
ar
X

iv
:2

50
1.

13
80

7v
1 

 [
ph

ys
ic

s.
fl

u-
dy

n]
  2

3 
Ja

n 
20

25

Draft version January 24, 2025

Typeset using LATEX twocolumn style in AASTeX631

Theory of the kinetic helicity effect on turbulent diffusion of magnetic and scalar fields

Igor Rogachevskii,1, 2 Nathan Kleeorin,1, 3 and Axel Brandenburg2, 4, 5, 6

1Department of Mechanical Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, P. O. Box 653, Israel
2Nordita, KTH Royal Institute of Technology and Stockholm University, Hannes Alfvéns väg 12, SE-10691 Stockholm, Sweden
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ABSTRACT

Kinetic helicity is a fundamental characteristics of astrophysical turbulent flows. It is not only

responsible for the generation of large-scale magnetic fields in the Sun, stars, and spiral galaxies,
but it also affects turbulent diffusion resulting in the dissipation of large-scale magnetic fields. Using

the path integral approach for random helical velocity fields with a finite correlation time and large

Reynolds numbers, we show that turbulent magnetic diffusion is reduced by the kinetic helicity, while

the turbulent diffusivity of a passive scalar is enhanced by the helicity. The latter can explain the
results of recent numerical simulations for forced helical turbulence. One of the crucial reasons for

the difference between the kinetic helicity effect on magnetic and scalar fields is related to the helicity

dependence of the correlation time of a turbulent velocity field.

Keywords: Astrophysical magnetism (102) — Magnetic fields (994)

1. INTRODUCTION

The evolution of solar and Galactic large-scale mag-

netic fields can be understood in terms of mean-field

dynamo theory applying various analytical methods

(see, e.g., Moffatt 1978; Parker 1979; Krause & Rädler

1980; Zeldovich et al. 1983; Ruzmaikin et al.
1988; Rüdiger et al. 2013; Moffatt & Dormy 2019;

Rogachevskii 2021; Shukurov & Subramanian 2022).

Helical motions emerge in inhomogeneous or density

stratified turbulence, give rise to an α effect, and pro-
duce large-scale dynamo action in combination with

a non-uniform (differential) rotation, while turbulent

magnetic diffusion limits the growth rate of the field.

It has recently been shown using direct numerical sim-

ulations (DNS) (Brandenburg et al. 2017) that helical
turbulent motions of the plasma affect not only the α

effect, but also the turbulent magnetic diffusion. In

particular, the kinetic helicity Hu = 〈u · ω〉 was found

to lower the turbulent magnetic diffusion coefficient η
t
,

brandenb@nordita.org

where u and ω are fluctuations of velocity and vorticity,

and angular brackets denote ensemble averaging.

Using the renormalization group approach in the limit

of low magnetic Reynolds numbers, it has been re-

cently shown by Mizerski (2023) that the decrease of
the turbulent magnetic diffusion coefficient in compar-

ison with that for a non-helical random flow is of the

order of Rm2(Huτc)
2/〈u2〉, where Rm = τc 〈u2〉/η is

the magnetic Reynolds number, η is the magnetic diffu-
sion caused by an electrical conductivity of the plasma,

and τc is the turbulent correlation time. Early the-

oretical predictions by Nicklaus & Stix (1988) demon-

strated the opposite effect where the turbulent magnetic

diffusion coefficient increases with kinetic helicity—in
contradiction to the subsequent numerical results of

Brandenburg et al. (2017). Various helicity effects on

different characteristics of turbulence are discussed in

the recent review by Pouquet & Yokoi (2022).
In the present study, we apply the path-integral ap-

proach (see, e.g., Dittrich et al. 1984; Kleeorin et al.

2002; Elperin et al. 2000, 2001) for a random helical

velocity field with a finite correlation time for large

fluid and magnetic Reynolds numbers. We derive equa-
tions for the mean magnetic field and the mean scalar
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field (e.g., the mean particle number density). We have

shown that the turbulent magnetic diffusion coefficient

decreases because of the kinetic helicity. On the other

hand, the kinetic helicity increases turbulent diffusion
coefficient of the scalar field. Both effects are of the

order of (Huτc)
2/〈u2〉.

