topology of the magnetic field, which cannot change in the absence
of resistivity, the energy will reach a non-zero lower bound. This can be written
directly using Schwarz’s inequality:

M > (HMY /(a?). 4.5

The use of topological constraints to demonstrate the existence of non-zero en-
ergy solutions is found in gauge field theories since Polyakov (1974) and "t Hooft
(1974). Pictorially, one can imagine that, because of ux conservation, as the en-
ergy gets smaller, the flux tubes in fig. 3b grow bigger and at some time they touch
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and the energy can no longer decrease: by the way. in the process a current sheet is
likely to form: the minimum energy is attained when one of the flux tubes wraps
itself around the other one reaching an axisymmetric configuration, or vice-versa
(no unicity of the solution).

The end result of this process of relaxation is one with v = 0 and a magneto-
static equilibrium field Bg satisfying:

jE X BE = V[)E. (46)

Bg: may have tangential discontinuities, and is not necessarily unique. This equi-
librium is more general than that of a force-free field. either globally (j = aoB),
this being also called a linear fff, or locally (j = a(r) B). The constraint (4.6),
as the Beltrami one (3.12), leads to chaotic field lines when Vpe = 0in some
subdomain of the flow and Va(r) = 0. Note that here three-dimensionality is
essential; e.g., the ABC flow is not chaotic when ABC = 0. The implication for
MHD fluids is that it may consist of large blobs, labeled by i, of force-free fields,
j = a;b, a; = constant with ar; # «, between which there are localized cur-
rent sheets, where all the dissipation is concentrated (see fig. 11 in Moffatt (1985)
and adapt it to the MHD case). Now, here v = 0: but we know that, if initially
EC€ = (v - b) is non-zero, i.e. if there is a net overall linkage between velocity and
magnetic field lines, then this also is likely to be preserved (this point is discussed
in section 7: recall that E€ is an invariant). One possibility, not magnetostatic,
is to have either equipartition solutions v = b (but the fff condition needs not
necessarily be fulfilled then) or parallel solutions v = Ab, with A(r) dependent
on space. An example of such a solution is given in Tsinganos (1981), the mag-
netic analog of the spherical Hill vortex (Hill 1894). But then angular momentum
breaks the Beltramization of flows, according to the analysis of Woltjer (1958), as
shown in eq. (3.14a). So what is the end state? This question seems a good candi-
date for numerical investigation, but will require usage of many CPU and interac-
tive graphic resources. Similar questions concerning the Euler flow (are they large
blobs of helical flow separated by vorticity sheets? Are helicity and dissipation
anti-correlated? Does reconnection of vortex lines occur?) are being investigated
presently by several authors, and there is no general agreement, partly because
they are at the border of what can be done today with computers; and remember
that they are less computationally intensive than their MHD counterparts.

Finally note that, were this conjecture to be correct, the large-scale coherent
structures, long-lived because the non-linear terms cancel almost exactly and also
because the flow is at high kinetic and magnetic Reynolds number, are also the
site of chaos in the sense that their field lines are extremely complex. There are
a few examples in the literature showing magnetic field lines which indeed are
complex. On the other hand. the small scales are spatially intermittent. as well as
being presumably temporally chaotic.
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4.3.2. Stahility properties

The stability of the magnetostatic equilibrium (4.6) is analyzed by Moftatt (1986):
one uses an energy principle, which will not be detailed here. and can conclude
to the stability of the field for the MHD problem in some cases. As for force-free
fields. the situation is somewhat confusing. The ABC flow (see eq. (3.11)) seems
unstable, in the inviscid case for long-wavelength perturbations (Moffatt 1986) as
well as in the viscous case, this being shown mostly numerically (Galloway and
Frisch 1987). One of the first papers concerning the eventual instability of fff is
that of Voslamber and Callebaut (1962). There may be some fff configurations, on
the other hand, that are stable, both in Cartesian and in spherical geometry (Low
1988a. b).

The topological stability, now, of the magnetostatic equilibrium, i.e. that con-
cermned with whether an equilibrium configuration will preserve its topological
nature when perturbed, was examined in the context of Hamiltonian systems by
Tsinganos et al. (1984). They conclude that in the symmetrical case (one ignor-
able coordinate), such states are unstable, and that the velocity plays a role in the
equilibrium configuration: hence, magnetic fields are correlated to “activity™ of
astrophysical systems, as first pointed out by Parker (1979). But, as emphasized
by the authors, there is not as yet proof that MHD equilibrium must necessarily
be symmetric.

4.4. Where does the energy go?

In evolving towards a minimum-energy configuration, energy is indeed lost to the
surroundings; these phenomena have thus been implicated by several authors to
heat the corona (Heyvaerts and Priest 1984), or to power the radio jets (Konigl
1987), or in the fusion community, to heat the plasma, taking into account the
incomplete relaxation to a minimal-energy state (Turner and Christiansen 1981).
However, the rate of dissipation of magnetic helicity itself is too slow, in the con-
text of coronal loops, to be of any use (Berger 1984).

4.5. Topological solitons

Topological solitons, or t-solitons. are invoked. mainly in the Soviet literature
(Kamchatnov 1982, Moiseev et al. 1982, Sagdeev et al. 1986, and references
therein), by analogy with field theory. The ideas involved are not unrelated to what
has been discussed up to now, but the technical means to write an exact solution of
the incompressible MHD equations are different. In a classical soliton. described
e.g. by the Korteweg de Vries equation. non-linearities (which would lead to the
formation of a shock) are exactly balanced by dispersive terms, so that stable so-
lutions arise, with particularly spectacular properties (Zabusky [981), due in part
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1o the infinite number of invariants of the equations and to the related property of
integrability (Ablowitz et al. 1980, Weiss et al. 1983).

By analogy, a topological soliton is a localized structure that arises through
balance between the steepening effect of the non-linearities of the primitive MHD
(or other) equations and the topological constraints on the dynamic evolution of
the flow, stemming from the linkage of field lines on the one hand, and the frozen-
in flux-conserving property on the other hand. The latter reads:

oF

»67+v-VF=F-Vv. 4.7)
where F is some field, not necessarily the magnetic field. These frozen-in fields
are related to the Lagrangian invariants, /, defined, as usual, as:

9 DI
(aw-v)l-a-o, (4.8)

meaning that [ (e.g., the density in an incompressible fluid) is simply carried along
by the fluid. Frozen-in invariants can be constructed from a set of two (or more)
Lagrangian invariants.

The spatial localization of these t-solitons arises from the high degree of en-
tanglement of their field lines. Using techniques of differential geometry, and in
particular mapping R? into the sphere S* embedded in R* via stereographic pro-
jection, these authors arrive at a solution whose field lines lie on stratified tori and
wind around them with rotation frequencies w) and w,. The magnetic field reads:

_ —2ByR*

= T 2)3 [2(w Ry + waxz), —2(w Rz ~ (.ugyz),wz(l?2 — 77+ 2:2)],
R+

4.9)

where R is the characteristic size of the vortex solution and where rl =24yt 42l

Further, writing v = = B does provide a solution. When wy = m and w» = n, one

recovers the toric-knot solution, this time not magnetostatic but fully correlated.
The expression (Sagdeev et al. 1986) for the magnetic energy

(Wi +w3)

T B R? (4.100)

EM=
and that for the magnetic helicity

3
M Tl'uJ]w’jR‘ 2
HM = - By (4.10b)
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show that the solutions with the same “topological charge™ (or linkage), nim. have
different energies: in this sense, the solution wy = |, wr = mn is less favorable
than the one with w; = . w> = n. Assuming that all the energy is concentrated at
scale R, one can see that the magnetic helicity is maximal for wy ~ w».

The winding frequencies are not necessarily constant: e.g. (Sagdeev et al. 1986):

wy = f(L+7r7 =2/ + ).

with f an arbitrary function would represent a solution whose lines of force are
more complex than the simple toric knots.

The present author must confess to her inability to fully understand by which
means these solutions have been obtained. More important is to determine whether
this original approach does lead to new solutions or is yet another way to obtain
some toric-knot solutions, such as those already unraveled by Moffatt (1969) and
by Tsinganos (1981), except for the important, but in some sense trivial, extension
to the dynamic case through the Alfvén wave condition, v = &b. Do they relate
at all to the helical version of the Hill vortex, as described in Moffatt (1969)?

Furthermore, are such solutions stable? Topologically stable? And are they at-
tractive? What role does dissipation, viscous or resistive, play in their evolution
and stability? How to reconcile such concepts with traditional reconnection pro-
cesses? Work along these lines is presently in progress. Several numerical exper-
iments on 3D neutral fluids may also shed some light on such processes. They
show a strong tendency of vortex filaments to become anti-parallel (Siggia 1985),
including the trefoil knot (Kida and Takaoka 1987), which starts out with non-zero
helicity.

It does seem, at the present time, that the simple vortex knotted solutions, ax-
isymmetric or 3D, studied in the astrophysical context (Tsinganos 1981, 1982a,
b, ¢, and references therein), in the fusion context (Taylor 1986, and references
therein), or in a more theoretical context (Sagdeev et al. 1986, and references
therein), are plausible attainable solutions. In that light, it would be of interest
to look for actual observations of such structures in experimental flows in plasma
fusion. or in astrophysics; in the latter case. the Sun is the most likely candidate.
Indeed. braided loops in flares have been documented and are being studied in
this context (Berger 1987); also, direct measurements of the three components of
photospheric fields (Lites and Skumanich. private communication) indicate that
indeed three-dimensionality is important.

4.6. The emerging dvnamical picture

The opposing views of turbulence — either chaotic small scales. 1o be dealt with by
statistical techniques. or large-scale long-lived coherent structures, which can be



182 A. Pouquet

modeled in a simple way — may in fact be reconciled: in the presence of more than
one invariant. as noted in section 3.7, energy (in general) will cascade to small
scales. scales which will likely be temporally chaotic and spatially intermittent,
and the other invariant — the magnetic helicity, in three dimensions — will cas-
cade to large scales, plausibly forming those coherent structures that may, e.g.. be
observed in the Sun (braids on solar flares). The added feature here is that this de-
scription of turbulence is energetically feasible, seems stable in some MHD cases,
and corresponds to a fluid organized in large blobs in which the flow is Beltrami
andj/or force-free, with different large blobs having different constants of propor-
tionality between the fields and their curl; in between, current and/or vorticity
sheets form, which account for the intermittency of the small scales. This is the
basis of the conjecture described by Moffatt (1985).

Taking the pure-fluid case, numerical experiments have not been able yet to
disprove or support this picture, and this in fact represents a very active field of
research. In MHD, one should also look at the equivalent conjecture; powerful
graphics may well be essential, however.

4.7. Change of topology

Magnetic diffusivity has not played an essential part in the preceding analysis.

When non-zero, the current sheets, which are likely to form in establishing the
equilibrium configurations, will be unstable, e.g., to the tearing-mode (Furth et al.
1963). However, current numerical results indicate that, in the presence of either
a non-zero and turbulent velocity field, or non-zero viscosity, or both, the sheets,
at least in two-dimensions, are much more stable than expected, for reasons not
entirely understood. The three-dimensional reconnection problem, on the other
hand, is almost unknown and open to much research. Reconnection is too vast a
topic to be treated here. In section 6.7 the role of turbulence on reconnection will
be briefly discussed.

5. Transport coefficients
5.1. Inroduction

In view of the difficulty to deal either analytically or numerically with the full-
blown. non-linear problem, several schemes have been devised to write simple
models. using various techniques, e.g. that with short correlation time (Fitremann
and Frisch 1969, Hoyng 1987) or one of many variants of the Heisenberg turbulent
viscosity. These models are particularly useful in astrophysics, where there is no
hope to be able to integrate numerically the flow at the required Reynolds number.
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Therefore, an accurate description of the small-scale flow, that can be incorporated
in a broader description of the fluid. is needed. In this section, we will describe
mainly one such possible algorithm, providing the transport coefficients in the
MHD case through two-point closures.

5.2. The closure equations in MHD

Let us now write the three-dimensional MHD equations in the following compact
form:

ox,
at = ‘C()/Yu + Enbr:XbX(‘ B (5 l)

where £ is a linear operator that need not be detailed and where X' is the six-
dimensional vector X = (¥, f)); the subscript a is shorthand for three indices:
a = (. i, k), where o = (v.b), 7 = (1,2.3) and k is the wavevector, b;(k), and
b;(k) being the Fourier components of the velocity and magnetic field. We assume
that the non-linear operator L, is written in a symmetrical form with respect to
the last two summation indices:

Cahc = Eacb : 5.2)

when the magnetic field is identically zero, this operator reduces to:

v v v ;
ﬁ(i J l) =3 (k) 6k — p — q), (5.3)
k p q
with
Piji(k) = ki Py(k) + ki Pij(k), (5.4a)
and
kiks
Pij(k)=6;; — ;\_zj (5.4b)

being the projection operator ensuing incompressibility. In MHD, the operator
arising from the Lorentz force has the same form as eq. (5.3); in the induction
equation, after symmetrization of the equation in Fourier space. the corresponding
operator reads:

h b v ;
L ( il ) = ;(‘\,v,‘,(k)r"(k —-p-q). (5.5)
kK p q -
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where
(",j{(k):—/\',j(‘),[ - L‘](S,‘J. (56)

and where 4,; is the Kronecker symbol. The symmetrical MHD equations thus
read:

3 L\, : o o
(55 + l/k') bi(k) = —é (RO (p)Di(@) — bi(phi(@)), (5.7a)

a ) ~ i R ~ ~ N
(é—t + 7)‘\*) bitk) = %5ij1(k)[l’J(P)bz(Q) — b, (p)Yoi(@)], (5.7b)

where the temporal dependence of the fields is understood. From eqgs. (5.7a, b)
follows straightforwardly the definition of L ape. We now define the various co-
variances that are needed to describe MHD turbulence. Assuming homogeneity
and isotropy, we can decompose the one-time covariances into their symmetrical
and their helical part; they read:

20,(k)0} (R)) = Py(k)UY (k) — ek U (), (5.82)
2RI (R)) = Py ()T (R) — ek UC(R), (5.8b)
2 (k)b (k) = Py (k)UM (k) — ey ki UM (K, (5.8¢)

with k = [k] and where U indicates a pseudo-scalar. In three dimensions, the
energy spectra are:

EV(k)=2nk2UV (k) and  EM(k) = 27k*UM (k)

the correlation spectrum — a pseudo-scalar, like the helicities — is:
EC(k) = 27k Uk,

the kinetic and magnetic helicity spectra are:
HY () =20k 0V (k) and  HM(k) = 20k UM (R).

The relationships between the [/ spectra and the E' spectra in « dimensions can be
found in Fournier (1983). The realizability conditions yield:

LHY (k)] < KEY(k). (5.9a)
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Fig. 5. Basic diagrams showing the quadratic non-linearities of the MHD equations: the straight line
represents the i-th component of the velocity field at wavevector k and the wavy line the magnetic
ficld b, (k): the two vertices appear in the momentum equation (a) and the induction equation (b).

THM ()| < EM(k)/k, (5.9b)
[EC(k)| < [EY (k) EMU'/?%, (5.9¢)

when the equality is fulfilled at all wavenumbers for one spectrum (V, M, or C),
this is called a state of maximal (V or M) helicity or maximal correlation.

The two-point closures can be calculated from the following lemma (Frisch et
al. 1974):

Y ® ¥
J“%l = 0{L(Xg, X1) ® LX) XE)
+ LIL(XE, XD, X1 @ Xp + Xg ® LIX L(X, X)),

(5.10)

where # is a characteristic correlation time, ® indicates a tensor product, within
which correlated variables are denoted here by the same subscript (either E or
I). The algebra to get from eq. (5.10) to the closure equations found in the liter-
ature, is lengthy. However, the structure of these equations can be conveniently
and easily written a priori when using a graphical representation, which is now
given. Although it is directly inspired by the diagrammatic techniques arising in
the renormalization-group (RG) approach, it is here meant only as a way to in-
tuitively represent the various second-order interactions that take part in the time
evolution of the covariances (X' ® X). Let us then represent v;(k) by a straight
line labeled by i and k., and b;(k) by a solenoidal line, labeled in the same way;
the graphical representations of the vertices appearing in eqs. (5.3) and (5.5) are
given in fig. 5.

The diagrams are consistent with egs. (5.7a. b). Now, in the equations for the
covariances, it is clear from inspection of eq. (5.10) that there are two basic struc-
tures: the first term on the right-hand side of eq. (5.10) has a symmetrical form,
shown in fig. 6b. whereas the second form is asymmetrical. and is shown in fig. 6a:
fields pertaining to the same covariance are now linked by vertical bars; the third
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Fig. 6. Diagrams for the master equation (5.4) for the velocity covariance, UV (see text). (a) Absorption
term. (b) emission term. Here, homogeneity is taken into account.

term is equivalent to the second one, with the long line on top of the diagram

instead of at the bottom.
In these two figures, the diagrams are labeled for the equation for the covariance
UY,(k), so that we obtain:

AUV (k) i i .
—-—g—z——— =3 1K) '2‘bjmn(p) Ur\r,li’(k) U?ﬁ(q)
+2 Pt (k) 5 Prmn(—R) UN () Ulm(a@) + -+ 5.11)

The first term on the right-hand side involves the velocity covariance at wavevec-
tor k, and it can be interpreted as an eddy viscosity: looking at the diagram in
fig. 6a, it means that the interaction of a velocity mode at wavevector k and a mag-
netic mode through Ohm’s law produces a magnetic mode which interacts with
another magnetic mode through the Lorentz force, and this double interaction (re-
member, the expansion here is second-order in the non-linear vertices) modifies
the velocity mode at k. On the other hand, the second term in eq. (5.11) repre-
sents the combined effect of magnetic modes at wavevectors £p and +q through
Lorentz forces on the velocity mode at k.

At this stage, a branching point appears in the procedure, according to how much
or how little structure is put in the covariances. In the simplest case, the isotropic,
homogeneous, fully symmetric one, each covariance gives rise to only one spec-
trum, the energy spectrum. If now the non-mirrorsymmetric part of the correlation
tensor is included, to take into account the helicity, as defined ineq. (5.8), eq. (5.1
becomes two equations (real and imaginary part) and each product of covariances
gives rise to four terms. This is where the bulk of the work lies. and it might better
be done with the help of a program performing the algebra. Note that in comput-
ing the helical diagrams which involve products of the anti-symmetric tensor, the
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Fig. 7. Graphical representation of the second-order evolution equation for the velocity covariance
Uy, k).

following identity is of use:

€abe €ij1 = Oni Obj Oct + Oaj b1 6ci + Bat Obi bcj
— Bai Ob1 0cj — Oaj Obi Oct — bat Obj Oci-

Of importance here is to remember that in fact only one vertex appears in
eqs. (1.33a, b), the vertex in the second equation being deduced from the first one
by interchanging + and —, so that the algebra can be reduced by a factor two. This
algebra consists in computing geometrical coupling coefficients depending on the
three wavevectors k, p, and g, but the structure of the equations can be directly
obtained by simple inspection of the diagrammatic representation of the master
equations for the various covariances, given in fig. 7 for the velocity covariance
and in fig. 8 for the magnetic covariance.