To derive the mean-field equations for the magnetic

and scalar fields, we use an exact solution of the gov-

erning equations (i.e., the induction equation for the
magnetic field and the convection–diffusion equation for

the scalar field) in the form of a functional integral for

an arbitrary velocity field. The microscopic diffusion

can be described by a Wiener random process, and the
functional integral implies an averaging over the Wiener

random process. The used form of the exact solution

of the governing equations allows us to separate the

averaging over the Wiener random process and a ran-

dom velocity field. The derived mean-field equations
for the magnetic and scalar fields are generally integro-

differential equations. However, when the characteristic

scale of variation of the mean fields is much larger than

the correlation length of a random velocity field, second-
order equations (in spatial variables) are recovered for

the mean fields.

For the derivation of the mean-field equations, we con-

sider a random helical velocity field with a small yet

finite constant renewal time. Thus, we apply a model
with two random processes: the Wiener random process

which describes the microscopic diffusion and the ran-

dom velocity field between the renewals. This model

reproduces important features of some real turbulent
flows. For instance, the interstellar turbulence which

is driven by supernovae explosions, loses memory in the

instants of explosions (see, e.g., Zeldovich et al. 1990;

Lamburt et al. 2000). Between the renewals, the veloc-

ity field can be random with its intrinsic statistics. To
obtain a statistically stationary random velocity field,

we assume that the velocity fields between renewals have

the same statistics.

This paper is organized as follows. In Section 2 we
outline the governing equations and the procedure of

the derivation of the equation for the mean magnetic

field. In Section 3 we derive the equation for the turbu-

lent magnetic diffusion coefficient. For comparison with

the magnetic case, we derive the mean-field equation
for the particle number density in Section 4 and obtain

an expression for the turbulent diffusion coefficient. In

Section 5 we compare the theoretical predictions with

the results of the direct numerical simulations. Finally,
we draw conclusions in Section 6.

2. GOVERNING EQUATIONS

The magnetic field B(t, r) is determined by the in-

duction equation

∂B

∂t
+ (u ·∇)B = (B ·∇)u+ η∆B, (1)

where u is a random velocity field. For simplicity, we

consider an incompressible velocity field. Below we de-

rive the equation for the mean magnetic field in a ran-

dom helical velocity field with a finite correlation time
for large fluid and magnetic Reynolds numbers.

Following a previously developed method

(Dittrich et al. 1984; Kleeorin et al. 2002), we use an

exact solution of Equation (1) with an initial condition

B(t = s,x) = B(s,x) in the form of the Feynman-Kac
formula:

Bi(t,x) =
〈

Gij(t, s, ξ(t, s))Bj(s, ξ(t, s))
〉

ξ
, (2)

where the function Gij(t, s, ξ) is determined by

dGij(t, s, ξ)

ds
= Nik Gkj(t, s, ξ), (3)

Nij = ∇jui is the velocity gradient matrix, ξ̃ = ξ − x,

and 〈...〉ξ denotes averaging over the Wiener paths

ξ(t, s) = x−
∫ t−s

0

u[t− µ, ξ(t, µ)] dµ+
√

2ηw(t− s).

(4)

Here w(t) is a Wiener random process defined by the

properties 〈w(t)〉w = 0, and 〈wi(t + τ)wj(t)〉w = τδij ,
and 〈. . .〉w denotes averaging over the statistics of the

Wiener process. We use the Fourier transform defined

as

B(t, ξ) =

∫

exp(iξ · q)B(s, q) dq. (5)

Substituting Equation (5) into Equation (2), we obtain

Bi(s,x)=

∫

〈

Gij(t, s, ξ(t, s)) exp[iξ̃ · q]Bj(s, q)
〉

ξ

× exp(iq · x) dq . (6)

In Equation (6) we expand the function exp[iξ̃ · q] in a

Taylor series at q = 0, i.e., exp[iξ̃ · q] =
∑

∞

k=0
(1/k!)(iξ̃ ·

q)k. Using the identity (iq)k exp[ix · q] = ∇
k exp[ix · q]

and Equation (6), we arrive at the expression

Bi(t,x)=

〈

Gij(t, s, ξ)

[ ∞
∑

k=0

(ξ̃ ·∇)k

k!