Some of the diagrams shown in either fig. 7 or in fig. 8 are equal, and can be
accounted for by multiplicity factors. To further reduce the number of coefficients
appearing in the closure equations. for analytical simplicity. and for numerical
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Fig. 8. Same as fig. 7 for the magnetic covariance UzMi’ (k).

convenience because of storage, and also to check the algebra in doing so, one
makes use of the conservation laws eqs. (3.1) to (3.5), written in a detailed way:
a useful remark is that each class of non-linear terms VV, VM, MM, VV, ...,
following the notation in table 1 of Pouquet et al. (1976), conserves separately
the invariants. For example, the conservation of total energy when v = 0,7 = 0,
written in Fourier space with integrating over all three wavenumbers k,p.and q,
implies, among other things, that there is a relationship between the geometrical
coefficient stemming from diagram 4 in fig. 7 and those stemming from diagrams 6

and 10 in fig. 8, these two being equal. Omitting a lot of algebra. it reads:

A alk p.)=p jp ko) + q° jlq. k.p).

with

athk.p.qy = %(l —ryz - 2y )

and
»

Jhopogy = A (1 =)
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p
k = p+q
X = cosQ
y = cos @ q
7= cosy
4
k

(a) (b)

Fig. 9. Non-linear interactions between a triad of modes with (a) comparable scales (local interactions)
and (b) widely different scales (non-local interactions).

here, k, p, and q are the sides of the triangle formed by the triad interaction of the
wavevectors k, p, and ¢q, and z, y, and z are the cosines of the angles they form,
as shown in fig. 9a.

The 3D, non-helical, non-correlated closure equations for MHD were first given
by Kraichnan and Nagarajan (1967). For homogeneous and isotropic turbulence,
the EDQNM equations for MHD in variable dimension for zero correlation and
zero helicity can be found in Pouquet (1984), those for zero correlation but 3D
helical flows can be found in Pouquet et al. (1976), those for correlated, non-helical
flows in Grappin et al. (1983), and those for helical, correlated flows in Grappin
(1986). There also exist in the literature different sets of closure equations, using
e.g. the DIA (Lerche 1971, Vainshtein and Zeldovich 1978, Vainshtein 1982, Veltri
et al. 1982; with no claim of completeness). In recent papers Yoshizawa (1985,
1987) tackles the MHD closure problem in the presence of shear and uses such a
description in a large-eddy simulation (LES) for MHD.

The choice of the characteristic correlation time, 6(k,p.q), appearing in
eq. (5.10), is somewhat arbitrary, contrary to the DIA case. In MHD, besides the
dissipative times (vk>)~! and (nk?)~! and the eddy turn-over time, 7y, one can
also introduce the Alfvén rate, (kby)!/?, with by the rms large-scale fluctuating
magnetic field; we have seen in section 2 that this is an essential ingredient of the
phenomenology of turbulence slowed down by a mixture of Alfvén waves. Thus,
one writes:

— expl—tu(k. p. q)]( (5.120)

1
Ah.p.q) =
P wlkopoq)

with
gk pogy = (k) + p(p) + (14q) (5.12b)
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and
i 1/2
k) =+ mk= + Cx / qzlEV(q) + EM(p)) dg ’

JO
& 1/2
EM(@dq| (5.12¢)
JO

+k

where the constant C is adjusted so as to give the proper Kolmogorov constant.

The kinematic case (velocity field given) is obtained when: (i) one ignores the
equations for the velocity covariance and (ii) one discards in the two remaining
equations for the magnetic energy and helicity the terms quadratic in the magnetic
covariance.

5.3. Turbulent transport coefficients as non-local expansion of closures

Closure equations are a set of coupled, non-linear integro-differential equations
for the various spectra. They are intricate enough that they are best studied using a
computer. However, these equations can be greatly simplified in the case of non-
local interactions, i.e. interactions at widely different scales, as depicted in fig. 9b:
in that case, a small expansion parameter — here k/p — can be used to obtain a sim-
plified set of equations. For small k, as in fig. 9b, one looks at the integrated effect
of small scales (large wavenumbers p and ¢) on large scales O(k™'); one such ef-
fect is that of eddy-viscosity. In other words, some of the non-local contributions
from the closure equations can be written as:

0L (ko,t) . .
M—_&Q—* = — Vg E* (ko 1),
where v, is the turbulent eddy viscosity (¢ = V) or eddy diffusivity (¢ = M),

obtained by averaging over small scales.

In this way, expanding the many terms of the closure equations, one derives a
wealth of transport coefficients (Pouquet et al. 1976). Such coefficients can be used
as a means of parameterizing the small scales of the flow not treated explicitly in
a numerical simulation, as has been done (Chollet and Lesieur 1981) for the pure-
fluid case and by Yoshizawa (1987) for an MHD fluid in the presence of shear.
However, some care must be taken because these transport coefficients can some-
times be destabilizing, e.g. through a negative viscosity (see section 6.6), leading
to an inverse cascade. or the destabilization can be first-order in the wavenumbers,
as we will see below.

Transport coefficients can be given a more sound basis in the framework of
the renormalization-group (RG) technique (Ma and Mazenko 1975. Forster et al.
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1976, De Dominicis and Martin 1979, Fournier and Frisch 1978). For a conducting
fluid. the direct-interaction approximation and the RG truncated to second order,
do not agree anymore (Sulem et al. 1979), since the Ohm’s law vertex, unlike the
advection term, is renormalized. no Galilean invariance (operating on the magnetic
field) preventing this from happening (in other words, a large-scale magnetic field
has a non-trivial effect on the dynamics of the flow: Alfvén waves). One advantage
is that the coefficient in front of the power law obeyed by the energy spectrum,
can be computed, if one is ready to assume what that power law is (as, e.g., for the
Kolmogorov range). If this constant were to be different in the Kolmogorov case
and in the MHD case, that might provide a further test of what spectra actually
arise, e.g. in the solar wind.

Note, however, that when small scales have a destabilizing effect on large scales,
the RG procedure is self-defeating, and one must resort to other techniques.

5.4. Destabilization effect of small-scale magnetic helicity

5.4.1. A phenomenological argument

Take initially a small-scale turbulent magnetic field b with non-zero magnetic he-
licity and with (b) = 0, a strong, quasi-uniform. large-scale, time-independent
magnetic field B, and no velocity. The Lorentz force is the only relevant term in
the momentum equation for small times:

% pB.vb,
ot

so that
t
v(it)~ B - V/ b(r)dr.
0

Ohm’s law for infinite conductivity then gives us the induced electrical field.
E(#), which becomes, when averaged over the small-scale turbulence (an oper-
ation which we indicate by S§S):

t
<E>55 = / (b(f) x B Vb(1))ss dr.
0

which. assuming isotropy, reduces to
<E>5§; ~ %T(b (V x b)gq B.

where 7 is a typical coherence time of the small-scale magnetic turbulence. Using
now this expression for the mean electrical field in the induction equation for the
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large-scale magnetic field. and performing an average over the large scales, we
obtain:

B
3%;2 = —ah V x (B). (5.13a)
where
M _ I .
gy = 37(b - J)ss (5.13b)

is the phenomenological destabilization coefficient involving the small-scale av-
eraged magnetic helicity. In deriving eqgs. (5.13a, b), we followed the interaction
of a large-scale (k) and a small-scale (p) magnetic field through the Lorentz force,
giving rise to a small-scale velocity (p) which in turn interacted with a small-scale
magnetic field (g) through Ohm’s law to finally modify the large-scale (k) mag-
netic field.

5.4.2. Closure results

This information in fact is contained in the two diagrams 6 and 10 in fig. 8. When
computing these diagrams for small wavenumbers, ko, to first order in the non-
local expansion, one obtains the closure-based relation

AEM(ko. 1) _

5 —a kg HM(ko, 1), (5.14a)
dHM(ko, t)
—-—&-‘Lm = —al EM(ko, 1), (5.14b)
with
o = -3 / 0(k,q,9) a" H" (g, t)dq (5.14c)

being the “magnetic torsality” and a being the low cutoff wavenumber, typically
four times ky. This expression for aM is very similar to the one obtained from
the phenomenological argument detailed above, as it should be, except that it
acts on both the symmetrical (energetic) and anti-symmetrical (helical) part of
the magnetic-field correlation. A similar expression can be found for the “kinetic
torsality”, ¥, both through phenomenology and through a non-local expansion
of the relevant diagrams: in the latter case. it reads:

(\'X“ = —% / ()(/\L([.(])Hv(q.t)dq.
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Now, taking all diagrams into account and doing some algebra, one finds (Pou-
quet et al. 1976) that the non-local terms acting on large scales are, to lowest order:

aEY(’\T()‘ t) =0 OHY (k. 1) _
o a

and equations for the large-scale magnetic energy and helicity similar to egs. (5.14
a—c) with o™ replaced by R, the residual torsality, defined as,

0. (5.15)

R _ .V M
O, = Qg — Qg (5.16)

In other words, it is the residual helicity of the small scales that destabilizes
the large magnetic scales. When initially the small-scale magnetic field is weak,
a®R ~ oV and one recovers the “alpha effect” due to kinetic helicity (Steenbeck et
al. 1966). In the non-linear case, taking into account the reaction of the Lorentz
force on the velocity field, it is the combination of kinetic and magnetic helicity
that is the agent of large-scale magnetic instability. Note that the growth rate is
proportional to |a® [kg and thus this instability can be called ““first order” in £, as
opposed to a negative viscosity which would lead to a second order in k instability.
Another remark is that the growth rate, in the limit of large kinetic and magnetic
Reynolds number, becomes independent of viscosity and magnetic diffusivity.

5.5. The inverse cascade of magnetic helicity

5.5.1. Characteristic times
Now assume that the small-scale kinetic and magnetic turbulence is continuously
fed at some wavenumber through an unspecificied mechanism. Does a steady state
occur, and if so, which one?

Let us here follow the analysis of Norman and Heyvaerts (1983) to evaluate the
characteristic dynamical time of evolution of magnetic energy, 7g, compared to
that of magnetic helicity, 7. To do so, write the evolution equations of the average
magnetic energy:

(b)) _
ot ‘77<12>~

and *he average magnetic helicity:

d{a-b)
ot

Assume now that the magnetic energy obeys a power law:

=-n(b-j).

EM(I\) ~ k——m;



194 ) A. Pouguet

one then obtains:

[k dk 517)
Tp = = .
E 7}j 2=medh
and
j'k—l—m dk
= e 5.18
TH ,)J ki=modk ( )

where the integrals are taken from the energy-containing wavenumber, kg, to the
dissipation wavenumber, kp. For I < m < 2, one obtains:

™, ko (5.19)
TE kg
and for 2 < m < 3, this relationship becomes 7y /Tg ~ (kp/kg)*~™.

In both cases the characteristic time of evolution of magnetic helicity is consid-
erably larger than that of energy, with a ratio whose order of magnitude is com-
parable to the Reynolds number. This tells us that the magnetic helicity can be
considered quasi-static on the time-scale of the evolving magnetic energy, and
this justifies in a phenomenological way the minimal-energy assumption made by
Woltjer (1958) and followers.

5.5.2. Numerical evidence for large-scale self-organization of MHD flows

The reason may be simply dimensional: magnetic helicity, unlike kinetic helicity,
stresses the large scales of the flow since it contains the magnetic potential. This is
the basis of the preceding argument. More important is the fact that large magnetic
scales are evolving through their interaction with the small-scale kinetic and mag-
netic helicity, egs. (5.13a, b) and (5.14a—). This gives rise to an inverse cascade
of magnetic helicity, as shown in fig. 10. Itis obtained using the EDQNM closure
presented before.

The different curves are labeled with the time, measured in units of the eddy
urnover time at kg = 1, at which energy is being injected together with helicity
in a narrow band of wavenumbers. The spectrum achieves a steady state at scales
smaller than kg ! and also at scales progressively larger than it, as time proceeds,
stationarity being achieved in a time that scales roughly as k™~ L

We can conclude that a steady state is obtained on the small scales, and a quasi-
steady state on the large scales, with ever-larger scales being excited as time pro-
ceeds. Experimental evidence of this phenomenon from direct numerical simula-
tions is shown in fig. 11 for periodic boundary conditions (Pouguet and Patterson
1978, Meneguzzi et al. 1981).
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Fig. 10. Inverse cascade to large scales of the magnetic helicity: the curves are labeled with the time,
in units of the eddy turn-over time at kg = 1: closure calculation (Pouquet et al. 1976).

Whereas the kinetic energy on the large scales always decreases with time (solid
line), the magnetic energy grows (dotted line) in the helical case (b), whereas it
does not when helicity is forced to be zero, as in case (a). Injecting now energy
at kg =5, an inverse cascade is indeed obtained (fig. 12) as well in direct, 3D
numerical simulations of homogeneous flows.

Recall here that the measured typical scale of magnetic helicity in the solar wind
is one order of magnitude larger than that for the energy (egs. (2.3a, b)). Recent
numerical simulations with more realistic boundary conditions in the RFP regime,
indicate the same type of behavior.

5.6. Two-scale analysis of non-linear MHD

Closures provide an ideal framework to work at high Reynolds number, but con-
tain the original defect of being some approximation to what is actually going
on. Another type of approximation to the MHD flow is to perform two-scale or
multiple-scale analysis. The drawback here is the assumption that the small-scale
flow, over which one averages, is a laminar, low Reynolds number flow (unless one
uses the short correlation time approximation). Many work has been performed
along this line. either for the kinematic case or for the fully non-linear one.

In this way. the destabilizations of large magnetic excitation by the small-scale
relative helicity can again be recovered (Chen and Montgomery 1987). Using
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Fig. 1. Kinetic (solid line) and magnetic (dashed line) energy as a function of time in a 3D numerical
decay run; (a) initially no helicity, (b) initially maximal magnetic helicity (Pouquet and Patterson 1978).

such techniques one can also obtain non-helical dynamos, by simply expanding
to the next non-zero order (Gilbert et al. 1987). Note that a similar instability of
large scales in the pure hydrodynamical case is precluded by reasons of symme-
try (Krause and Riidiger 1974), and in fact happens at the next order: it is a bi-
Laplacian type of instability (Pouquet et al. 1978). However, several recent works
show that breaking the symmetry through compressibility effects (Moiseev et al.
1983) or through anisotropy of the small scales (Frisch et al. 1987) yields again in-
stability. Similarly, the quadrupole far-field emission of sound, found by Lighthill
(1954), becomes dipolar when inhomogeneities are introduced (Kumar 1987).

5.7. The non-linear dvnamo

The dynamo problem is dealt with in the lectures of Roberts (this volume); for an
extensive account of mean-field theory see, e.g., Krause and Ridler (1980). Let me
just mention briefly here the picture that emerges from closure phenomenology,
about the way a non-linear dynamo works in a simple homogeneous flow: it is the
residual small-scale helicity which is the true motor of the large-scale instability
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Fig. 12. Magnetic-energy spectrum for various times in units of the eddy turn-over time at kg = 5; the
dashed line is the steady-state kinetic-energy spectrum during the interval of time. Note the piling-up
of magnetic excitation at the minimum wavenumber, due to an inverse cascade of magnetic helicity
(Meneguzzi et al. 1981).

in the non-linear case; the saturation mechanism is provided by Alfvén waves: in
the presence of a large scale rms magnetic field By, both the small-scale kinetic
and magnetic energies and helicities become equal at scale ! in a time [/ By, so
that
s o} v 5
of,~ [ o @ - H @1y (520)
a(ko)

vanishes for some wavenumber ko; however, the inverse cascade may still proceed

for wavenumbers smaller than kg, as long as the Alfvén effect has not had time to
act. It will eventually have to stop, because of the finite size of the system.

6. Low-dimensional MHD

The approach described above is that of a numerical wind tunnel: the com-
puted flows are, to within the accuracy of the spatial and temporal discretization
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schemes, those in an experiment with a given set of parameters. It is worth noting
that three-dimensional computations of MHD flows at a magnetic Reynolds num-
ber of 10° or of compressible flows at fluctuating Mach numbers of four have not
been done in the laboratory, and may not be feasible with present-day techniques.
Hence, numerical experimentation is a unique tool for MHD and/or compressible
flows.

However, the solar, stellar, galactic, and extra-galactic physicist may be un-
happy. To reasonably describe realistic conditions within a star, one must resort
to drastic choices: lower the dimension (e.g. by assuming spherical symmetry),
simplify the physics (by studying one problem at a time: convection, rotation,
...}, and model the small-scale flow which will not be treated explicitly by the
method, by an appropriate sub-grid scale parameterization. This is no longer an
experiment, using computers, on fluid flows, but modeling of realistic flows, an
approach widely used in the aeronautical industry for example. Let us then look
at models of MHD.

6.1. The scalar model

The simplest models of turbulence are zero-dimensional, i.e. one deals with a sys-
tem of non-linearly coupled ordinary differential equations. Such systems have
been studied at length, if only for their chaotic behavior. In MHD, several low-
dimensional models have been proposed, in particular in the context of the dynamo
problem, in order to explain the chaotic reversal of the magnetic axis of the Earth’s
dipole, or the irregular disappearance of sunspots and of the magnetic cycle alto-
gether (Maunder minimum). The chaotic evolution of the mean magnetic field can
be described by the Lorenz system, or by extended versions of it to complex vari-
ables or to more modes (see, e.g., Zeldovich et al. (1983) or Jones et al. (1985)).
However, such drastically truncated versions of fluid flows can but only capture
some features of turbulent flows, namely the temporal chaotic behavior. On the
other hand, the spatial distribution of modes is absent. To introduce it, one can
proceed from a different point of view, with models in which the number of modes
is a parameter that can be changed easily. For example, Obukhov (1971) and De-
nianski and Novikov (1974) have proposed to truncate for a non-conducting fluid
the non-linear interactions to a small range of wavenumbers. We will now follow-
up on this idea and extend such models to the coupling to a magnetic field. The
derivation and detailed description can be found in Gloaguen (1983) and Gloaguen
et al. (1985).

We now construct a model of MHD turbulence from first principles: first define
an average wavenumber, k. as sole representative of the n-shell. as:

3

7 < |k} < I\f,,\/l—l.
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with k41 /k, = h. For the sake of simplicity, assume that h = 2, although this is
not essential. The one-dimensional system of partial differential equations that is
obtained by letting h — 0 is found in Gloaguen et al. (1985) and is reminiscent
of Burgers® equation. In each shell represented by wavenumber k,, = 2"~ two
fields, U,, for the velocity and b,, for the Alfvén speed, are defined. The dynamical
evolution of (U,,, b,) = X, is obtained by assuming that:

(i) the non-linear interactions are quadratic in the fields,

(ii) the characteristic time of the non-linear interactions must scale as
(knUn)~"\

(iii) the non-linear interactions are restricted to nearest neighbors, i.e. only
terms X, X with (i. j = n.n =+ 1),and X, X4, appearin X,,, where the dot on
top means, as usual, the time differential,

(iv) furthermore, in z¥ = U, + b, variables, only (z*27) interactions are
included, following the structure of the primitive egs. (1.33a, b),

(v) when summed over all shells, the energy ET = 0.5((U2) + (b})) and the
correlation E€ = 0.5(I,,b,,) must be conserved by the non-linear interactions.