]〉

ξ

×
∫

Bj(s, q) exp(iq · x) dq. (7)
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The inverse Fourier transform implies that Bj(s,x) =
∫

Bj(s, q) exp(iq · x) dq, so that Equation (7) can be

rewritten as

Bi(t,x) =
〈

Gij(t, ξ) exp(ξ̃ ·∇)
〉

ξ
Bj(s,x). (8)

Equation (5) can be formally regarded as an inverse

Fourier transform of the function Bi(t, ξ). However, ξ

is the Wiener path which is not a standard spatial vari-
able. On the other hand, Equation (8) was also derived

in Appendix A of Kleeorin et al. (2002) applying a more

rigorous method; see also Dittrich et al. (1984). In this

derivation the Cameron-Martin-Girsanov theorem was
used.

3. MEAN-FIELD EQUATIONS FOR THE

MAGNETIC FIELD

In this section we derive mean-field equation for a
magnetic field using a random helical velocity field with

a small yet finite constant renewal time. These re-

sults can be also generalized for a random renewal

time (see, e.g., Lamburt et al. 2000; Kleeorin et al. 2002;

Elperin et al. 2001). Assume that in the intervals
. . . (−τ, 0]; (0, τ ]; (τ, 2τ ]; . . . the velocity fields are statis-

tically independent and have the same statistics. This

implies that the velocity field looses memory at the pre-

scribed instants t = kτ , where k = 0,±1,±2, . . . . This
velocity field cannot be considered as a stationary (in

statistical sense) field for small times ∼ τ , however, it

behaves like a stationary field for t ≫ τ .

The velocity fields before and after renewal are as-

sumed to be statistically independent. We use this as-
sumption to decouple averaging into averaging over two

time intervals. In particular, the function Gij(t, ξ) in

Equation (8) is determined by the velocity field after

the renewal, while the magnetic field Bj(s,x) is deter-
mined by the velocity field before renewal.

In Equation (8) we specify instants t = (m+ 1)τ and

s = mτ , and average it over random velocity field, which

yield the equation for the mean magnetic field B as

Bi[(m+ 1)τ,x] = Pij(τ,x, i∇)Bj(mτ,x), (9)

whereBi[(m+1)τ,x] = 〈Bi((m+1)τ,x)〉u, Bj(mτ,x) =

〈Bj(mτ,x)〉u, and

Pij(τ,x, i∇) = 〈〈Gij(τ, ξ) exp[ξ̃ ·∇]〉ξ〉u. (10)

Here the time s = mτ is the last renewal time before
t = (m+ 1)τ and t− s = τ . Averaging of the functions

Gij(τ, ξ) exp[ξ̃(τ) · ∇] and Bj(mτ,x) over random ve-

locity field 〈...〉u can be decoupled into the product of

averages since Bj(mτ,x) and Gij(τ, ξ) exp[ξ̃(τ) ·∇] are

statistically independent. Indeed, the field Bj(mτ,x) is

determined in the time interval (−∞,mτ ], whereas the

function Gij(τ, ξ) exp[ξ̃(τ) ·∇] is defined on the interval

(mτ, (m+1)τ ].Due to a renewal, the velocity field as well
as its functionals Bj(mτ,x) and Gij(τ, ξ) exp[ξ̃(τ) ·∇]

in these two time intervals are statistically independent

(see Dittrich et al. 1984; Kleeorin et al. 2002, for de-

tails).

Considering a very small renewal time and expanding
into Taylor series the functions Gij(µ, ξ) and exp[ξ̃(µ) ·
∇] entering in Pij(µ,x, i∇) (see Equation (10)), we ob-

tain

Pij(µ,x, i∇) =
〈〈(

δij + µNij +
µ2

4
NikNkj + ...

)

×
(

1 + ξ̃m∇m +
1

2
ξ̃mξ̃n∇m∇n + ...