Taking for the dissipative terms their usual form, the model reads:

<(% + ukf,) Un = 0knUl_y = knitUnUnat)

+ a(“knbi_q + k7n+|brzbn+l) + ,H(ann~lUn - anUiH
- knbnbn—l +kn+lb$’1+[)+cn (613)

and

d
(a‘; +77ki) by = aan(Ungn = Upbnar) +,6kn(Unbn-t — Upn-1bp),
(6.1b)

where C,, = C' 6, is a forcing term so that the system may reach a steady state.
The variables X, are not constrained to be positive, they are viewed as mean
fluctuating fields in shell n. Let us discuss the first term appearing in eq. (6.1a),
assuming & > 0. The mode U, evolves due to positive input of energy from
mode n — 1 through the term U:;“‘. i.e. from the large scale. and is likely to loose
energy to the mode U,,. Note that this last term, linear in [/, can be interpreted
as an eddy-viscosity, or an absorption term, whereas the former is a (positive)
emission term. It is easily checked that these two interactions conserve the kinetic
energy Z;?:l U/, Equations (6.1a, b) depend on five parameters: the kinetic and
magnetic Reynolds numbers, defined here as Up/vko and Uy /1jhkq, the ratio o/,
which appears in deriving the model, the forcing parameter (", and the number of
shells, N.
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Besides the conservation of ET and EC, when C' = 0.1 = 0, 1) = 0, the system
(6.1a. b) obeys the Liouville theorem: in the dissipative case, a volume in phase
space shrinks as:

0 dU, , 9 db,
- 2
U, dt | ab, dt (’””)Z" 6.2

n

Furthermore, U,, ~ k;w and, similarly, b, ~ k,f'” are solutions of the equa-
tions (which is not too surprising since the eddy turn-over time scale was imposed),
but this solution is not necessarily attractive, as numerical computations show.
Taking N = 3, one has a six-mode dynamical system whose bifurcations from
fixed point to limit cycle to chaos back to limit cycle back to chaos through pe-
riod doubling, are not too surprising; a detailed description of the fixed points
and of their stability can be found in Gloaguen (1983). At low Reynolds number,
the steady state is non-magnetic (b, = 0 for all n), and the transition to a mag-
netic steady state (U, # 0, b, ¥ 0) occurs at the same value of the parameter
(here v, with C, a/3, and n kept constant) as the transition to chaos, to within a
few percent. Thus, this system exhibits a transition to magnetic behavior above a
critical magnetic Reynolds number of the order of 40. As the number of modes
is increased, the temporal evolution becomes intermittent at high wavenumber,
with long periods of calm where the variable is close to zero, and high narrow
bursts, of excursion of order one, probably accompanying the transfer of energy
to that mode. This temporal intermittency increases with the wavenumber; the
corresponding energy spectra are close to a -% range, but the flatness factor:

74
FV= (U2) (6.3)
(U2

(Y

(with a similar definition for 7M), when averaged over time in the span [0: 1, 600]
in units of the large-scale (k; = 1) eddy turn-over time, increases significantly
with wavenumber, from 2.0 to 8.0 (for a Gaussian it should be 3.0), whereas the
mean fields (U,,) /\/(U2) and (b,) /\/(b3) tend to zero with increasing n: they
are, respectively, 0.6 and 0.008 for the velocity and 1.0 and 0.002 for the magnetic
field (values given for k,, = | and k,, = 27, respectively). Thus this model, which
displays temporal chaotic behavior, also captures some of the spatial properties
of a turbulent fluid, with scaling-law inertial ranges and intermittency effects (see
also Kerr and Siggia (1978) for a non-magnetic model). It should be noted that with
an exponential discretization. k,, ~ 2", a system of nine modes allows to simulate
a Reynolds number of (2%/2)*/% ~ 2 x 10*: on the other hand. to follow correctly
the temporal intermittency of the small scales. the temporal scheme chosen here
is explicit and thus the system (6.1a, b) is stiff and costly to integrate.
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6.2. Dimensionality of the flow

The scalar system (6.1a, b) is a model of MHD turbulence in which it is simple
to vary the Reynolds number, R. It is then possible to look at the dimension of
the underlying attractor and see how it varies with Reynolds number (Grappin et
al. 1986): does it saturate, thereby indicating that only a small number of modes
would be sufficient to describe the simple flow, or does it continue growing with
R? There are several ways to define a dimension; the simplest one is the point-wise
dimension: take a representative point on the attractor, ig, and count the number
of points N, that are within a distance ~ [ of it; look how this number varies
with ~ I: for a surface N, ~ [2, for a sphere N, ~ I°, and for an object with
dimension d, embedded into the 2/N-dimensional phase space of the dynamical
system, N, ~ [%. More precisely, one looks at the correlation function:

| & '
Coth = Z, H( ~ diy)), (6.4)

where d;,; = | X, — X;] is the Euclidean distance between the io-th and j-th point
in phase space and where H is the Heaviside function. If Co(l) ~ 1% then dy will
be the point-wise dimension of the attractor. A more general correlation function
(Grassberger and Procaccia 1983, Mandelbrot 1974), which averages over the
whole attractor, is:

N
! d
CW ~ 557 D H = dij) ~ 1, (6.5)

ij=1

where d is now the correlation dimension; its computation requires O(N?) opera-
tions, as opposed to O(N) for Cy(l), but it converges more rapidly. It also requires
the storage of an array with size N2, containing the distances between points in
phase space sampled every AT, with dt < AT < i, where di is the time-step
of the computation and 7ny, the eddy turn-over time, as usual.

In fig. 13 is shown the dimension using eq. (6.5) for two computations at the
same Reynolds number and all other parameters equal except that in run A, indi-
cated by crosses, 2 x 3 modes are used whereas in run B, indicated by circles, 2 x 4
modes are used: for run A, the Kolmogorov dissipation wavenumber is close to
the maximum wavenumber of the computation, whereas for run B, it is an octave
below. The agreement between the two curves indicates that the dimension com-
puted with such algorithms can indeed be linked to the Reynolds number of the
flow. and not to the actual number of modes used in the computation. provided it
is large enough to resolve the dissipation range as well as the inertial range.
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Fig. 13. Correlation index as a function of distance for the scalar mode! with all parameters equal except
the number of modes. Crosses: 6 modes: circles: 8 modes. The two curves are indistinguishable; when
20 x 103 points are used, the correlation dimension is 3.31, whereas it is 3.26 with halt as many points.

Finally, the dimension of the attractor can be computed using a conjecture of
Kaplan and Yorke (1979), by evaluating the spectrum of Liapunov exponents,
A;, which looks at how a j-dimensional parallelepiped expands (or eventually
shrinks) under the dynamics of the system of ordinairy differential equations. It is
a generalization of the concept of eigenvalues to a non-linear system.

The first Liapunov exponent indicates the divergence (if positive) of nearby
trajectories, and thus is a measure of chaos; up to NV, the N, -dimensional volume
still expands:

N.
Z )\j > 0,
=1

and beyond N, it shrinks:

N+l

o<
j=1

note that eventually this sum must become negative since YON = (v o+
y & =t N

77)2}\; 1;;-. because of Liouville’s theorem, so that at least Ay < 0. Then the
Liapunov dimension is:

N,
dLyu = ;'V‘ + Z /\j//\AV.H . (66)

J=1
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Al three algorithms agree at low dimension (up to five), and all three indicate that
the dimension of the turbulent attractor increases with Reynolds number, but the
increase is markedly less with the counting algorithms. This can be attributed to
a geometrical effect (Atten et al. 1986), since in a sphere with high dimension
most of the points lie in the outer shells. The Liapunov dimension grows as

dLya ~ “% IOgg v, (6.7)

which is in fact the number of degrees of freedom in the inertial range, since
(kn/ko) ~ RY*, k,/ky ~ 2™ and there are two modes per shell. It was also
shown by Grappin et al. (1986) that the first Liapunov exponent scales as 1//v,
since 1 ~ 1/vkd ~ v'/2_ 1t is tempting to conjecture that turbulent flows scale in
the same way, and computations of the Liapunov dimension of shear flows have
now been undertaken (Grappin and Léorat 1987) to verify this point.

6.3. One-dimensional Burgers' equation extended to MHD

An extension of Burgers’ equation to coupling with a magnetic field was proposed
by Thomas (1968); it reads:

CLNC U (6.8)
ot "ox oz Ve -

%, 0 _on 0%
o "oz Tor Tt
Thomas wrote this model in the context of the dynamo effect. A recent study
(Passot 1987), both analytical using the Painlevé test, and numerical, shows that
these equations are not integrable, contrary to the b = 0 Burgers case. A dominant-
balance analysis, more conveniently performed with the Elsisser variables :* =
u + b, shows that, when writing z* ~ @ and 2~ ~ x”, one obtains 7 = —1 (a
simple pole) and, for PM = v/n > 1, a0 = (1+ PM)/(1 = PM),ie. o < —1:in fact
27 is subdominant, whereas the (u,b) variables both behave as simple poles. This
underlying structure appears very clearly in Fourier spectra of the velocity and the
magnetic field. It can be shown using the Laplace method. that for wavenumbers
k — oo, the largest contribution to the Fourier spectrum of a field V(r) comes
from the complex singularity closest to the real axis; writing

(6.8b)

Viz)~ (2 =z
the spectrum of V(=) for large & behaves as (Carrier et al. 1966):

Vk) ~ k= expl— Im(z, )k ). (6.9)
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Fig. 14. Kinetic (solid line) and magnetic (dashed line) energy spectraat ¢ = 5.0 (a)and t = 5.5 (b), in
units of the eddy tum-over time, for the one-dimensional MHD model. Note the crests in the magnetic

spectra (Passot 1987).

For pp = —1, i.e. in the case of a simple pole, the prefactor in eq. (6.9) disappears
and one simply obtains an exponential decay, as in the case of Burgers’ equation.
But when pp # —1, the function V (k) is not decreasing monotonically and can
present crests that are the signature of poles with non-unity multiplicity.

Figure 14 shows the spectra of the velocity and magnetic field att=5.0 and 5.5
(in units of the large-scale tum-over time), and fig. 15 the profiles of the velocity
and magnetic field at the same two times; although no difference is apparent in the
profiles, the crests in the magnetic spectrum are due to a singularity approaching
the real axis. This computation is done using 128 points with a pseudo-spectral
code with initial conditions u(xz) = sinx and b(r) = 0.2sinx and with v/n =
4. Such crests have also been observed in direct numerical simulations of two-
dimensional compressible flows. For a recent study of one-dimensional MHD,
including the density equation, see Wu (1987).

6.4, Lack of singularity in two-dimensional inviscid MHD

Dissipative processes smooth the flow at small scales and very likely prevent the
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Fig. 15. Kinetic (solid line) and magnetic (dashed line) profiles at the same times in fig. 14.

formation of discontinuities in the flow variables or their derivatives. It has been
demonstrated (see Sulem (1986) for a review) that for 3D, Nav ier—Stokes, incom-
pressible flows with v # 0, singularities, if they exist, have a very small spatial
and temporal dimension. In the inviscid case, however, the answer is not known.
Closure models predict an enstrophy blow-up in a finite time. In two dimensions,
for an Euler flow, because of the additional conservation of vorticity, singularities
are prevented for all times (Wolibner 1933). When coupling to a magnetic field is
switched on, what will happen? The Lorentz force breaks the conservation of vor-
ticity, which may therefore blow up again: on the other hand, a mixture of Alfvén
waves produces a possible equilibration mechanism by exchanging kinetic and
magnetic energy on the time scale [/ By, where B, is the uniform or large-scale
field. When B, is sufficiently large, this time-scale is shorter than the eddy turn-
over time. and an eventual blow-up of enstrophy may be prevented because the
dynamics reduce mostly to that of waves (Bardos et al. 1987). On the other hand.
when B, is weak. the Lorentz force is negligible. and conservation of vorticity
again prevents the formation of singularities. As time elapses, the magnetic field
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grows and may remain of order one. for a velocity field of order one. for times long
compared to the eddy turn-over time (although for even longer times Cowling’s
theorem applies and the 2D magnetic field eventually dies out). Closures indicate
that the total enstrophy. defined as

QF = Qv+ oM. (6.10)

with

QL

]

/‘ K E' (k) dk. 6.11)

0

where ¢ = (V. M), blows up in a finite time. However, numerical simulations
at high resolution indicate the contrary (Frisch et al. 1983). Starting with initial
conditions that are random and narrowly peaked on the large scales, or with the
Orszag~Tang (OT in brief) vortex, defined as (Orszag and Tang 1979):

Wz, y)=2cosT +2cosy, (6.12a)

alr.y) =2cosx +cos 2y, (6.12b)

where 1 is the stream function (v = curl)), one lets the MHD equations evolve
with v = 0, ) = 0; the energy spectrum that develops with time is then fitted with
the following functional form:

E(k, t) = C(tyexpl—=26(k]) k=™, (6.13)
For the spectral index in the inviscid phase, one finds:
m(t) ~2.0+04, (6.14)

which would ideally lead to a —2 spectrum.

When a uniform magnetic field By is added to the fluctuating field, strong
enough to suppress neutral points (points at which the total field would be equal to
zero), 8(1) saturates at a value §p substantially higher than the grid spacing, A,
and there is an effective loss of computer resources if one were to continue with
such a computation. These results indicate that the magnetic field. in the absence
of neutral points. provides an effective cutoff in wavenumber space, through dis-
persive effects. just as dispersive effects prevent the formation of shocks in the 1D
Korteweg—de Vries equation, leading in fact 1o well-behaved solitonic solutions.
This may suggest some solitonic-like behavior in 2D MHD. In three dimensions,
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however, it is not clear whether the dispersion will be sufticient to balance steep-
ening (B.C. Low, private communication). However, when B, = 0, 6(f) decays
inexorably, but exponentially; the 2D data is consistent with:

O(t) ~ exp(—at), (6.15)

so that only for t — oc will it reach 0; thus, numerical simulations indicate that
no singularity will occur in a 2D MHD flow in a finite time.

6.5. The inverse cascade of the magnetic potential

Another feature of two-dimensional flows concerns their structure on large scales.
As mentioned earlier, in two dimensions the magnetic helicity invariant is replaced
by the magnetic anastrophy (quadratic in the field):

E? =/a2 d’r. (6.16)

The same argumentations as in the 3D case can be given to justify the inverse
cascade towards large scales of E?; they will simply be enumerated here. The
magnetic potential is a large-scale quantity, as compared to the magnetic energy.
Its characteristic time of dissipation can be evaluated as:

an([2er) /(o foser):

assuming again EM(k) ~ k=™, we have for the ratio 7,/7¢, where 75 was defined
in section 5.5.1, eq. (5.17):

Ta/TE ~ (kp/ko)* ~ (RM)*/3. (6.17)

So the time scale of the magnetic potential decay is of the order of (RM)2/3 times
larger than that of the magnetic helicity in 3D. Again, minimization of energy on
the one hand (section 3.4), and statistical mechanics of truncated systems (Fyfe and
Montgomery 1976) on the other, all point in the same direction. Direct numerical
simulations (Matthaeus and Montgomery 1980) confirm the existence of such an
ordering of large-scale 2D MHD flows.

Let us close this section by indicating a simple phenomenological argument
which shows that the turbulent magnetic diffusivity, n™. due to small-scale mag-
netic excitation, is negative and thus destabilizing. Take at time t = 0, small-scale
random b and j, a large scale A and no velocity at all. The velocity field grows
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under the action of the Lorentz force, so that V' ~ 6 ¥V A, where # is the coher-
ence time of the small-scale velocity field: this field now reacts on the small-scale
magnetic potential through:

%L: = —div(Va). (6.18)

Averaging now over small scales (an operation indicated as ( - )ss), we have:
(Va)ss = VA (ja)ss =0 VA (b)ss,

so that the flux (Va) is in the same direction as V A. Equation (6.18) for the
large-scale magnetic potential now becomes:

%—f = —div(Va) = —0(b)ss V? A. (6.19)

Thus M = —0(b’)ss is negative. On the other hand, it was shown by Krause
and Riidiger (1975) that the turbulent magnetic diffusivity due to the small-scale
velocity, nV, is positive, and the sign of the resulting transport coefficient, n' =
n™ + 1V, needs to be determined by a more sophisticated treatment. Two-point
closures indicate that ;7 is proportional to the relative energy (EY (k) — EM(k))ss
on the small scales, and thus is indeed negative, since an excess of magnetic energy
has been systematically found on the small scales, with few exceptions, in the solar
wind, in closure calculations, and in direct numerical simulations.

6.6. The development of current sheets

The dissipation of energy occurs, e.g., through the formation of a current sheet.
In fact, returning to 2* = v + b variables, and taking as initial conditions the
OT vortex (6.12), both z* variables have a neutral X-point and both develop a
sheet, the angle between the two closing up as time elapses (Sulem et al. 1985).
Assume that, at the common neutral point, the vorticities w® = curl(z*) are of
equal intensity. Since it is at kp that the E* spectra cross (see section 7.2 on
this point, eq. (7.7)), we see that the resulting structure at the X-point is also a
sheet for the current w* + w ™, but is of higher order for the vorticity w* — w™;
it is in fact a quadrupole, as first shown numerically by Matthaeus (1982). The
reconnection that takes place in the vicinity of the neutral region, when interacting
with a turbulent flow, has been but rarely studied (see, however, Matthaeus and
Lamkin (1986)).
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7. The growth of velocity—magnetic field correlations
7.1. Introduction

We spent some time in the preceding sections looking at the steady states that arise
when minimizing the energy while keeping constant either the magnetic helicity
or the magnetic anastrophy. By doing this, we consciously forget the role that
other invariants of the primitive MHD equations play. We will here concentrate
on the complementary problem, neglecting the invariants arising purely from the
induction equation and looking at the problem of minimizing the energy, keeping
constant the correlation E€ = (v - b) between the velocity and the magnetic field.
The statement of this problem is not dimension dependent and we will take ad-
vantage of this point by studying it in greater detail in the two-dimensional frame-
work, which will prove very useful in the numerical context. Two dimensionless
measures of correlation can be defined, one is: :

(v-b) E°
Y= == = ) (7.1
VA (1)) VEVEM
and the other:
. C
2(v - b) 2F 72)

T T BT

The factor 2 in pc is introduced so that |pc| < 1. In the context of turbulent flows,
the latter coefficient is preferable since it is the ratio of two invariants of the non-
dissipative MHD equations. Contrary to the case of magnetic helicity or magnetic
potential, here the two invariants EC and ET have the same dimension and one
cannot argue that the characteristic time scale of one is shorter than that of the
other one, as was done in the helical case. What can then happen when the non-
linear coupling of modes sets in and the energy flows to small scales? Is the time
evolution of p¢ in any way predictable, or is it random?

7.2. Phenomenology of correlated flows
When dealing with the eventual fate of the correlation between the velocity and
the magnetic field, the most convenient variables are those in®6duced by Elsisser,

z* = v £ b. The invariants are then £% = 1((z*)?), and the following relations
are usetul in transforming from one set of variables to the other:

Et=EV+EM4+2E", (7.32)
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E'=EY+EM = {E "+ E7). (7.3b)
E€=NE"—E). (7.3¢)

Thus the correlation coefficient pc is just the normalized difference between the
E* and the E~ energy. Let us assume hereafter that Ej > E, (where the subscript
0 refers to initial conditions), hence the initial correlation /)(é is positive. As noted
in the first section, the MHD equations are symmetrical under exchanging + and
— and the same evolution as that described below would occur were we to start
with E}/E; < 1 or, equivalently, p¢ < 0.

Let us now restate the phenomenology of the interaction between non-linear
turbulent transfer to small scales and propagation of Alfvén waves. Now we want
to take into account the asymmetry of the initial conditions for which p2 # 0.
We will again write the characteristic time for turbulent transfer to small scales as
Tie = T/ Ta. as defined in eq. (2.8), but now take into account the fact that in the
time evolution of the z*-field the time scale 73, is scaled by the z~ -field and vice
versa:

. l 1
thus '
T+ = -—————"——‘BO .
v RZE-(R)
Writing now that the transfer rate e* of z* is:
E*

T
T

+

we obtain the symmetrical relationship (Dobrovolny et al. 1980):

__KE*®RET ()

7.4
By 7.4)

€ =€

This immediately tells us two things. One is that by requiring that the transfer rate
" ¢* is independent of the wavenumber, and writing

E*(h) ~ k™™
and

E~ (k) ~ k™™ .
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we have one (sole) constraint on the inertial range spectral indices m* and i~ of
the £* (k) spectra:

mt4+mT =3, (7.5)

Note that, when m* = m™ = % one recovers the solution derived by Iroshnikov
and by Kraichnan in the uncorrelated case, since when E* = E~, the correlation
is zero.

In the correlated case, however, it is likely to have m* % m ™, and one relation-
ship is lacking to close the problem. We can, however, bound the values that m*
can take by noting that the transfer integrals diverge when m* — 3. We thus a pri-
ori expect the spectral indices of the E* (k) spectra to vary between 0 and 3. When
they are markedly different, the total energy, ET, is strictly speaking no longer a
power law, but the dominant contribution of E* in the positively correlated case
(and E~ otherwise) will make it appear so, with the index of E* (respectively
E).