)〉

ξ

〉

u

. (11)

Here we take into account that the solution of Equa-

tion (3) can be written as

Gij(µ) = δij +

∫ µ

0

Nij(µ
′) dµ′

+
1

2

∫ µ

0

Nik(µ
′) dµ′

∫ µ′

0

Nkj(µ
′′) dµ′′ + ... (12)

We consider a random incompressible velocity field

with a Gaussian statistics. We also consider a ho-
mogeneous turbulence with the large fluid and mag-

netic Reynolds numbers. Therefore, the operator

Pij(µ,x, i∇) is given by

Pij(µ,x, i∇) = δij + µ〈〈ξ̃mNij〉ξ〉u∇m

+

{

1

2
δij〈〈ξ̃mξ̃n〉ξ〉u +

µ2

8

[

〈〈ξ̃mNik〉ξ〉u〈〈ξ̃nNkj〉ξ〉u

+〈〈ξ̃mNkj〉ξ〉u 〈〈ξ̃nNik〉ξ〉u
]

}

∇m∇n + ..., (13)

where we keep only non-zero correlation functions. Now

we determine the correlation function 〈〈ξ̃mξ̃n〉ξ〉u for

small µ as

〈〈ξ̃mξ̃n〉ξ〉u=µ2〈umun〉+
µ4

4
〈us∇pun〉 〈up∇sum〉

+2η〈wmwn〉w , (14)

where we neglected terms ∼ O(µ5) and hereafter we
denote 〈...〉 as the averaging over statistics of random

velocity field.

To determine the correlation function 〈ui∇puj〉, we

use a model for the second moment 〈ui(k)uj(−k)〉 of

isotropic homogeneous incompressible and helical tur-
bulence in Fourier space in the following form:

〈ui(k)uj(−k)〉= Eu(k)

8πk2

[

(

δij −
ki kj
k2

)

〈u2〉

− i

k2
εijp kp 〈u · ω〉

]

, (15)
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where ω = ∇×u is the vorticity, δij is the Kro-

necker fully symmetric unit tensor, εijp is the Levy-

Civita fully antisymmetric unit tensor, 〈u · ω〉 is the

kinetic helicity, the energy spectrum function is Eu(k) =
(2/3) k−1

0
(k/k0)

−5/3 in the inertial range of turbulence

k0 ≤ k ≤ kν , the wave number k0 = 1/ℓ0, the length

ℓ0 is the integral scale of turbulence, the wave number

kν = ℓ−1
ν , the length ℓν = ℓ0Re

−3/4 is the Kolmogorov

(viscous) scale. After integration in the Fourier space we
obtain that the correlation function 〈uiuj〉 in the phys-

ical space is 〈uiuj〉 = 〈u2〉 δij/3. Using Equation (15),

after integration in the Fourier space, we arrive at the

following expression:

〈ui∇puj〉 = −1

6
εijp 〈u · ω〉. (16)

Using Equations (14) and (16), we obtain that the cor-
relation function 〈〈ξ̃mξ̃n〉ξ〉u is given by

〈〈ξ̃mξ̃n〉ξ〉u=µδmn

[

µ

3

(

〈u2〉 − µ2

24
〈u · ω〉2

)

+ 2η

]

.

(17)

In a similar way, we obtain that the correlation function

〈〈ξ̃iNjp〉ξ〉u is given by

〈〈ξ̃iNjp〉ξ〉u = −µ〈ui∇puj〉 =
µ

6
εijp 〈u · ω〉. (18)

Since ∂B/∂t = lim
µ→0

[Bi((m + 1)µ,x) − Bi(mµ,x)]/µ,

Equations (13)–(14) and (16)–(18) yield the mean-field

equation:

∂B(t,x)

∂t
= α∇×B + (η + ηt)∆B, (19)

where the turbulent magnetic diffusion coefficient is

given by

ηt =
τc
3

(

〈u2〉 − τ2c
3

〈u · ω〉2
)

. (20)

In the derivation of Equations (19)–(20), we take into ac-

count that lim
µ→0

(µ〈u ·ω〉) = 2τc 〈u ·ω〉 and lim
µ→0

(µ〈u2〉) =
2τc 〈u2〉. Here we also use that divB = 0 and

εijp εmnp = δimδjn − δinδjm.

It has been demonstrated by DNS (Brandenburg et al.

2025), that the correlation time of turbulent velocity

field depends on the kinetic helicity It follows from Equa-
tion (20) that

ηt(Hu)

ηt(0)
=

τc(Hu)

τ0

(

1− τ2c (Hu)

3

H2
u

〈u2〉

)

, (21)

where Hu = 〈u · ω〉, ηt(0) = ηt(Hu = 0) and τ0 =

τc(Hu = 0).

We assume that

τc(Hu) = τ0 (1 + ǫζ
f
), (22)

where ǫf = 〈u · ω〉ℓ0/〈u2〉 is the normalized kinetic he-

licity. Therefore, the turbulent magnetic diffusion coef-
ficient is

ηt = ηt(0)

[

1 + ǫζ
f
− ǫ2

f

3

(

1 + ǫζ
f

)3
]

. (23)

The assumption (22) has recently been supported by

the direct numerical simulations of forced turbulence
(Brandenburg et al. 2025), where ζ = 4 is an exponent

in Equation (22). This implies that the derivative of the

turbulent magnetic diffusion coefficient is

dηt
dǫf

= 4ηt(0) ǫ
3

f

[

1− 1 + 7ǫ4
f

6ǫ2
f

(

1 + ǫ4f
)2

]

. (24)

The derivative dηt/dǫf is negative for ǫf ≤ 1. Therefore,
the turbulent magnetic diffusion coefficient is reduced

by the kinetic helicity (see Section 5).

4. MEAN-FIELD EQUATION FOR PARTICLE

NUMBER DENSITY

The evolution of the number density n(t, r) of small

particles advected by a random incompressible fluid

flow is determined by the following convection–diffusion

equation

∂n

∂t
+ u ·∇n = κ∆n, (25)

where u is a random velocity field of the particles which
they acquire in a random fluid velocity field and κ is

the coefficient of molecular (Brownian) diffusion. Fol-

lowing to the method described in Sections 2–3 (see

also Elperin et al. 2000, 2001), we derive the mean-field

equation for the particle number density. We use an ex-
act solution of Equation (25) with an initial condition

n(t = s,x) = n(s,x) in the form of the Feynman-Kac

formula:

n(t,x) =
〈

n(s, ξ(t, s))
〉

ξ
, (26)

where 〈...〉ξ implies the averaging over the Wiener

paths:

ξ(t, s) = x−
∫ t−s

0

u[t− µ, ξ(t, µ)] dµ+
√
2κw(t− s).

(27)

We assume that

n(t, ξ) =

∫

exp(iξ · q)n(s, q) dq. (28)
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Substituting Equation (28) into Equation (26), we ob-

tain

n(s,x)=

∫

〈

exp[iξ̃ · q]n(s, q)
〉

ξ
exp(iq · x) dq.

(29)

In Equation (29) we expand the function exp[iξ̃ · q] in
Taylor series at q = 0 and use the identity (iq)k exp[ix ·
q] = ∇

k exp[ix · q], which yields

n(t,x)=

〈[ ∞
∑

k=0

(ξ̃ ·∇)k

k!

]〉

ξ

∫

n(s, q) exp(iq · x) dq.

(30)

Applying the inverse Fourier transform n(s,x) =
∫

n(s, q) exp(iq · x) dq, we obtain

n(t,x) =
〈

exp(ξ̃ ·∇)
〉

ξ
n(s,x). (31)

Equation (31) has been also derived applying a more

rigorous method in Appendix A of Elperin et al. (2000).

In this derivation the Cameron-Martin-Girsanov theo-

rem is applied.