The other important consequence of eq. (7.4) is that, since ¢ = ¢, the rate of
transfer of correlation, €€ ~ (¢* — €7), is zero. Thus, in the framework of this
simple phenomenological analysis, correlation is not transferred to small scales
and pc grows with time. In fact, a more detailed analysis can be done to show
that correlation is being transferred to small scale by non-linear interactions, as
one expects a priori, but in smaller amounts than energy, although at the same
temporal rate. The argument is as follows (Grappin et al. 1983): in a steady state
there is balance at every wavenumber k between injection rate ¢; and dissipation,
which we model by a turbulent viscosity, viz.:

et (k) = vh o (K E* (k).

with
[e0)
Vaurn(K) = / TwE” (p)dp,
Jk

having averaged over small-scale turbulence, where 74 = (pBg)~'. Supposing
that the integral converges, it can be evaluated locally:
kE~(K)
m~By
This allows to break the symmetry between the + injection rates and yields:

/e ~m*/m”; (7.6)
againe* = €7, withm* = m ™, in the uncorrelated case. This relation will hold pro-

vided m ™ does not become too close to zero: otherwise, non-local contributions
in wavenumber space must be taken into account in evaluating the eddy viscosity,

Ve () ~

+
Umrh'



ta
1o

A. Pouquet

E(k)

o8 T

E(k)

Fig. 16. Steady-state energy spectra E*(k), using the EDQNM closure, for mjLC[lOﬂ rates with a cor-
relation of (a) 10% and (b) 80%: (c) the corresponding Kinetic energy spectrum EV (k) and correlation
spectrum E€ (k) (Grappin et al. 1983).

Figure 16 shows the steady-state E* (k) spectra for two values of the rela-
tive rate of injection (¢* — ¢7)/(¢* + 7). respectively equal to 10% (a) and
80% (b), using the EDQNM closure with reduced equations for which one as-
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sumes EV(k) = EM(k) for all k2 in fig. 16¢c is shown the corresponding kinetic
(or magnetic) energy spectrum EV(k) and the correlation spectrum E(k), with a
change of sign in the latter around k = 2%, For details on the computation see Grap-
pin et al. (1983). The Reynolds number here is of the order of 10°. The steady-state
correlation coefficient pc is, respectively, 88% and 99.998%, and the correspond-
ing spectral indices are m* = 1.8 and rn™ = 1.2 in case (a) and m™ ~ 2.99 and
m~ ~ 0 in the highly correlated run (b); in the latter case, the spectral indices of
the energy EV(k) and the correlation E€(k) are also very nearly equal to 3. Note
that in case (a) e* /e~ = 1.22and E*/E~ = (1 + pc)/(1 — pc) = 15.7, whereas in
case (b) we have ¢* /¢~ =9 and E*/E~ ~ 10°.

The other striking feature of the spectra displayed in fig. 16 is that the + iner-
tial ranges become equal at approximately the same wavenumber at which they
also yield the dissipative range, hence the only change of sign of the correlation
spectrum is at that same wavenumber. This result can again be recovered by a
phenomenological argument. Indeed, we have equilibration between injection and
dissipation of energy, and thus:

00 k*
& = 2;// P E*(p)ydp ~ Zu/ p*E*(p)dp,
0 ko

where we suppose v = 1 (magnetic Prandt! number of unity), and where ky and
k* (respectively k™) are the characteristic wavenumbers of the energy-containing
range and of the dissipation range of E* and E ™. Evaluating the latter is done as
usual by stating that, at k&, the dissipation time and the transfer time are equal.
This yields:

E- (k)= E*(k™)=vBy.

Moreover, k* = k™ to within a numerical factor. If this were not the case, take an
intermediate wavenumber k= < k; < k*; irrespective of the sign of the correla-
tion, £ (k;) is negligible due to the exponential decay setting in at k™, and the
transfer time 77" is thus longer than the dissipation time (v(k*)~?), contrary to the
hypothesis. We therefore conclude that the 3 energy spectra become equal at the
wavenumber:

kY=L =kp. (7.7)

at which dissipation sets in, hence the change of sign of the correlation spectrum
at that wavenumber. However, this does not explain why the correlation spectrum
has such a simple form. with only one change of sign. This point is treated in the
next section.
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7.3 Does the correlation coefficient really grow and why?

The organization of the correlation spectrum in two lobes of opposite signs, with a
cross over at kp, provides a posteriori a simple explanation of why pc might grow.
There is one important difference between the energy ET and the correlation E€,
and that is the fact that the correlation spectrum is not positive definite, contrary to
the energy. Think now in terms of an eddy viscosity which models the non-linear
transfer of correlation and governs the temporal evolution of its large scales.

Its functional dependence, which may be obtained, e.g., from non-local expan-
sion of the closure equations, is rather complicated. It contains averages over
the small scales, Q(q™"), of the total energy, of the relative energy ER(g) =
EV(q)— EM(g), and of the correlation E“(q). Concentrating on this latter term, we
can argue that a negative tail of the correlation in the dissipation range (assuming
that the large-scale correlation is positive) is likely to act as a negative viscos-
ity; however, destabilization of the large-scale correlation does not occur, since
other terms in the evaluation of the transport coefficients modeling the non-linear
transfer of correlation counteract it, and it therefore produces a marginal effect,
consisting simply in slowing down the depletion of the large-scale correlation.

Let us now turn to the problem of growth with time of the correlation coefficient.
One can show that, for short times, pc indeed grows, at least in 2D. Write the
two-dimensional MHD equations in Fourier space, with v = 0, n = 0, for the
vorticities w* = curl(v + b) and w™ = curl(v — b), for a fluid embedded in a
uniform magnetic field By:

(_% ik Bo> o (k) = / / Mk, p, ) w* () (@) Epdq,  (18)

M(k.p.q) =8k —p — @) (P20, — Pyas) (k- P)/P’ " (7.8b)
Following the analysis of Grappin (1986), let us first integrate eq. (7.8a) formally:

t
wi(k. t) = e:tik-Bnt Q:i:(k) +/ de(:)t(;’ig

ty

X / M(k.p.q)wE(p.u) w¥(g.u)d’pd’yq.

where 2% (k) is the initial +/—~ vorticity up to a phase factor. Let us iterate the
above equation once and expand the result in powers of Q% (k), letting tg — —x
and t — >c: first, writing formally:

ST W w)
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and iterating once, one obtains:
W= G G AW w R GO g w i w D

writing now, to first order, that the uctuating fields are equal to their linear value
G+ (and here the expansion parameter is =¥ /By, so that to lowest order the
solution is that of Alfvén waves) and rearranging factors:

W= G 4 gN G GO + gt [GTR g T(GTQT GO
+g* gt (G G G+ 0.
The algebra becomes lengthy (see Grappin (1986) for details), so we will con-
centrate only on a further simplification of the resulting equations for the w* vor-

ticity, by looking at the dominant non-local terms in it; writing the non-linear ker-
nel as:

k
Mk.p.q) = }; sin cv cos 7y, 7.9

where v and v are the angles (p. q) and (k. p), respectively, and denoting by a the
extra expansion parameter which is the small ratio of two of the three wavenum-
bers in the interaction, three cases arise: when q¢ < k ~ p (here, a = q/k), then
~ ~ 0 and the kernel reduces to:

k
M(k,p.q) ~ — sina
q

and is of order a~'; on the other hand, when p < k ~ g (here, a = p/k), the
kernel is of order unity, and when k < p ~ q (here, a = k/p), the kernel is of
order a2. Therefore, if we neglect mode coupling between comparable scales, the
resultant temporal evolution for scales of disparate sizes is that the small-scale
w*(k) vorticity evolves mainly under the combined action of small-scale w* and
large-scale w™ vortices, namely:

dwt(k)
ot g

~ w'(k)w . (7.10)

where SS and LS stand, respectively, for small scale and large scale (on which we
have averaged). Naturally, we can recover eq. (7.10) from a phenomenological
argument and it is also obtained in the context of closures (Grappin et al. 1983).
Suppose initially that on the large scales Ef's > E . and suppose that on the small
scales both et are identically zero. Then:

det IS

- L EFet
it By "
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Fig. 17. Temporal evolution of the ratio of magnetic to kinetic energy for different initial correlations
(Pouquet et al. 1986).

and e~ grows faster than e*, so that correlation of the opposite sign (here negative)
is created on the small scales by the non-linear interactions. This argument can be
iterated and one thus constructs for short times a correlation spectrum with many
lobes with alternating sign if initially it is narrowly peaked on the large scales.

There are now several numerical simulations that have shown that the corre-
lation coefficient grows with time in two-dimensional flows (Léorat et al. 1982,
Matthaeus and Montgomery 1984, Grappin 1986) as well as in three-dimensional
flows (Pouquet et al. 1986), and they show a two-lobe structure (see below) in the
correlation spectrum, with a change of sign at approximately the wavenumber at
which dissipation sets in. When the correlations are strong, the non-linear transfer
is inhibited, since its amplitude is greatly reduced relative to the uncorrelated case;
this is visible, e.g., in fig. 17, in which is displayed as a function of time the ratio
of magnetic to kinetic energy, EM/EV, for different initial correlations.

The unit of time is the eddy turm-over time of the large scale, also equal to
the Alfvén time, (EM(t = 0) ~ EY(t = 0)). When the correlation increases.
the oscillations between E™M and EV are strongly damped, but their characteristic
frequency (corresponding to the rate of energy transfer. 7.7} is approximately the
same,
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LOG E* (k)

LOG k

Fig. 18. Ei(k,) spectra at ¢ = 57 /2, from a two-dimensional, direct, numerical simulation (Grappin
1986). E

7.4. Lack of universality of the inertial ranges of correlated MHD flows

One may use numerical simulations to measure the inertial ranges that establish
in correlated MHD flows. However, such problems require a high resolution, so
that the eddy-containing range, the inertial range, and the dissipation range are
reasonably well separated. Otherwise, each range is contaminated by the neigh-
boring one, and in particular the inertial range is no longer a simple power-law.
However, simple visual inspection of the spectra obtained in Grappin (1986) fora
flow which is 80% correlated, initially clearly shows that the £ *(k) spectra have
different slopes.