To derive mean-field equation for a particle number
density, we consider a random velocity field with a fi-

nite constant renewal time. In Equation (31) we specify

instants t = (m + 1)τ and s = mτ , and average this

equation over a random velocity field. This yields the
mean-field equation for the particle number density as

n[(m+ 1)τ,x] = P (τ,x, i∇)n(mτ,x), (32)

where n[(m + 1)τ,x] = 〈n((m + 1)τ,x)〉u, n(mτ,x) =

〈n(mτ,x)〉u, and

P (τ,x, i∇) = 〈〈exp[ξ̃ ·∇]〉ξ〉u. (33)

We consider a random velocity field with a Gaussian

statistics and with large fluid Reynolds numbers and

large Peclet numbers. For a small renewal time, ex-
panding the function exp[ξ̃(τ) ·∇] into Taylor series, we

obtain

P (µ,x, i∇) = 1 +
1

2
〈〈ξ̃mξ̃n〉ξ〉u∇m∇n + ..., (34)

where

〈〈ξ̃mξ̃n〉ξ〉u=µδmn

[

µ

3

(

〈u2〉 − µ2

24
〈u · ω〉2

)

+ 2κ

]

.

(35)

Since ∂n/∂t = lim
µ→0

[n((m+1)µ,x)−n(mµ,x)]/µ, Equa-

tions (32), (34) and (35) yield the mean-field equation
for the particle number density n(t,x) as

∂n(t,x)

∂t
= (κ+ κt)∆n, (36)

where the turbulent diffusion coefficient is given by

κt =
τc
3

(

〈u2〉 − τ2c
6

〈u · ω〉2
)

. (37)

It follows from Equation (37) that

κt(Hu)

κt(0)
=

τc(Hu)

τ0

(

1− τ2c (Hu)

6

H2
u

〈u2〉

)

, (38)

where κt(0) = κt(Hu = 0) and τ0 = τc(Hu = 0). Since
τc(Hu)/τ0 = 1 + ǫζ

f
[see Equation (22)], the turbulent

diffusion coefficient is

κt = κt(0)

[

1 + ǫζ
f
− ǫ2

f

6

(

1 + ǫζ
f

)3
]

. (39)

According to numerical simulations by Brandenburg et al.

(2025), ζ = 4, so that the derivative of the turbulent

diffusion coefficient for scalar field is

dκt

dǫf
= 4κt(0) ǫ

3

f

[

1− 1 + 7ǫ4
f

12ǫ2
f

(

1 + ǫ4f
)2

]

. (40)

This implies that the derivative dκt/dǫf is positive (since

ǫf ≤ 1). Therefore, the turbulent diffusion coefficient for

the scalar field is enhanced by the kinetic helicity (see

Section 5).

5. COMPARISONS WITH NUMERICAL RESULTS

As in Brandenburg et al. (2025), we compute a tur-

bulent velocity field by solving the fully compressible

momentum equation with an isothermal equation of
state. In the papers by Brandenburg et al. (2017) and

Brandenburg et al. (2025), only fully helical cases were

compared with the nonhelical cases. Here, we also com-

pute cases with intermediate kinetic helicities of the forc-

ing. This is accomplished by adding a fraction σikpǫijpfj
to the nonhelical forcing function fi. The fractional he-

licity is then ǫf = 2σ/(1 + σ2).

We compute the turbulent transport coefficient α, ηt,

and κt in Equations (19) and (36) from the turbulent
velocity field discussed above. We use the test-field

method (Schrinner et al. 2005, 2007; Brandenburg 2005;

Brandenburg et al. 2008), where we solve numerically

the equations for the fluctuating magnetic and passive

scalar fields. These are nonlinear inhomogeneous equa-
tions, in which the product of the mean magnetic and

passive scalar fields act as an inhomogeneous source

term. Thus, the test-field equations are different from

the original evolution equations, which are homoge-
neous. Moreover, the mean magnetic and passive scalar

fields are not solutions to these equations, but consist of

a set of mutually orthogonal fields that are called test

fields. They are constructed such that we can compute
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Figure 1. Dependencies of α (red solid line), ηt(0)−ηt (blue
solid line) and κt(0)− κt (black solid line) on the fraction ǫf
of the kinetic helicity, where ηt(0) = ηt(ǫf = 0) and κt(0) =
κt(ǫf = 0). Here α is normalized by A0 = urms/3, and turbu-
lent diffusion coefficients are normalized by D0 = urms/3kf ,
where kf is the forcing wavenumber. The dashed and dotted
blue and black curves give the expressions (1+ ǫ4f )

3ǫ2f /3− ǫ4f
and (1+ ǫ4f )

3ǫ2f /6− ǫ4f from Equations (23) and (39), respec-
tively. The theoretical results for ǫf & 0.85 are shown as
dotted lines, because they may not be reliable.

the desired transport coefficient exactly and not as a fit

or by some regression method (Brandenburg & Sokoloff

2002; Simard et al. 2016; Bendre et al. 2024).

The resulting turbulent transport coefficients depend
on time and one or two space coordinates (here only on

z, in addition to t). We are usually interested in their av-

eraged values. To determine error bars, we also compute

averages for any one third of the full time series. The
results are plotted in Figure 1. As in Brandenburg et al.

(2025), we present our results for α, ηt, and κt in nor-

malized form and divide α by A0 = urms/3 and ηt and

κt by D0 = urms/3kf . Note that ηt(0) = κt(0) = D0.

We see that α increases approximately linearly with
ǫf . For ηt and κt, it is convenient to plot the differ-

ences from the nonhelical values, ηt(0) and κt(0), re-

spectively. We see that for both functions, the differ-

ences are small when ǫf . 0.4, and then depart from

zero in opposite directions. This is also predicted by

the theory. For ǫf & 0.85, however, there are major

departures between our theory and the simulations of

Brandenburg et al. (2025) for ǫf = 1. Note that the sim-
ulations (Brandenburg et al. 2025) predict similar re-

sults both for passive scalars using the test-field method

and for active scalars based on the decay of an initial

entropy perturbation.

The strong dependence of the theoretical results from
Equations (23) and (39) involving high powers of ǫf is

related to the following reasons. The main contributions

to the difference in turbulent diffusion coefficients for he-

lical and non-helical turbulence come from the fourth-
order moments of a random velocity field. The second

reason for the high powers of ǫf in turbulent diffusion

coefficients is related to the strong dependence of the

correlation time of a random velocity field on ǫf found

in simulations (Brandenburg et al. 2025). The difference
between the theoretical predictions and the simulations

(Brandenburg et al. 2025) for 1 ≥ ǫf > 0.85 is related

to the theory being based on the assumptions: (i) the

contributions of higher than fourth-order moments of a
random velocity field are neglected; (ii) it is assumed

that the velocity field has Gaussian statistics; and (iii)

we use a model of a random velocity field with renova-

tions.

6. DISCUSSION

One of the main effects of astrophysical turbulent

flows is a strong increase of the diffusion of the large-
scale magnetic and scalar fields, which can be charac-

terized in terms of the effective (turbulent) diffusion co-

efficients. The latter effect decreases the growth rates of

the mean-field dynamo instability and various clustering

instabilities related to scalar fields.
In the present study, we have developed a theory

which explains the nontrivial behavior of turbulent dif-

fusion coefficients of the large-scale magnetic and scalar

fields as functions of the kinetic helicity. These effects
have been recently discovered by direct numerical sim-

ulations (Brandenburg et al. 2017; Brandenburg et al.

2025), which show that turbulent magnetic diffusion de-

creases with increasing kinetic helicity while turbulent

diffusion of passive scalars increases with the helicity.
The main contribution to these effects comes from the

fourth-order correlation function of the turbulent veloc-

ity field. This is the reason why widely used methods

like the quasi-linear approach [the first-order smooth-
ing approximation (FOSA) or the second-order corre-

lation approximation (SOCA)] as well as the various

τ approaches and the direct interaction approximation

(DIA) cannot describe these effects.
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In the present study, we have applied the path-integral

approach for random flows with a finite correlation time

and for large Reynolds and Péclet numbers. We have

assumed that the velocity field has Gaussian statistics,
which allows us to represent the fourth-order moments

of the turbulent velocity field as a product of second-

order moments. A crucial role in the understanding of

these effects is played by the kinetic helicity effect on

the turbulent correlation time, which increases with in-
creasing helicity. The results of the theory developed

here are in agreement with the numerical results of

Brandenburg et al. (2017); Brandenburg et al. (2025).
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