Figure 18 is extracted from this paper and shows the spectra at £ = 57 /2. with
E~ the dotted line and E* the solid line. The straight line drawn above the spectra
has a —3 slope. and the results are clearly consistent with the prediction (7.5)
for a strongly correlated flow: the £~ (k) spectrum is flat for a small interval of
wavenumbers.
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Fig. 19. p(k), for the run as in fig. I8.

Figure 19 shows the correlation spectrum in lin-log coordinates, at the same
time; it changes sign only once, around k = 80, in the dissipation part of the
energy spectrum.

In order to get a systematic evaluation of the inertial indices, one may again re-
sort to fitting the spectra with the functional form already mentioned in section 6.3,
namely:

E(k.t) = C(tyexp[=26(Hk] k™™,

for the constant C(t), the logarithmic decrement é(t), and the spectral indices m(t).
Here, we concentrate on the determination of mE(t) as a function of the initial cor-
relation. The computations were performed on a Cray-1 with a uniform 512 x 512
grid and periodic boundary conditions. The code occupies more than three times
the available memory of the central processor of the computer and thus makes
heavy use of transfer of data between CPU and peripheral memory, only roughly
50% of it being used by computations. A typical run takes 20 h. The variation of
the spectral indices with correlation is shown in fig. 20, for the m* (curve a) and
m™ (curve b) indices as a function of pc.



Magnetohydrodvnamic turbulence 219

m*} (a)

~N
T

™

bmemd

m” 4 (b

T T
e
1
i

- b

o) 1 Il 1 1 ! 1 1 1 1 1
o.f 05 10 p

Fig. 20. Temporal evolution of the spectral indices m¥ (t) of the energy spectra EE (k). for a run with
an initial correlation of 80% (Pouquet et al. 1988).

The horizontal extent of the curve represents the growth with time of the cor-
relation coefficient. Thus these numerical 2D experiments (Pouquet et al. 1987)
confirm the predictions of two-point closures of 3D MHD turbulence and of phe-
nomenology on the variation of the spectral index of MHD flows with the amount
of correlation between velocity and magnetic field, at least for this parameter
regime (PM = |, EM/EY = 1). However, one should keep in mind that obser-
vations on the solar wind, where correlations are strong, seem consistent with a
Kolmogorov spectrum; possibly they are taken at quiet times in the wind when
MHD effects are damped? This point needs further investigation.

7.5. Selective decay
Restricting the discussion to two-dimensional flows. the simplest minimum-

energy state is, when the correlation is conserved, v = +b. i.e. aliened equiparti-
tioned fields with no constraint on scale, and when. on the other hand, the squared
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Fig. 21. Four regions of parameter space in two dimensions. H: hydrodynamic; M: magnetic: C: cor-
related: T: transitory (Ting et al. 1986).

magnetic potential is conserved, a zero-pressure (v = 0) solution is obtained with
the magnetic excitation concentrated in the largest scale available to the system.
The general case, taking into account conservation of correlations. EC, magnetic
anastrophy, A%, and of angular momentum (in the vertical direction), is given by
eqs. (3.18) and (3.19). To determine to what state a given flow with random initial
conditions evolves, one again can resort to numerical experimentation. Leaving
aside angular momentum, the results (Ting et al. 1986) show that the long-time
evolution seems to terminate on two branches in the (ET/A%, 1/pc) plane.

In fig. 21, redrawn from Ting et al. (1986), four regions of parameter space
can be distinguished: region H (for hydro) corresponds to initial conditions with
»? > b, and the ensuing evolution is one where the velocity field remains
dominant throughout: similarly, region M (for magnetic) is one in which initially
b2 > v2. which corresponds to regimes of magnetic confinement in the laboratory,
and which terminates in a state where the magnetic potential is at the minimum
wavenumber; region C (for correlated flows) is one in which »* and b are of the
same order of magnitude and the flow evolves towards a state of maximum cor-
relation: finally, region T (for transitory behavior) is one in which sets of initial
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conditions that are close in parameter space end up either in H or in M for reasons
not determined, although they might be linked to the resolution.
Recalling that j = —¥?2q and using eq. (3.21) leads to, in Fourier space:

Alk) = 6k — k), (7.11a)
2 _ Y
k; T (7.11h)

except when 32 = 1, in which case the fully correlated solution (v = +b) occurs. It
follows that b(k) = ik, x a(k) and v = /3b both depend only on one the wavenum-
ber, k,. As shown in Ting et al. (1986), the wavenumber appearing in eq. (7.11) is
not necessarily the minimum wavenumber of the truncated system (say kmin = 1)
in order to satisfy the minimal-energy condition. However, their numerical results
seem (o indicate that usually the system relaxes to a state dominated by kmin, that
is to say to a state not minimizing the energy. This may be an effect of numeri-
cal resolution; on the other hand, these states occur in the hydrodynamical regime
(region H in fig. 21) and thus correspond to a minimum of the squared vorticity,
keeping the energy constant, as is expected in order to explain the inverse cascade
of energy in a two-dimensional, non-conducting, Navier-Stokes fiuid.

The boundaries in the (E7/A?; 1/pc) plane can be found analytically (Ting et
al. 1986) by simple manipulations of egs. (3.21) and (7.11b). This yields:

ET k2 12,

F=2;g[u:(1-pé)/ ] (7.12)
where the + (respectively —) sign corresponds to the upper (respectively lower)
branch in fig. 21.

In the three-dimensional case, and dealing with high kinetic and magnetic
Reynolds numbers, it is likely that the hydrodynamical region, H, will have a more
limited extent because the dynamo can operate. Note also that !aking into account
the invariance of angular momentum breaks the force-free Beltramization of the
flow, and more complex configurations may then arise. Angular momentum also
plays a role in determining what size and energy of the topological configuration
establish themselves, for given magnetic helicity (Kamchatnov 1982), as men-
tioned in section 4.

7.6. The emerging dynamical picture
We have given here a hopefully converging set of arguments that indicate that

the likely equilibrium state of a 3D MHD fluid is one with large-scale, long-lived
magnetic structures with maximal magnetic helicity, with possibly equipartitioned
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velocity tields, or at least aligned: this equilibrium may not be magnetostatic. thus
confirming the ideas of Parker on the dynamism and activity of magnetic fields in
astrophysics. We arrived at this conclusion using statistical mechanics. by estab-
lishing topological constraints linked to the frozen-field condition (section 4.3 in
the magnetostatic case, and section 4.5 for the Alfvén-type solution). Phenomenol-
ogy indicates that the time-scale of the evolution of magnetic helicity indeed is
slower than that of energy. and statistical closures. both numerically and analyt-
ically. show clear evidence of an inverse cascade of magnetic helicity; so does
two-scale analysis. Experimental evidence in RFP and numerical evidence for the
RFP and for homogeneous flows also indicate this self-ordering of MHD flows.

These results were obtained for the most part in the incompressible domain.
But in fact they may well apply too in the compressible case, since the detailed
equation of state, linking pressure and temperature, does not affect the frozen-in
condition for the magnetic field. Hence large-scale helical entities may well form
too, with small-scale structures now dominated by shocks. In fact, analytical re-
sults for the non-magnetic case using the diffusion approximation for the short
correlation time of the small-scale turbulence, indicate that large-scale compress-
ible flows are helically unstable (Moiseev et al. 1982). This result is presently
being extended to the MHD case. In the interstellar medium, molecular clouds are
the site of star formation, and these are known to be turbulent, with a scaling law in
the inertial range between the Kolmogorov value of —% and the shock-like value
of —2 (Larson 1981, Perrault 1987). Moreover, magnetic fields are dynamically
important (Heiles 1987, Scalo 1985). Is there any way to see whether large scales
are helical?

The next step, aside from ample numerical exploration of parameter space, may
be in the hand of astrophysicists, and in particular those able to derive multiple-
scale information with instrumentation with a large dynamical range. This is the
case for radio jets, thanks to VLA in particular, and evidently this is also the case
with the Sun: can one determine, either at the photospheric level or in the loops of
the corona, the three-dimensional nature of the fields? This is one of the fascinating
results that may emerge in the next decade by sophisticated ground-based and air-
bomne instrumentation.

7.7. Conclusion

Magnetic phenomena occur in many instances of astrophysical interest. For ex-
ample, the Fermi acceleration of particles in magnetized shocks, the transfer of
angular momentum and magnetic breaking of stars. the stochasticity of magnetic
surfaces due to the underlying Hamiltonian structure, the interaction of a mag-
netic field with either rotation or convection. and all phenomena associated with
reconnection, in particular solar flares and heating of the corona, have all been but
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briefly mentioned at best. It is hoped that enough energy is left to the reader to
at least browse through the various books and review papers that exist on these
topics; a few of them are given in the list of references.

Finally, it is worth mentioning that with the advent of ever-larger computers, the
“experiment via numerics” approach to MHD turbulence - unique and yet very ex-
pensive — will probably grow. Databases with some basic flows, stored on optical
disks, are likely to be made available to the community of researchers for the most
demanding computations, with the hope that the numerous parameters (R¥, RM,
PM, M, 3, P, R,....)will be sufficiently representative of the problems at hand.
Visualization of such flows with sophisticated equipment (large storage, rapid ac-
cess to disk, on line manipulation of the 3D image, rotation, zooming, different
perspective, bit shift. oblique sections, and also access to the temporal dimension,
which gives an idea of the dynamical evolution of structures — how do they arise,
how do they interact and possibly merge, where are the dissipative structures con-
centrated — and naturally color coding, to name a few requirements) is of primary
importance and yet not widely available today. It is to be hoped that, as e.g. for
dynamical systems and the discovery of chaos, and for one-dimensional flows
and the understanding of solitons, such numerical experiments will help unravel
the underlying structure of MHD turbulence, the description of which remains,
somewhat frustrating, in the domain of phenomenology, and will help suggest the
proper way to model the intricate and fascinating flows that arise in astrophysical
and geophysical fluids.
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